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Some Analytic Integrals of the Averaged Variational
Equations for a Thrusting Spacecraft

A. E. Petropoulos1

Starting with a numerical analysis of various thrust profiles for continuous-thrust
escape from geostationary transfer orbit, we develop an averaging analysis that is
valid for the full range of initial eccentricities (zero to almost one) and thrust-to-
weight ratios. From the numerical analysis, it is found that shorter escape times are
obtained when the phasing of the final revolution before escape yields an “escape
from apoapsis” condition. This phasing is sensitive to slight variations in initial
orbit and the exact thrust profile. In the averaging analysis, which bypasses this
sensitivity, analytic integrals are found for the averaged variational equations for
energy and eccentricity, based on elliptic integrals and series expansions thereof.
Reasonably accurate explicit relations between mean energy and mean eccentric-
ity, as well as time and these two quantities, are obtained for the full range of
eccentricities and thrust ratios.

I. Introduction

The general problem of optimal continuous-thrust transfer between arbitrary orbits has not been solved
analytically. Here we are particularly interested in the problem of low-thrust, spiraling escape or capture.
Such spirals capitalize on the high specific impulse available to low-thrust engines, possibly reducing the
required propulsion system and propellant mass. Over the last few decades, approximate solutions have
been found for special cases. For example, as early as the late 1950s, Lawden [1,2] found that in the case
of escape from a circular orbit using continuous, constant thrust acceleration, thrust in the tangential
direction yields nearly the minimum characteristic velocity, the actual minimum occurring roughly for
a thrust direction that bisects the tangential and circumferential directions. Indeed, several researchers
[3–25] have obtained various approximate and sometimes exact analytic solutions for a number of specific
initial orbits and specific thrust profiles, such as constant tangential thrust. Often, averaging methods
are used either implicitly or explicitly. References [26–28] are excellent surveys of the older literature,
capturing also the survey authors’ insights.

Other research has focused directly on the problem of optimizing the spiraling trajectories, rather
than identifying possible solutions only to the equations of motion. One of the earliest results was the
analytic and now well-known Lawden’s spiral [29,30]. A recently discovered analog has been obtained
by Bishop and Azimov [31]. However, both of these apply only to highly specialized cases. Averaging
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methods and the closely related method of multiple time scales [32] have been used in conjunction with
the calculus of variations to provide both some analytic results for the case of low eccentricity and low
thrust [33-35] and the basis for optimization software [36,37]. Direct methods, sometimes in conjunction
with averaging, have also been used to avoid the complications of the large size of the multi-revolution
spiraling problem [38,39]. Kechichian [40], rather than use averaging, adopts alternative coordinates that
increase the speed of full, precise numerical integration, allowing the use of shooting methods to solve
the two-point boundary-value problem (TPBVP) from the calculus of variations. The chosen coordinates
also improve the convergence properties of the shooting method. To improve convergence in solving the
TPBVP, other researchers [41,42] have found methods for obtaining better guesses for the initial values of
the adjoint variables for circle-to-circle transfers. The recently developed static/dynamic control (SDC)
algorithm [43,44], based in part on dynamic programming, has also been applied to the many-revolution,
minimum-time escape problem [45], although its strengths currently lie in very high-fidelity, n-body
optimization of trajectories with fewer than about a hundred revolutions.

We describe in this article the somewhat circuitous path which led to some analytic integrals of the
averaged variational equations for a thrusting spacecraft. The integrals are valid for all initial eccentricities
from slightly above zero to almost unity and for a wide range of initial thrust levels—in other words,
over a large portion of the eccentricity-thrust space, with thrust measured relative to weight at a distance
equal to the current semimajor axis. For the case of a continuously thrusting spacecraft, time is available
analytically as a function of both average orbital energy and average eccentricity. Furthermore, analytic
expressions for the time are obtained for the other regions of the eccentricity-thrust space, including the
escape region, such that solutions may be patched together as the average osculating orbit moves between
the regions. It should be noted that this approach is different from that of Shi and Eckstein [18], who
use two-variable expansions that become decreasingly valid and increasingly unwieldy as the eccentricity
and thrust increase.

