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Quantum Detection and Channel Capacity Using
State–Space Optimization

C.-W. Lau1 and V. A. Vilnrotter1

The fundamental performance limits and channel capacity of optical commu-
nications systems operating over the free-space channel will be examined using
quantum detection theory. The performance of the optimum quantum receiver for
on–off keying and optical binary phase-shift keying is first examined as a pure-state
(no-noise) problem. The classical capacity of the binary symmetric channel for
these two modulation schemes will be evaluated for the optimum quantum receiver
by making use of the concept of quantum measurement states. The performance
of M-ary pulse-position modulation, which requires a product state representation,
will be evaluated along with the performance of certain dense signal sets. Perfor-
mance comparisons with classical techniques show an improvement of over 5 dB in
some cases when quantum detection is employed. As a further application of the
quantum detection theory, the capacity of the binary channel with on–off keyed
modulation and quantum detection is evaluated and shown to exceed the capacity
obtained with classical photon counting.

I. Introduction

At present, modulated optical fields are generally detected by means of energy detectors either directly
or by the use of phase-sensitive coherent detection techniques. At the extremely high frequencies of optical
signals, energy detection becomes a viable option that can be used even to discriminate between individual
photons, due to the high energy of photons in the optical regime. It is well-known that photon counting
can overcome thermal noise in the detection electronics, leading to shot-noise-limited performance, where
the only uncertainty is the inherent quantum-mechanical randomness in the weak optical fields. Coherent
detection relies on the addition of a strong local optical field to generate a large cross-term between
the received and local fields which, when detected using a suitable optical energy detector, can also
overcome thermal noise and achieve shot-noise-limited performance. While these detection techniques
are very sensitive, they cannot realize the full advantages of optimum quantum detection, which typically
performs much better in terms of the signal energy required to achieve a given detection performance.

The principles of quantum detection have been developed by Liu, Helstrom, Kennedy, Yuen, and others
during the last decades, and reported in numerous journal articles and books [1–4]. Their results on the
detection of coherent-state signals by means of optimum quantum measurements have been summarized
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in a recent review article [5], where quantum detection techniques have been applied to well-known
optical modulation schemes such as on–off keying (OOK), binary phase-shift keying (BPSK), and pulse-
position modulation (PPM), and compared to classical techniques such as photon-counting and coherent
detection. While classical schemes rely on photon-counting or coherent measurements, optimum and
near-optimum quantum measurements typically require both photon-counting and coherent techniques,
together with real-time signal processing to control the amplitude and phase of the local field. In this
way, improvements of a factor of two (3 dB) can often be achieved over classical detection in the absence
of background radiation. Here we extend these results to a new class of signals called “dense” signal sets,
where a large number of signals are packed into a given classical signal–space dimension, and compare the
performance of optimum quantum detection with those of more familiar classical techniques. Examples
of dense modulations include ternary and quadrature phase-shift keying (QPSK) modulations, as well as
compound signals formed by combinations of different modulations, such as binary phase-shift keying–
pulse-position modulation (BPSK-PPM). We shall show that quantum detection of these dense signal
sets often provides very significant (5 dB or more) improvement over classical detection techniques.

II. Quantum Optical Communications

We begin by describing the quantum mechanical representation of a single mode of a coherent optical
field, which can be modulated in various familiar ways to carry information from the transmitter to the
receiver in an optical communications system.

A. Definition of Quantum States

At any instant of time, the state of a quantum system is completely specified by a state vector |ψ〉 in a
Hilbert space over the field of complex numbers [4]. The state vector, or “ket” |ψ〉, can be thought of as
a column vector of infinite dimension. An equivalent “row vector” representation of the state is denoted
by 〈ψ| in Dirac notation. The state is normalized if 〈ψ|ψ〉 = 1. Suppose |φ1〉 and |φ2〉 are orthonormal,
that is 〈φ1|φ2〉 = δ12, and |ψ〉 is normalized. If a state |ψ〉 can be expressed as the superposition of
orthonormal states, |ψ〉 = a1|φ1〉+ a2|φ2〉, then their overlaps are

