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Radio Frequency Fields in Multiple-Cavity Masers
J. Shell1

A computer program has been written to calculate the radio frequency (RF)
electric and magnetic fields inside a cascaded network of rectangular waveguide
junctions. It is based on a mode-matching program developed in JPL’s Commu-
nications Ground Systems Section. This program has been used to calculate the
stored energy in the cavities of the current 32-GHz multiple-cavity maser design,
as well as the interaction between the RF magnetic field and the ruby spins at the
signal and pump frequencies.

I. Introduction

The current 32-GHz multiple-cavity maser (MCM) design is a coupled-cavity arrangement of cascaded
rectangular waveguide sections operating in a reflection mode [1]. Although it is a cavity design, the
performance is similar to a traveling-wave maser because the frequency of operation may be adjusted by
tuning the dc magnetic field strength and the microwave pump sources. In this way, the 31.8-GHz-to-
32.3-GHz deep-space-to-Earth allocation may be covered. A rectangular waveguide mode-matching pro-
gram was used to calculate the scattering parameters of various maser designs during the development
work leading to the current 32-GHz MCM design [2]. This program was used to determine the frequency
response of the coupled-cavity structure. The spin system losses were simulated by assigning suitable di-
electric loss tangents to the ruby-filled cavity. The maser design was based on the scattering parameters
obtained from the program.

The maser’s performance actually depends upon the interaction between the quantum mechanical spin
system in the active maser material and the RF magnetic field. The “spins” are the localized magnetic
moments associated with the chromium ions in the ruby crystal. Knowledge of the RF magnetic field
geometry in the cavities is needed to further optimize the design to maximize the maser performance.
This knowledge and optimization is needed in the signal frequency range from 31.8 GHz to 32.3 GHz and
in the pump frequency range between 65.9 GHz and 66.9 GHz. The same volume of ruby that interacts
with the signal frequency RF magnetic field must also interact with the pump frequency RF magnetic
field.

The mode-matching program does not normally provide information about the geometry of the RF
electromagnetic fields inside the cavities. Therefore, an algorithm based on mode-matching was developed
and is used to calculate RF electric and magnetic fields within the coupled-cavity maser structure. The
algorithm to calculate the RF electric and magnetic fields within the coupled-cavity maser structure is
described in this article, as are some results specific to the current 32-GHz MCM.

1 Communications Ground Systems Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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II. Modal Expansion of the Fields

The waveguides comprising the maser can be thought of as transmission lines capable of supporting
many modes, both propagating and evanescent. The electric and magnetic fields inside an arbitrary but
uniform waveguide can be expanded in a series of the waveguide mode functions as [3]

E(x, y, z) =
∑
n

vn(z)Etn(x, y) + in(z)Ezn(x, y)

H(x, y, z) =
∑
n

in(z)Htn(x, y) + vn(z)Hzn(x, y)

 (1)

where the vn(z) and in(z) are a measure of the rms amplitudes of the transverse and longitudinal electric
and magnetic fields. They also account for the field variation along the longitudinal direction z and satisfy
transmission line equations of the form

dvn(z)
dz

= − jκnZ(n)
o in(z)

din(z)
dz

= − jκnY (n)
o vn(z)

 (2)

where Z(n)
o is the impedance of the nth mode and κn =

√
k2 − k2

nc. The Etn and Htn are the transverse
components of the modal fields and are normalized in the sense that |Etn|2 and |Htn|2 integrated over
the waveguide cross section are unity. The transverse electric (TE) modes are given by [3]
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√
εmεn
b

n√
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√
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(3)

The longitudinal TE components of the field are given by

Ezn(x, y) = 0

Hzn(x, y) = − jηλ
√
εmεn
2ab

√
m2

b

a
+ n2

a

b
cos
(mπx

a

)
cos
(nπy

b

)
 (4)