The present integrals were found after investigating numerous empirically selected thrust profiles for
the special case of escape from geostationary transfer orbit (GTO). First, we describe some of the thrust
profiles, along with insights gained from the investigation. Using numerical integration of the equations of
motion, we first determine the performance of tangential thrust over a wide range of initial eccentricities
and periapse altitudes. Then, for the case of a nominal GTO initial orbit, we present four control laws for
the thrust direction that out-perform the tangential-thrust law. The four laws have different functional
forms which were selected from over fifteen functional forms that were studied in detail, each having its
own set of parameters to adjust. The laws were selected based on their performance and on their perceived
potential to serve in optimization as initial guesses that might not only speed up the optimization process,
but also lead to different local minima. Second, we describe the integrals of the variational equations and
the analytic relations for regions where the integrals are invalid.

II. Constant Tangential Thrust

We examine the time needed to escape from initial Earth orbits with a fixed periapsis altitude of
200 km and varying eccentricity. The following parameters are assumed: The thrust is constant at
465 mN, the specific impulse is 3100 s, the initial spacecraft mass is 1500 kg, the gravity field varies
as 1/r2 with gravitational parameter 398,600.48504296 km3/s2, the Earth’s radius is 6378.14 km, and
thrust commences at periapsis. We define the nominal GTO to have a 200-km periapsis altitude and an
apoapsis altitude of 35,786 km (eccentricity of about 0.730085). Shadowing and forces other than gravity
are not considered.

For eccentricities near that of GTO, the escape time is found to oscillate significantly with initial
eccentricity. This oscillation is depicted in Fig. 1. The equations of motion in polar coordinates are nu-
merically integrated for various initial eccentricities while the initial periapsis altitude is fixed at 200 km.
The oscillation occurs as an effect of phasing. The local minima in escape time are all seen to occur for
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Fig. 1.  Oscillation in escape time using tangential thrust
for various initial Earth orbits near the nominal GTO, with
thrust starting at periapsis.

those initial orbits where the osculating eccentricity of the spiral trajectory almost reaches zero shortly
before escape, subsequently increasing roughly linearly with time to unity. In effect, “escape occurs from
apoapsis,” that is, at the point when the spacecraft has nearly reached the last apoapsis before escape,
enough thrust is available to circularize the orbit, effectively turning apoapsis to periapsis and continuing
with a positive and increasing flight-path angle up to escape. Whether the correct timing is obtained
to effect these conditions depends on the initial orbit, since the thrust and gravitational parameters are
assumed fixed. It is interesting to note in Fig. 1 that the difference between successive minima, about
0.36 days, is slightly less than the period of the nominal GTO, about 0.44 days, and that, while not
evident in the figure, the successive minima differ by about one escape revolution (progressively fewer
escape revolutions, the lower the local minimum).

Figure 2 shows as a function of initial eccentricity the minimum osculating eccentricity reached for
each of the integrations performed in Fig. 1. The actual evolution of eccentricity with time is shown in
Fig. 3 for two initial eccentricities: one giving the local maximum in escape time just prior to the nominal
GTO line in Fig. 1 and one giving the local minimum just after the nominal GTO line. The oscillations
in eccentricity with time have become almost diametrically out of phase well before the 80-day mark.

The local minima and maxima of escape time in Fig. 1 may be thought of as providing an envelope
for the escape times. Figure 4 shows these envelopes for various initial periapsis altitudes and initial
eccentricities varying from zero to about 0.85. As expected, the oscillations are of zero amplitude at zero
eccentricity, and grow steadily with increasing eccentricity.

If we restrict ourselves to the nominal GTO initial orbit, we may instead adjust the thrust control law
to obtain the correct phasing for escape from apoapsis. We now present four control laws that accomplish
this.