〈φ1|ψ〉 = 〈ψ|φ1〉∗ = a1

〈φ2|ψ〉 = 〈ψ|φ2〉∗ = a2

 (1)

where |a1|2 + |a2|2 = 1 and |a1|2 and |a2|2 can be interpreted as the probabilities that the system is found
to be in states |φ1〉 and |φ2〉, respectively, after a measurement. The overlap between two normalized
states, |ψ1〉 and |ψ2〉, can also be interpreted geometrically as the cosine of the angle, θ12, between the
vectors representing the states in Hilbert space: 〈ψ1|ψ2〉 = cos(θ12). Generalization to a superposition of
states follows as

|ψ〉 =
∑
n

an|φn〉 (2a)

where

∑
n

|an|2 = 1 (2b)

with the interpretation that |an|2 is the probability that the system is found in state |ψn〉 after a mea-
surement.
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There are situations where a single Hilbert space is not sufficient to describe the signal. An exam-
ple of this is M -ary pulse-position modulation, or PPM, where an optical pulse is placed into one of
M consecutive slots. This kind of modulation requires a “product-state” description of the form

|ψ〉 =
M∏
j=1

|ψj〉 = |ψ1〉|ψ2〉 · · · |ψM 〉 (3)

where each of the |ψj〉 is a coherent state associated with the individual modes. For product-states, the
overlap is computed by the rule

〈ψm|ψk〉 =
M∏
j=1

〈ψm,j |ψk,j〉

= 〈ψm,1|ψk,1〉〈ψm,2|ψk,2〉 · · · 〈ψm,M |ψk,M 〉 (4)

These concepts will now be applied to the quantum description of coherent optical fields, represented
as a superposition of “number states” familiar from the quantum mechanical solution of the harmonic
oscillator. This model will first be applied to problems involving the detection of single-mode optical
fields, followed by more complex signal models requiring a product-state description of the signal set.

B. The Coherent-State Representation of Optical Signals

Coherent states, representing electromagnetic radiation produced by physical devices such as lasers,
are an important class of states for optical communications. It has been shown [6] that the coherent
states of a single mode of radiation |α〉 can be expressed in the form of a superposition of orthonormal
eigenstates |n〉, known as the number eigenstates:

|α〉 = e−(1/2)|α|2
∞∑
n=0

αn

(n!)1/2
|n〉 (5)

Each number eigenstate |n〉 contains n photons, and hence the probability of obtaining exactly n photons
as the outcome of an experiment can be computed as

|〈α|n〉|2 = e−|α|
2 |α|2n
n!

(6)

For any n, these are recognized as Poisson probabilities for the number of photons, with the average
number of photons equal to |α|2. Coherent states are not orthogonal, as can be seen by considering the
overlap between two arbitrary coherent states, |α1〉 and |α2〉. Orthogonality requires that the overlap
vanish altogether; however, for coherent states, the squared magnitude of the overlap is not zero but
instead is given by

|〈α1|α2〉|2 =

∣∣∣∣∣e−(|α1|2+|α2|2)/2
∑
n

∑
m

αn1√
n!

(α∗2)m√
m!
〈n|m〉

∣∣∣∣∣
2

=
∣∣∣e−(|α1|2+|α2|2−2α1α

∗
2)/2

∣∣∣2 = e−|α1−α2|2 (7)
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where we made use of the orthogonality of the number states to simplify the expression. Equation (7)
demonstrates that there is always some overlap between coherent states, regardless of how great the
difference between average photon counts may be.

C. Classical and Quantum Mechanical Derivation of a Photon-Counting Receiver (On–Off Keying)

The concept of “measurement states,” used extensively in the quantum mechanical derivation, can be
illustrated by the following example employing on–off keying (OOK) modulation. This modulation can
be described classically as “one of the signals has zero amplitude, while the other signal has complex
amplitude α.” Suppose there are two hypotheses, H0 and H1, denoting absence and presence of signal,
respectively. If the background radiation can be neglected, then either no photons or an average of |α|2
photons are received. The received field is assumed to be from a coherent laser; hence, the photons are
Poisson distributed with conditional densities

P (n|H0) =
{

1, n = 0
0, n ≥ 1

P (n|H1) =
|α|2n
n!

e−|α|
2

 (8)

At the end of each signaling interval, the receiver records the total number of detected photons and
decides which hypothesis is true by computing the two likelihood functions, Λi ≡ P (n|Hi), i = 0, 1, and
selecting the hypothesis corresponding to the larger of the two. In the absence of noise, H0 is always
decoded correctly, so P (C|H0) = P (0|H0) = 1. If at least one photon is detected, H1 is decoded correctly:
P (n ≥ 1|H1) = 1 − e−|α|2 . With equal a priori probabilities, P (H0) = P (H1) = 1/2, the probability of
correct detection becomes

P (C) =
2∑
i=1

P (C|Hi)P (Hi) = 1− 1
2
e−|α|

2
(9)

yielding the average probability of error P (E) = 1− P (C) = (1/2)e−|α|
2
.