In these expressions, a and b are the waveguide transverse dimensions, εm = 1 if the mode index m = 0
and εm = 2 if m 6= 0, η is the admittance of the medium, and λ is the wavelength in the medium. The
boundary conditions along surfaces parallel to the direction of propagation, such as the waveguide side
and top walls, are satisfied by the mode functions separately and, therefore, also by the sum. The mode
amplitudes vn and in are adjusted in magnitude and phase so that the boundary conditions along irises
and apertures are satisfied. A similar set of equations exists for the transverse magnetic (TM) modes,
but they are not needed if there is no variation in the y-direction and the incident mode is TE10.
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III. Connection Between the Modal Amplitudes and the Traveling-Wave
Amplitudes

The mode-matching program is based on a scattering description of the fields. This means the solution
to the wave equations, Eq. (2), are expressed as a superposition of exponential functions

vn(z) = an(z′)e−jκn(z−z′) + bn(z′)ejκn(z−z′)

Z(n)
o in(z) = an(z′)e−jκn(z−z′) − bn(z′)ejκn(z−z′)

 (5)

where an(z′) and bn(z′) are complex amplitudes representing the forward and backward traveling waves
at z = z′. The output of the mode-matching program is the set of scattering parameters for all the modes
used in the calculation. This means that each S-parameter, rather than being simply a complex number,
is a matrix. For example, S11(p, q) is the reflection coefficient when the qth mode is incident and the pth
mode is reflected. The pth and qth modes need not be propagating; they may be evanescent. This allows
the discontinuities to be placed close together, and they may even interact.

From Eq. (5), we can see the connection between the mode amplitudes used in Eq. (1), vn(z) and in(z),
and the traveling-wave amplitudes, an(z′) and bn(z′). The mode voltages and currents can be found by
solving Eq. (5) for vn and in at z = z′. Then,

vn = an + bn

in =
(an − bn)

Z
(n)
o

 (6)

If we multiply both above equations by
√
Z

(n)
o and redefine v′n = vn

√
Z

(n)
o and i′n = in

√
Z

(n)
o , we obtain

v′n = (an + bn)
√
Z

(n)
o

i′n =
(an − bn)√

Z
(n)
o


(7)

This definition of the mode amplitudes implies a power flow down the waveguide for the nth mode of

Pn = Re(v′ni
′∗
n ) = a∗nan − b∗nbn (8)

that is consistent with the definition used by the mode matching program [2]. For the TE modes, the
characteristic impedance is given by

Z(n)
o =

jωµ

γn
(9)

where ω is the angular frequency, µ is the permeability, and γn is the propagation constant of the nth
mode, given by
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γn =

√(
2π
λcn

)2

−
(

2π
λo

)2
ε

εo
(10)

where λcn is the cut-off wavelength of the nth mode, given by

λcn =
2
√
ab√

m2
b

a
+ n2

a

b

(11)

IV. Determination of the Traveling-Wave Amplitudes from the Generalized
Scattering Parameters

Up to this point we have expressed the electric and magnetic fields in terms of a modal expansion,
and we have related the mode amplitudes to the traveling-wave amplitudes in Eq. (7). The last step is to
calculate the traveling-wave amplitudes at a given reference plane from the scattering parameters. This
can be done in the following way. One half of the maser structure, up to and including part of the cavity
of interest, is called network A, and the other half is called network B. See Fig. 1. The usual equations
for S-parameters can be written

bA1 = SA11a
A
1 + SA12a

A
2

bB1 = SB11a
B
1 + SB12a

B
2

bA2 = SA21a
A
1 + SA22a

A
2

bB2 = SB21a
B
1 + SB22a

B
2


(12)

Imposing the continuity conditions that bA2 = aB2 and aA2 = bB2 leads to the following set of equations:

bA1 − SA12a
A
2 = SA11a

A
1

aA2 − SB22b
A
2 = SB21a

B
1

bA2 − SA22a
A
2 = SA21a

A
1

bB1 − SB12b
A
2 = SB11a

B
1


(13)

a 1
A

b 1
A

a 2
A

b 2
A

PORT
2

PORT
1

NETWORK
B

b 2
B

b 1
B

a 1
B

a 2
B

PORT
1

PORT
2

NETWORK
A

Fig. 1.  The break up of the microwave structure into two parts and the traveling-
wave amplitudes associated with each part.
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This can be written in matrix form as