III. Control Laws

In developing the control laws, two basic approaches are taken. The first is a simple trial-and-error
approach, where the thrust angle is assumed to be of a certain functional form, with parameters in the
functions serving as secondary controls that determine the precise thrust angle. The second approach,
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Fig. 2.  Minimum osculating eccentricity reached using
tangential thrust for various initial Earth orbits near the
nominal GTO, corresponding to the cases in Fig. 1.
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which might be termed a “guided trial-and-error approach,” involves maximizing weighted averages of
the rates of change of the osculating orbital elements. The exact weightings, or functional forms of the
weightings, then become the secondary controls. This approach has been taken in the past, for example,
by Kluever [46] and Gefert [47]. Thrust along the velocity vector, which maximizes the rate of increase
of orbital energy (or, equivalently, semimajor axis), is the simplest example of this approach. For the
numerical analysis of these control laws, apart from the thrust direction, all other parameters are taken
to be the same as for the tangential-thrust case, and the initial orbit is taken as the nominal GTO.
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The thrust direction is specified in terms of the thrust angle, α, which is measured from the circum-
ferential direction, positive away from the gravitational center (as for the flight-path angle, γ). Three
of the more successful trial-and-error functional forms for α, with numerical parameters tailored for low
escape times from the nominal GTO, are given by

αf11 = γ
(
1 + e−n − en(|θ/π|−1)

)e−[rv2/(2µ)]

, (1)

with n = 2

αf46 = γ − m| sin γ|(sin2 γ)e
n[rv2/(2µ)]

, (2)

with m = 33, n = 5

αf50 = γ(θ+φ), (3)

with φ = 8 deg

where θ ∈ (−π, π] is the osculating true anomaly, r is the radius, v is the velocity, and µ is the gravitational
parameter of the central body. It is evident that these three equations provide variations from the
tangential-thrust law, α = γ. In the last equation, for example, γ(θ+φ) represents a simple phase shift that
gives the thrust angle as the flight-path angle not at the current position, but on the osculating conic at
a true anomaly advanced by φ from the current osculating true anomaly.

An examination of the escape spiral for each of the control laws given by Eqs. (1) through (3) reveals
that the escape from apoapsis characteristic is present in each case. With this observation in mind, we
develop a thrust law based on maximizing the rate of decrease of the impulsive ∆V needed to escape from
the osculating apoapsis radius. (In other words, the ∆V is that needed to escape, were the spacecraft
to cease thrusting and perform an impulsive escape maneuver at the apoapsis of the osculating orbit.)
The thrust angle giving the maximal rate of decrease is found using the variational equations for the
semimajor axis, a, and the eccentricity, e, along with elementary conic relations. A weighting factor, cw,
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is included for added flexibility. The value cw = 1 gives the maximal rate. An adjustment away from
unity will typically be needed to give the minimum escape time. The thrust angle, then, is given by

αf56 = γ − π

2
− atan(cwct, cno) (4)

where

ct =
av√
raµ

(√
1 − e −

√
2
)

+
e + cos θ

v

√
µ

ra

[
2 −

√
2(1 − e)

(1 + e)
√

1 − e

]
(5)

cno =
r sin θ

2av

√
µ

ra

[
2 −

√
2(1 − e)

(1 + e)
√

1 − e

]
(6)

with ra representing the osculating apoapsis radius, ra = a(1 + e). The notation φ = atan(y, x) is
shorthand for (R sin φ = y, R cos φ = x). For the nominal GTO, the weighting coefficient is set to
cw = 2.8 to obtain a favorable escape time.

For each law, the thrust angle and flight-path angle are depicted graphically in Fig. 5 as functions of the
number of revolutions. The tangential-thrust law is designated αf1. By looking at the flight-path angle,
we see that the escape from apoapsis condition is present in the latter four control laws: The last local
minimum in flight-path angle is very nearly zero and thereafter the flight-path angle rises increasingly
fast with polar angle up to escape, that is, d2γ/dθ2 is greater than zero, θ here being the polar angle.
From the last local minimum, about half a revolution remains before escape.