In the quantum mechanical formulation, the received field is in one of two states, |ψ0〉 = |0〉 or
|ψ1〉 = |α〉, corresponding to hypotheses H0 and H1. The signal field is assumed to be in a pure coherent
state, which can be expressed in the number representation as

|ψ1〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (10)

where α is a complex number, the set {|n〉} represents the number eigenstates, and |α|2 again represents
the average number of photons in the signal. A measurement that determines whether or not the received
state is the ground state corresponds to an application of the detection operators Π0 and Π1 described
in [5], defined as

Π0 = |0〉〈0|

Π1 =
∞∑
n=1

|n〉〈n| = 1− |0〉〈0|

 (11)
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where 1 is the identity operator with a number eigenstate basis. When the projection operator Π0 is
applied to the ground or “vacuum” state (the state of the received field under hypothesis H0), the ground
state is recovered:

Π0|ψ0〉 = |0〉〈0|0〉 = |0〉 ≡ |w0〉 (12)

Here we define |w0〉 as the measurement state corresponding to |ψ0〉. The probability of observing
zero photons, given that H0 is true, can be expressed as [5]

Pr(0|H0) = |〈w0|ψ0〉|2 = 〈0|Π0|0〉 = 1 (13)

which can be interpreted as the squared magnitude of the projection of |ψ0〉 onto |w0〉. When the received
field is in a coherent state, application of the projection operator Π1 yields

Π1|ψ1〉 =
∞∑
n=1

|n〉〈n|
(
e−|α|

2/2
∞∑
m=0

αm√
m!
|m〉
)

= e−|α|
2/2

∞∑
n=1

αn√
n!
|n〉 ≡ |W1〉 (14)

Note that |W1〉 is not normalized. Denote the normalized version of |W1〉 as |w1〉, with the inter-
pretation that it is a measurement state for |ψ1〉, that is, Π1|ψ1〉 = 〈w1|ψ1|w1〉. Since 〈w0|W1〉 =
e−|α|

2/2
∑∞
n=1

(
αn/
√
n!
)
〈0|n〉 = 0, it follows that the measurement states |w0〉 and |w1〉 are orthonormal.

Similar to Eq. (13), the probability of obtaining a count greater than 0 when observing the received
coherent state is

Pr(n ≥ 1|H1) = |〈w1|ψ1〉|2 = 〈ψ1|Π1|ψ1〉

=

(
e−|α|

2/2
∞∑
m=0

(α∗)m√
m!
〈m|
) ∞∑
n=1

|n〉〈n|
(
e−|α|

2/2
∞∑
i=0

αi√
i!
|i〉
)

= e−|α|
2
∞∑
n=1

|α|2n
n!

= e−|α|
2
(
e|α|

2 − 1
)

= 1− e−|α|2 (15)

Again interpreting this as the squared magnitude of the projection of |ψ1〉 onto |w1〉, it follows that P (C) =∑2
i=1 P (C|Hi)P (Hi) = 1− (1/2)e−|α|

2
, yielding the probability of error P (E) = 1−P (C) = (1/2)e−|α|

2
,

exactly as with the classical derivation. We can see, therefore, that the detection operation can be
interpreted as the projection of the signal states onto a properly chosen set of orthonormal measurement
states.

D. State–Space Derivation of Quantum Receiver Performance with Binary Signals

In the quantum formulation, the two signal states characterizing OOK modulation, |ψ0〉 = |0〉 and
|ψ1〉 = |α〉, define a plane in Hilbert space. We have shown that the states produced by the application of
the photon-counting projection operators to the signal states can be referred to as measurement states that
span the two-dimensional subspace of Hilbert space defined by the two signal states. The measurement
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states are orthonormal and, for photon counting, one of the measurement states is lined up with the
ground state representing the null hypothesis, while the other measurement state is orthogonal to it in
the plane defined by the two signal states. Note that the ground state is always detected correctly, since
with photon counting the ground state is colinear with one of the measurement states and therefore
its projection onto the corresponding measurement state is one. However, since the signal state is not
orthogonal to the ground state, but instead is at an angle cos(θ) = 〈0|α〉, there is a nonzero projection
onto both measurement states; this is the reason for the occurrence of detection errors in the reception
of optical OOK signals even in the complete absence of background light.