I1 0 −SA12 0

0 I2 −SA22 0

0 −SB22 I3 0

0 −SB12 0 I4



bA1

bA2

aA2

bB1

 =


SA11 0

SA21 0

0 SB21

0 SB11


[
aA1

aB1

]
(14)

The computer program analyzes the networks A and B separately. It calculates the generalized S-matrices
and forms the matrix equation above. Finally, it solves for aA2 and bA2 . Notice that aA2 and bA2 are vectors
composed of the forward and backward traveling-wave amplitudes for all of the modes of interest. Using
Eq. (7), the mode amplitudes are calculated, and using Eq. (1), the fields are calculated. This process
is repeated for each desired transverse slice in the cavity of interest. The fields can be written to a
separate file, which can be read by MATLAB [4] to make two-dimensional vector plots of the fields or
three-dimensional plots of the stored energy or transition probabilities.

V. Energy Storage

If a sufficiently large number of slices is made through the cavity, and each slice is subdivided into a
number of points, a two-dimensional grid of values of the electric and magnetic fields can be found. Since
an and bn are complex, so also are vn and in. These resulting electric and magnetic fields are in phasor
form, having real and imaginary components. The maximum value of the field is given by the complex
absolute value of the phasor. The electric energy density and magnetic energy density are given by

UE =
1
2
ε |E|2 (15a)

and

UH =
1
2
µ |H|2 (15b)

These are calculated at each point of the two-dimensional grid. Since the fields are uniform in the vertical
direction, the total energy in the cavity is approximately the average value of the energy density over the
grid times the volume of the cavity.

VI. Transition Probability

As mentioned previously, the quantum transitions in the ruby are induced by the RF magnetic field.
The general expression for the transition probability between two quantum states j and k in a paramag-
netic system is given by [5]

Wjk =
1
4
γ2g(f) |H∗RF · 〈j |S| k〉|

2 (16)

In this expression, γ is the ratio of the magnetic moment to the angular momentum of the spin. (This
γ should not be confused with the propagation constant defined earlier or the appearance in Table 1 for
the directional transition probabilities.) The function g(f) is called the line shape and determines how
the transition probability behaves as one moves away from the resonant frequency. The quantity S is
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a quantum mechanical operator describing the effective spin. The quantities 〈j| and |k〉 are the vectors
representing the quantum states j and k. The quantity 〈j|S|k〉 is a dimensionless vector characteristic
of the particular j–k transition and the strength of the dc magnetic field and its orientation relative to
the c-axis of the ruby. Its calculation is a problem in quantum mechanics.2 The vector components of
〈j|S|k〉 are usually expressed in the form (α, β, γ). These values for ruby whose c-axis is 54.735 deg from
the applied dc field and whose strength is 11.8 kG are shown in Table 1 for the quantum transitions of
interest. In this article, we will not include g(f), which is dependent on the dc magnetic field shape and
the natural line width of the ruby. The constant factor (1/4)γ2 will also be omitted.

Table 1. Components of 〈〈〈j |||S|||k 〉〉〉 for ruby with H dc = 11.8 kG
at 54.735 deg to the c-axis.