The escape times and number of revolutions needed to escape are shown in Table 1 for each control
law. It is noteworthy that the tangential-thrust law yields a longer escape time even though the number
of full revolutions completed is one less than by the other control laws (93 full revolutions compared
with 94). Recent work [45] has found that when used as initial guesses in optimization of the time to
escape, the 94-revolution cases of Table 1 converge to a slightly higher local minimum when compared
with the local minimum achieved from the tangential-thrust initial guess. (However, the optimization
requires a longer computation time for the tangential-thrust case, as the initial guess for the escape time
is further from the optimum than in the other cases.) The escape from apoapsis condition was found to
be present in both local minima. The number of revolutions of the initial guess is retained in the optimal
solution, suggesting that initial guesses requiring fewer revolutions to escape be preferred in optimization,
even if their escape time is longer. Interestingly, an examination of all the control-law functional forms
that were studied, of which tangential thrust and Eqs. (1) through (4) are a subset, reveals that those
with fewer full escape revolutions typically had longer escape times.

Given the laborious nature of numerical integration and the tuning of a particular control law for a
particular initial orbit, we turn now to an averaging analysis to obtain estimates of escape times and
other characteristics of the escape spiral without the need of either selecting or numerically integrating
an exact thrust profile. In addition to the analytical insights and computational simplifications to be
gained, the sensitivity of the escape time not only to the initial orbit, but also to the control law and the
parameters that govern it, will be reduced.
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Table 1. Comparison of times and revolutions to escape
from the nominal GTO, using different control laws.

Escape
Control Escape

time,
law revolutions

days

αf1 134.14 93.7

αf11 131.76 94.3

αf46 132.00 94.3

αf50 132.20 94.2

αf56 132.19 94.2

IV. Averaging Analysis

As before, we restrict ourselves here to thrusting that remains in the orbital plane. We develop an
analysis based on solving the averaged variational equations using elliptic integrals and series expansions
thereof. Perhaps the simplest starting point is an inspection of the behavior of the specific orbital energy,
E ,

E = − µ

2a
(7)

where µ is the gravitational parameter of the central body and a is the semimajor axis, as before. From
elementary orbital mechanics, we see that the energy is changed only by that component of thrust acting
tangentially to the orbit:

dE = ftds (8)

where ft is the component of thrust acceleration acting along the velocity vector and s is the path length.
Of course, this reduces immediately to the customary variational equation for semimajor axis (see, for
example, Battin [48, p. 489]):

da

dt
=

2a2v

µ
ft (9)

However, it is more illuminating to remain with the formulation in terms of path length, for it affords
geometrical insights. We know that when the thrust is small, the orbit will not change size or shape
significantly over the course of one revolution. Thus, we may approximate the path length traversed by
the spacecraft over one full revolution as the perimeter of the initial ellipse, Sp:

Sp = 4aEI(e) (10)

where

EI(e) =
∫ π/2

0

√
1 − e2 sin2 θ dθ (11)
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is the complete elliptic integral of the second kind with modulus equal to the eccentricity, e. (We use EI

instead of the customary symbol, E, to avoid confusion with the established notation for the eccentric
anomaly, to be used later.) Then, assuming that ft does not change very much, the change in energy
over one full revolution is approximately

∆E2π ≈ 4ftaEI(e) (12)

The time-averaged rate of change of energy over one revolution is then simply obtained by dividing the
change in energy by the period of the initial orbit,

dE
dt

t,2π

≈ 2ft

π

√
µ

a
EI(e) (13)

For the circular orbit, this reduces to the well-known ft

√
µ/a, since EI(0) = π/2.