Operating entirely in the two-dimensional signal subspace of Hilbert space, it is possible to find the
minimum average probability of error by rotating the measurement states within this “signal plane” and
calculating the error probability for each rotation until a minimum is reached. Representing the plane
defined by two signal states and also containing the two measurement states |w0〉 and |w1〉 as in Fig. 1,
the angle θ is defined as θ = cos−1(|〈ψ1|ψ0〉) and corresponds to the overlap between the two signal states.
We start with ϕ0 = 0, representing photon-counting detection, and rigidly rotate the measurement states.

The conditional probabilities of correct detection are given by

P (C|H0) = |〈ψ0|w0〉|2 ≡ cos2(ϕ0)

P (C|H1) = |〈ψ1|w1〉|2 ≡ cos2(ϕ1)

 (16)

The maximum value of the probability of correct detection can be found as a function of the rotation
angle ϕ1, by differentiating P (C) with respect to ϕ1 and equating to zero:

∂P (C)
∂ϕ1

=
1
2
{
− 2 cos(a− ϕ1) sin(a− ϕ1) + 2 cos(ϕ1) sin(ϕ1)

}
= 0 (17)

yielding the optimum rotation angle as ϕ∗1 = a/2 = (1/2)([π/2]− θ). Substituting ϕ∗1 into the expression
for P (C) yields the maximum value of the probability of correct detection as

P ∗(C) =
1
2

[
cos2

(a
2

)
+ cos2

(a
2

)]
=

1
2
[
1 + cos(a)

]
=

1
2
[
1 + sin(θ)

]

=
1
2

[
1 +

√
1− |〈ψ0|ψ1〉|2

]
(18)

θ

ϕ1

ϕ0

ψ 1

w 1

ψ 0

w 0

Fig. 1. The signal and measure-
ment states for the binary OOK
problem.
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where we let sin(θ) =
√

1− cos2(θ) =
√

1− |〈ψ0|ψ1〉|2 in the last step. Using the maximum value of
P (C), the minimum probability of error can be expressed as

P ∗(E) = 1− P ∗(C) =
1
2

[
1−

√
1− |〈ψ0|ψ1〉|2

]
(19)

which agrees exactly with the independently derived performance in [4]. Therefore, the operation per-
formed by the optimum quantum receiver can be viewed as a rotation of the measurement states in the
plane defined by the signal states. Using Eq. (7), the error probability of the optimum quantum receiver
for OOK can be further expressed in terms of the average number of photons in the signal averaged over
both hypotheses, Ks = (1/2)|α|2, as

P ∗(E) =
1
2

[
1−

√
1− e−|α|2

]
=

1
2

[
1−

√
1− e−2Ks

]
(20)

Another binary modulation format of interest for deep-space optical communications is “optical BBSK,”
which can be described quantum mechanically as two coherent states with the same average photon
energy, but with π radians out of phase. For optical BPSK, the signal states are defined as |ψ0〉 =
|α〉 and |ψ1〉 = | − α〉, where the average number of signal photons (averaged over both symbols) is
Ks = |α|2. Therefore, |〈ψ0|ψ1〉|2 = e−4Ks for optical BPSK, and the error probability is given by
P ∗(E) = (1/2)

[
1−
√

1− e−4Ks

]
. Signals that employ phase modulation, such as BPSK, require phase-

sensitive coherent measurements to distinguish the symbols; such measurements can be implemented by
adding a strong local field that is in phase with the optical field to the received signal, and detecting
the resulting sum field using classical energy detection. For optical BPSK, the error probability for
this coherent receiver is given by the following expression [4]: P (E) = Q

(√
4|α|2

)
= Q

(√
4Ks

)
, where

Q(x) ≡
(
1/
√

2π
) ∫∞

x
e−y

2/2dy.

Performance curves for binary OOK and BPSK formats using both quantum and classical detection
are shown in Fig. 2. Note that photon counting exhibits the same exponential behavior as optimum
quantum detection (both curves have the same slope), implying that photon counting is nearly optimal
for the detection of OOK signals. However, quantum detection of optical BPSK signals is exponentially
3 dB better than coherent detection, practically achieving a 2.6-dB reduction in the required signal energy
at an error probability of 10−5.
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Fig. 2.  Performance of optical OOK and BPSK signals.
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The binary signals considered above spanned a one-dimensional classical signal space, since both OOK
and BPSK can be represented classically as points on the real line: thus, OOK is represented by the
points (0, α), and BPSK by the points (−α, α). If the number of signals in this one-dimensional classical
signal space is increased by adding another signal with amplitude (−α), for example, then we obtain a
“dense signal set” characterized by the classical amplitudes (−α, 0, α). We define a signal set as dense
if its classical representation contains more signals than dimensions. Since distinct coherent states are
linearly independent, the corresponding quantum signals |−α〉, |0〉, |α〉 span a three-dimensional subspace
of Hilbert space. Therefore, three measurement states are needed to decode these signals optimally. A
graphical representation of the subspace spanned by the three signals is shown in Fig. 3, along with the
orthonormal measurement states that must be rotated to achieve optimum detection.