Quantum
α β γ

transition

Level 2↔ 3 −1.96 0.087 j1.96

Level 1↔ 3 −0.291 −0.20 j0.304

Level 2↔ 4 −0.258 −0.20 j0.237

Average of −0.2745 −0.20 j0.2705
(1↔ 3) + (2↔ 4)

VII. Application to the Ka-Band Multiple-Cavity Maser

The geometry of the multiple-cavity maser is shown in Fig. 2. A calculation of the stored magnetic
energy in the signal broadbanding cavity, the ruby cavity, and the pump broadbanding cavity as a function
of frequency is shown in Fig. 3. It is interesting to note that at the center of the tuning range, near 32 GHz,
very little energy is stored in the coupling cavity. As one moves away from 32 GHz in either direction, the
energy stored in the coupling cavity increases, peaking at 31.5 and 32.65 GHz. This is an example of what
Siegman [5] describes as frequency-dependent feedback. He explains it in the following way. Ignoring the
reactive effects of the spin system, the coupling cavity and ruby cavity can be represented by the lumped
circuit shown in Fig. 4. A signal exactly on resonance passes through the shunt circuit with no loss, is
amplified by the ruby, and passes back out through the shunt circuit. A signal slightly off resonance is
scattered slightly by the shunt circuit in traveling into the ruby cavity. More importantly, some of the
amplified signal leaving the ruby cavity is scattered by the shunt circuit back into the ruby cavity for
additional amplification.

A simple check of the field calculation program can be made in the following way. From very general
principles, the frequency dependence of a lossless junction follows the relation [6]

−dφ
dω

=
W

P
(17)

which states in words that the electrical line length into the termination and out again always increases
with frequency, and the rate of increase is equal to the stored energy per unit incident power. The left-
hand side of the equation can be calculated using the original mode-matching program. The right-hand

2 R. W. Berwin, “Paramagnetic Energy Levels of the Ground State of Cr+3 in Al2O3 (Ruby),” JPL Technical Memorandum
33-440, Jet Propulsion Laboratory, Pasadena, California, January 15, 1970.
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Fig. 2.  Top view of the Ka-band multiple-cavity maser design (from [1]).  The signal
power is incident from the left; the pump power is incident from the right.

side of the equation can be calculated by summing the total electric and magnetic stored energy in all
three cavities. The curves are shown in Fig. 5. The reader can see that the curves are in quite close
agreement.

Another way to check the program is to estimate the stored electric energy in a given cavity by
examining the dissipative loss using the original mode-matching program. A dissipative loss can be
accounted for by including an imaginary component of the dielectric constant. An imaginary component
of the dielectric constant is applied to each cavity in turn, and the reflection coefficient, S11, for the
complete structure is calculated. The quantity (1− S2

11) is shown in Fig. 6. One can see that the shape
of the curves for the dissipative loss in the ruby cavity and the coupling cavity closely matches the curves
in Fig. 3. The total dissipative loss closely resembles the curves in Fig. 5. Calculation at the pump
frequencies looking from the pump end of the structure gives a similar response.

In the coupled-cavity maser, the ruby cavity is resonant at the signal frequency. It is also resonant
at the pump frequency in the presence of the signal broadbanding cavity and the pump reject filter.
Tabulations of the quantity TP = |H∗RF · 〈j |S| k〉|

2 over a 45-by-45 grid inside the ruby crystal have
been made. The curves in Fig. 7 include only the effects of the signal broadbanding cavity, ruby cavity,
and pump broadbanding cavity. The quarter-wave transformers and pump reject filter should have no
effect and are not included. Figure 7(a) shows a plot for this calculation at 32.0 GHz. The values for the
directional transition probability are given in the first row of Table 1. The base of the plot corresponds to
the base of the ruby crystal. In Fig. 2, it corresponds to the area labeled “ruby cavity.” The height of the
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Fig. 3.  The stored magnetic energy in the signal broadbanding cavity,
ruby cavity, and pump broadbanding cavity versus frequency.
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Fig. 4.  Simplified lumped-element representation of
the signal broadbanding cavity and ruby-filled cavity.