The probability of error for this ternary problem has been calculated by Helstrom in [4] and shown to
be of the form P (E) = 1 − (1/3)(a2 + 2c2) ≈ (1/3) exp(−Ns), where a and c are complicated algebraic
expressions. For comparison, the performance of the classical coherent detection receiver is given by
P (E) = (4/3) erfc

(√
Ks

)
, which is asymptotically proportional to exp(−Ks/2). The error performance

of these two receivers is shown in Fig. 4, where it can be seen that at low error probabilities quantum
detection enjoys a significant, nearly 3-dB, advantage over classical detection for ternary signals.

The state–space solution to the ternary problem is similar to the binary problem discussed above,
except now three orthonormal measurement states must be rotated until the maximum average detection
probability, or minimum average error probability, is found.

III. Quantum Decoding of Higher Dimensional Signal Sets

Higher dimensional optimization is the process of finding the orientation of the orthogonal measurement
states that yield the minimum probability of error. The solution to the M hypotheses problem can be
found by rotating the measurement states in an M dimensional space. The solution is iterative, starting
with the known optimum solution for the first two signals selected at random. The following example
demonstrates the solution for M = 4 but can easily be generalized to M dimensions. Using the signal state
overlap angles defined earlier as θij = cos−1

(
|〈ψi|ψj〉

)
, the signal states are plotted in a four-dimensional

Hilbert space with the axes defined by x–y–z–w. Figure 5 illustrates the algorithm, showing the first
three signal states, |ψ1〉, |ψ2〉, and |ψ3〉, with optimum placement of the measurement states around the
first two signal states, in the plane defined by this pair.

w 1

Fig. 3. Signal and measurement states
for the ternary problem.
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Fig. 4.  Performance of ternary signals with optimum
quantum and classical detection.
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ψ 3

θ

θ

ϕ

ϕ

ψ 2

ψ 1

Y-AXIS
w 2 MEASUREMENT STATE

X-AXIS
w 1 MEASUREMENT STATE

X−Y BISECTOR

Fig. 5. Two-dimensional optimal solution.

Next, the Cartesian coordinates for the state |ψ4〉 relative to |ψ1〉, |ψ2〉, and |ψ3〉 are determined using
the signal-state overlap angle relations defined above. Once all the signal-state coordinates have been
determined, the measurement states |w1〉, |w2〉, |w3〉, and |w4〉 can be rotated to obtain the minimum
probability of error.

The problem can be solved iteratively, starting with two dimensions, since it is possible to rotate the
projections of a vector in any lower dimension without affecting the projections of that vector in the higher
dimensions. This principle is illustrated in Fig. 6, where the projection of vector V1 in the x–y plane is
given by V1 cos(ψ). The vector V1 can be rotated such that the projection onto the z-axis is unchanged
while the x- and y-projection components vary. Generalizing this result to any M -dimensional vector,
the projections onto the (M − 1) coordinate axes can be varied by rotating the (M − 1) measurement
coordinates without affecting the projection onto the next higher dimension. Therefore, the optimum
measurement-state orientation for each dimension can be determined from the lower-dimensional solution,
and this procedure can be continued until the complete M -dimensional solution is obtained.

V 1 cos (   )

Y-AXIS

Z-AXIS

X-AXIS

V 1

ψ

ψ

Fig. 6.  Vector rotation.
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Next we illustrate a detailed solution for the four-dimensional case. Initially, the measurement states
are aligned with the Cartesian coordinate axes: |w1〉 with the x-axis, |w2〉 with the y-axis, |w3〉 with the
z-axis, and |w4〉 with the w-axis. We start with the solution for M = 2, which defines a plane containing
two signal states and two measurement states. The three-dimensional optimal rotation will be in the
plane defined by the z-axis and x–y bisector. As the states are rotated into the third dimension, the
projections of |ψ1〉 and |ψ2〉 onto |w1〉 and |w2〉 must be kept equal to each other in order to keep their
projections onto the fixed |w1〉 and |w2〉 measurement states maximum for any rotation. The reason for
this is that the minimum probability of error is achieved when the average projection of all signal states
onto their corresponding measurement states is maximum. From Fig. 1, it can be seen that in order to
keep the angles between |ψ1〉, |ψ2〉 and |w1〉, |w2〉 equal, the rotation must be in the plane defined by
the z-axis and x–y bisector. The rotation of the measurement states away from the z-axis towards the
x–y bisector is accomplished with the use of the following rotation matrix:


cos
(π

4

)
− sin

(π
4

)
0 0

sin
(π

4

)
cos
(π

4

)
0 0

0 0 1 0
0 0 0 1

×


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

×


cos
(
−π

4

)
− sin

(
−π

4

)
0 0

sin
(
−π

4

)
cos
(
−π

4

)
0 0

0 0 1 0
0 0 0 1

 (21)

where θ is the rotation angle away from the z-axis towards the x–y bisector. As the measurements states
are rotated, the probability of error is found for each incremental θ by computing the following quantities:

Pc =
1
3

(
〈w1|ψ1〉2 + 〈w2|ψ2〉2 + 〈w3|ψ3〉2

)
Pe = 1− Pc

 (22)

Thus, the measurement states are incrementally rotated and the error probability calculated until the
angle that yields the minimum probability of error is determined: this is the optimum rotation angle
for this dimension. Next, this three-dimensional solution is used to obtain the four-dimensional solution
corresponding to four signal states. As before, the goal is to rotate the |w4〉 measurement state away
from the w-axis while keeping the projections of |ψ1〉, |ψ2〉, and |ψ3〉 onto |w1〉, |w2〉, and |w3〉 maximal.
The rotation that satisfies these conditions is the rotation within the plane defined by the w-axis and
the x–y–z trisector. Defining θ′ as the angle between the x–y–z trisector and the x–y bisector, and γ
as the rotation angle away from the w-axis towards the x–y–z trisector, γ is incremented once again
until the minimum probability of error is found using the four-dimensional extension of Eq. (22). This
approach can be easily generalized to any higher dimensional signal sets by iteratively applying the above
algorithm.

IV. Error Performance of PPM and Dense Signal Sets

First we examine PPM signals, which require a product-state representation in the quantum model, as
described in [4,5]. As an example of product-state signals, the description of binary PPM with complex
amplitude α is of the form |ψ1〉 = |α〉|0〉, |ψ2〉 = |0〉|α〉. This signal set spans a two-dimensional subspace of
the product space, as illustrated in Fig. 7. Using the expression for the magnitude squared of the overlap
between two coherent product states, as in Eq. (4), the overlaps are 〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1, 〈ψ1|ψ2〉 =
〈ψ2|ψ1〉 = e−Ks , where Ks is the average number of photons in a signal set. It has been shown [3,4] that,
for equally likely signals, the minimum symbol-error probability for the optimum quantum receiver is
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P (SE) =
M − 1
M2

[√
1 + (M − 1)e−Ks −

√
1− e−Ks

]2

(23)

For M = 2, which may represent binary PPM, the overlap can again be interpreted as the cosine of the
angle θ between two states in state space.

The probability of a correct decision is maximized by rotating the two orthogonal measurement states
so that they are symmetrically placed around the signal states in the plane defined by the signals. The
error probability is then given by P (E) = (1/2)

[
1−

√
1− |〈ψ1|ψ2〉|2

]
as before, but now |〈ψ1|ψ2〉|2 =

e−2Ks , as compared to e−Ks for the corresponding overlap with on–off keying. The performance of
quantum and classical receivers is compared in Fig. 8 for M = 2 and M = 8, where it can be seen that
optimum quantum detection is approximately 3 dB better than classical detection in both cases.
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ψ 1 = ψ 1,1 ψ 1,2
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Fig. 7. Signal and measurement states
for binary orthogonal modulation.
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A. QPSK Signals

The classical description of QPSK signals includes a pair of orthogonal waveforms together with their
negatives, such as, for example, the following set of four sinusoidal waveforms that also uses the negative of
each orthogonal component: {s1(t) = sin(ωt), s2(t) = − sin(ωt), s3(t) = cos(ωt), s4(t) = − cos(ωt)}. Since
there are four signals in two dimensions, this is an example of a dense signal set by the above definition.
The quantum description of coherent-state QPSK is of the form {|ψ1〉 = |α〉, |ψ2〉 = | − α〉, |ψ3〉 = |iα〉 ,
|ψ4〉 = | − iα〉}, with the pairwise overlaps 〈ψ1|ψ2〉 = 〈α| − α〉 = e−(1/2)|α+α|2 = e−2|α|2 and 〈ψ3|ψ4〉 =
e−(1/2)|iα+iα|2 = e−2|α|2 ; the four remaining overlaps are 〈ψ1|ψ3〉 = 〈ψ1|ψ4〉 = 〈ψ2|ψ3〉 = 〈ψ2|ψ4〉 =
e−(1/2)|α±iα|2 = e−|α|