plot corresponds to the value of TP at that location. The same plot applies at any horizontal plane within
the ruby crystal. The arrow on the figure indicates the view looking from the signal broadbanding cavity.
The large transition probabilities near the edges of the inductive irises stand out. The interaction with the
ruby spin system is very strong at these points. Figure 7(b) shows the same plot from a lower elevation
angle and an expanded scale. The plot is characterized by the bowl-shaped depression in the center of the
ruby. This is expected because the magnetic field is very weak in the center of a half-wavelength cavity.
The interaction falls to zero at the corners of the ruby and rises to a local maximum half the distance
of the cavity along the side walls. It also falls to a local minimum in the center of the apertures of the
inductive irises. The value there is slightly greater than the local maximum at the side walls. The shape
of this surface changes little over the frequency band from 31.8–32.3 GHz.
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Because the computer code has not been generalized to handle TM modes as of this writing, the pump
reject filter was replaced with a waveguide beyond cutoff located 1.177 cm from the 3.6068-mm iris. A
short circuit could not be used because no transmitted modes would be generated, and the algorithm
described in Section III would fail. The directional transition probabilities used for this calculation are
shown in Table 1 as the average values for the quantum transitions between levels 1 and 3 and levels 2
and 4. Figure 8(a) shows the quantity TP over a 45-by-45 grid in the ruby cavity at a pump frequency
of 65.9 GHz. The viewpoint is the same as that used in Fig. 7(a). The interaction is again strong near
the two side walls. However, it is also strong between the side wall and the center of the cavity, showing
the clear presence of a TE301 mode. The presence of the TE102 mode is not very strong, as indicated by
the weak interaction down the center line of the cavity. The interaction in the aperture is relatively weak
compared with the interaction at the side walls, in contrast to the case mentioned earlier at 32 GHz.
There is a peaking of TP near the walls forming the inductive irises, but it is not as pronounced as
in Fig. 7(a). There is also a slight asymmetry along the direction of propagation with the two central
maxima occurring closer to the signal-coupling cavity.

Figure 8(b) shows a similar plot at 66.4 GHz. The surface is more symmetrical with the four main
peaks occurring near the center of the ruby. The peaks due to the inductive irises are more nearly
equal. Figure 8(c) shows a similar plot at 66.9 GHz. Now the asymmetry has shifted slightly in the
other direction. The two central maxima are now slightly closer to the pump broadbanding cavity. The
interaction in the aperture of the pump-coupling cavity is greater than the interaction in the aperture of
the signal-coupling cavity. The peaks due to the inductive irises are larger at the front than the back,
just the reverse from the situation at 65.9 GHz. However, the basic structure of the interaction does not
change significantly from 65.9–66.9 GHz.
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The ability to make plots like these will enable future designers to better tailor the pump transition
distribution to match the signal transition distribution. A different choice of iris dimensions may lead to
greater excitation of the TE102 mode and less excitation of the TE301 mode. Different cavity dimensions
that allow more pump modes to exist and the location of the pump reject filter can also be investigated.
The further the filter is from the ruby cavity, the faster the pump transition distribution should change
with frequency. This could be a factor in determining the effectiveness of the pump source frequency
modulation.

In regards to accuracy, since the field components are calculated over a grid, the “integration” does
not extend to the walls of the cavity. Thus, in calculating the stored field energy, the magnetic field,
which is maximum near the walls, is slightly underestimated, and the electric field, which is zero at the
walls, is slightly overestimated. As the grid becomes finer, the accuracy should improve. At this point,
ohmic losses in the metal walls have not been included. The next version of the program may include
these.

VIII. Conclusion

A computer program has been written to calculate the RF fields in a structure composed of cascaded
sections of dielectric-filled rectangular waveguide. From the fields, the distribution of stored energy in
the maser can be calculated. Using spin vector components for ruby, a quantity proportional to the
transition probability between two quantum states can be calculated. The analysis is used to determine
the coupling of the signal and pump RF magnetic fields to the ruby spins. This knowledge can be used
with the scattering parameter data to optimize the dimensions of the ruby cavity, irises, and coupling
cavities to improve the maser’s performance.
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Fig. 8 (cont’d).

The program has yielded useful information for the relatively simple maser design discussed in this
article. It can also be used for the 8400–8450 MHz (X-band) multiple-cavity maser currently under design
or for more complex variations of the 32-GHz design mentioned in [1].
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