2
. Using the rotation algorithm described above for optimally aligning the four

orthogonal measurement states with the QPSK signal states yields the error-probability performance
shown in Fig. 9 (denoted by large circles). The exact error probability for QPSK signals has been
derived in [4]. For the case of large signal energy, the error probability for quantum detection ap-
proaches P (E)quantum

∼= (1/2)e−2Ks ,Ks >> 1, whereas in the same limit the classical receiver performs
as P (E)classical

∼=
√

(2/πKs)e−Ks/2,Ks >> 1. The quantum receiver is exponentially better by a factor
of 4, or 6 dB, than the coherent classical receiver; it can be seen in Fig. 9 that, for an error probability
of 10−3, the optimum quantum receiver outperforms the classical receiver by 5 dB.

QUANTUM: THEORY

QUANTUM
APPROXIMATE

CLASSICAL

ROTATION ALGORITHM

0 1 2 3 4 5

AVERAGE NUMBER OF SIGNAL PHOTONS Ks

Fig. 9.  Performance of QPSK and BPSK-2PPM signals with quantum and
classical detection.
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B. BPSK-2PPM Signals

This signal set is defined as {s1(t) = (0, α), s2(t) = (0,−α), s3(t) = (α, 0), s4(t) = (−α, 0)}, where the
notation (0, α) refers to no signal in the first T -second slot and a signal with amplitude α in the second
slot, etc. It is a dense signal set because two PPM symbols define two dimensions in signal space, but the
signal set contains four symbols. The quantum states corresponding to this signal set are product states
as defined in Eq. (3), with |ψ1〉 = |0〉|α〉, |ψ2〉 = |0〉|−α〉, |ψ3〉 = |α〉|0〉, |ψ4〉 = |−α〉|0〉. Pairwise overlaps
must be computed using the tensor-product rule defined in Eq. (4), resulting in the following overlaps:
〈ψ3|ψ4〉 = 〈α| − α〉〈0|0〉 = e−(1/2)|α+α|2 = e−2|α|2 and 〈ψ1|ψ3〉 = 〈ψ1|ψ4〉 = 〈ψ2|ψ3〉 = 〈ψ2|ψ4〉 = e−|α|

2
.

Note that this overlap matrix is identical to that of QPSK signals; therefore, optimization of the product
states yields the same performance as QPSK, despite the different state descriptions. The performance
of the coherent receiver observing BPSK-2PPM signals is also exactly the same as for QPSK, since both
signal sets can be represented as biorthogonal extensions of orthogonal signals in classical signal space,
and hence the results of Fig. 9 apply.
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V. Capacity of the Binary Channel with Quantum Detection

As an interesting application of state–space optimization, we compute the capacity of the binary
OOK channel with quantum detection, and compare it to the capacity obtained with classical photon
counting. Note that, for the noiseless quantum model, photon counting leads to a z-channel, whereas
optimum quantum detection results in a binary symmetric channel (BSC). For an arbitrary rotation of the
measurement states with respect to the signal states, the transition probabilities are not equal, and hence
a generalized (asymmetric) binary channel model must be considered. Our approach for determining the
capacity of the binary channel is to compute the mutual information between input and output for each
rotation of the measurement states, starting with photon counting where one of the measurement states
is aligned with the ground state, and compute the mutual information as a function of symbol input
probability, β, for each rotation away from this configuration. For each rotation, the maximum of the
mutual information as a function of β is recorded. The global maximum of the mutual information over
all input probabilities and rotations is the capacity of the binary channel.

The input alphabet is denoted by A and the output alphabet by B. The input alphabet consists of
the two symbols a1 = 0 and a2 = 1. Likewise, the output can take on one of two values, namely b1 = 0
or b2 = 1. The probability that a 0 is transmitted is β, whereas the probability of a transmitted 1 is
1− β ≡ β. The probability that b2 is received, given that a1 was transmitted, is p, while the probability
that b1 is received, given that a2 was transmitted, is q. These relationships are illustrated in Fig. 10.

0

1

0

1

p

q

A B

p = 1 − p

q = 1 − q

Fig. 10. The binary channel.

According to Shannon’s first theorem, an average of H(A) bits of information is needed to specify
one input symbol, where H(A) is the entropy of the source defined as H(A) =

∑
A P (a) log

[
1/P (a)

]
[7]. However, if we are allowed to observe the output symbol produced by that input, then we need
only H(A|B) =

∑
A P (a, b) log

[
1/P (a|b)

]
bits to specify an input symbol, on the average. It follows,

therefore, that observation of a single output symbol provides us with H(A)−H(A|B) bits of information,
on the average. This difference is called the mutual information between input A and output B, denoted
by I(A;B). It is non-negative and symmetric so that I(A;B) = I(B;A); hence, we can also write
I(A;B) = H(B)−H(B|A). Writing the conditional output entropy, H(B|A), explicitly yields

H(B|A) =
∑
A

P (a)
∑
B

P (b|a) log
[

1
P (b|a)

]

= β

(
p log

1
p

+ p̄ log
1
p̄

)
+ β

(
q log

1
q

+ q̄ log
1
q̄

)
(24a)

The output entropy can be expressed as
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H(B) =
∑
B

P (b) log
[

1
P (b)

]

=
(
βp̄+ βq

)
log
(

1
βp̄+ βq

)
+
(
βp+ βq̄

)
log
(

1
βp+ βq̄

)
(24b)

where we made use of the fact that P (b) = P (b|a1)P (a1)+P (b|a2)P (a2). Combining Eqs. (24a) and (24b)
yields the mutual information for the binary channel as

I(A;B) =
[(
βp̄+ βq

)
log
(

1
βp̄+ βq

)
+
(
βp+ βq̄

)
log
(

1
βp+ βq̄

)]

−
[
β

(
p log

1
p

+ p̄ log
1
β̄

)
+ β

(
q log

1
q

+ q̄ log
1
q̄

)]
(25)

Note that the mutual information of the z-channel and the BSC can be obtained by setting p = 0 and
p = q, respectively.

Our approach for determining the capacity of the quantum channel is to start with a rotation angle of
zero between the ground state and its measurement state (corresponding to photon counting, as we have
shown above), and to compute the mutual information defined in Eq. (25) as a function of β, 0 ≤ β ≤ 1
for each rotation in the signal plane, until the measurement state corresponds with the signal state. Since
different rotations yield different projections onto the measurement states, the values of p and q change
with each rotation.

Examples of mutual information and capacity for the binary channel with OOK modulation are shown
in Fig. 11, as a function of the input probability β, for an average value of one photon per symbol (or
two photons per signal pulse). Only the limiting cases of optimum quantum measurement and photon

OPTIMUM QUANTUM MEASUREMENT; C = 0.7 bits/binit
(BSC, 18-deg ROTATION)

PHOTON-COUNTING DETECTOR; C = 0.61 bits/binit
(Z-CHANNEL, NO ROTATION)
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Fig. 11.  Mutual information and capacity of the binary channel,
with quantum and classical detection.
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counting are included. From Fig. 2, the error probabilities for Ks = 0.5 are approximately 0.1025 and 0.18
for quantum and direct detection, respectively. The global maximum value of mutual information was
found to occur with optimum quantum measurement, at an input probability of β = 0.5. With photon-
counting detection, for which the asymmetric z-channel is the correct representation, the maximum mutual
information occurs at a higher value of input probability, namely at β = 0.55. The value of the maximum
mutual information was found to be 0.7 bits/binit for quantum detection and 0.61 bits/binit for photon
counting, verifying that optimum quantum detection achieves higher capacity as well as better average
error performance than photon-counting detection.

VI. Conclusions

In this article, we have examined the improvement that can be gained over classical detection tech-
niques by the use of optimum quantum detection. The basics of quantum theory were reviewed and
applied to determine the performances of several optical modulation schemes. The performance of an
OOK optical receiver was evaluated both classically and quantum mechanically to introduce the con-
cept of quantum-mechanical measurement states starting with familiar photon-counting detection. To
evaluate the optimum quantum detector, a state–space solution was applied. The concept of dense sig-
nal states was introduced, and the performance of the optimum quantum measurement compared to
the corresponding classical solution. In all cases evaluated, namely OOK, ternary signals, QPSK, and
BPSK 2PPM, the optimum quantum receiver performed significantly better than its classical counterpart,
with improvements of 5 dB demonstrated in some cases. Finally, the rotation algorithm was applied to
determine the capacity of the binary channel when optimum quantum detection is used; it was found
that the optimum quantum approach attained higher channel capacity than the classical receiver. We
conclude, therefore, that the optimum quantum receiver performs better both in terms of average error
probability and channel capacity than its classical counterpart.
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