On the right-hand side of Eq. (13) there appear the orbital parameters a and e, the former a known
function of E but the latter of as yet undetermined functional dependence on E or t. Thus, we turn now
to the variational equations for eccentricity, and osculating eccentric anomaly, E (see, for example, Battin
[48, p. 489]):

de

dt
=

1
v

[
2 (e + cos θ) ft +

r

a
fn sin θ

]
(14)

dE

dt
=

na

r
− 1

ebv

[
2aft sin θ − r (e + cos θ) fn

]
(15)

where v is the velocity, θ is the osculating true anomaly, r is the radius, fn is the component of thrust
acceleration normal to the velocity vector and away from the gravitating center (cf., Battin [48], who uses
the inward normal direction instead), n =

√
µ/a3 is the mean motion, and b = a

√
1 − e2 is the semiminor

axis. Equation (15) may be approximated as

dE

dt
≈ na

r
(16)

when the eccentricity is greater than some small positive value, and when the thrust acceleration is small
compared to the gravitational acceleration. What “small” means will be investigated later, as will the
behavior when these criteria are not satisfied. We may then approximate the rate of change of eccentricity
with eccentric anomaly as

de

dE
≈ r

na

de

dt
(17)

Using Eq. (14) and various relations for conic sections, the right-hand side of Eq. (17) may be written
in terms of a, e, E, ft, and fn. If we assume that all of these except E do not change significantly over
the course of one revolution, we may treat them as constant. With this approximation, after numerous
algebraic manipulations and changes of variables, we are able to find an integral of the right-hand side
for any initial and final values of E. For one full revolution in E (approximately one full revolution in
polar angle), the integral reduces to
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∆e
2π ≈ −8ft(1 − e2)

eµ/a2

[
K(e) − EI(e)

]
(18)

where

K(e) =
∫ π/2

0

dθ√
1 − e2 sin2 θ

(19)

is the complete elliptic integral of the first kind with modulus equal to the eccentricity, e. Notably,
over one full revolution, the normal thrust has no effect. As with the energy, we may compute the
time-averaged rate of change of eccentricity over one revolution:

de

dt

t,2π

≈ −4ft(1 − e2)
πe

√
µ

a

[
K(e) − EI(e)

]
(20)

An averaged differential relation solely between energy and eccentricity is now forthcoming from
Eqs. (12) and (18):

dE
de

t,2π

=
∆E 2π

∆e
2π ≈ − µ

2a
· eEI(e)
(1 − e2)

[
K(e) − EI(e)

] (21)

We henceforth discontinue the cumbersome overbar notation for averaged quantities. It should be clear
from the context when time-averaged quantities are being used. It should also be noted that the rela-
tionship between the e and E of the starting orbit and their respective averaged values over the next
revolution depends on where on the orbit the thrust commences. For simplicity, we assume the thrust to
commence at periapsis, since then the initial values for e and E are close to the average values over the
next revolution. After another series of manipulations, using relations between elliptic integrals listed in
Gradshteyn and Ryzhik [49], Eq. (21) may be integrated to yield

E
E0

≈
[
K(e) − EI(e)

][
K(e0) − EI(e0)

] (22)

where the subscript 0 denotes values on the initial orbit. Remarkably, the thrust acceleration components,
as long as they remain roughly constant, do not affect the relation between energy and eccentricity.

In order to find the dependence of the energy and eccentricity on time, we return to Eq. (13), which
we integrate with the help of Eq. (22), integration variable changes, and series expansions in selected
variables involving elliptic integrals (partly from Gradshteyn and Ryzhik [49]). For greater generality, we
introduce as a time-like variable the characteristic velocity of the thrusting spiral:

∆V =
∫ t

0

ftdt (23)

In the simplest case, ft is constant, and t = ∆V/ft. Another common case is that of constant thrust and
constant specific impulse, where the time is related to the ∆V by
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t =
c

ft0

(
1 − e−[∆V/c]

)
(24)

with c denoting the exhaust velocity and ft0 the initial thrust acceleration. Thus, the integration of
Eq. (13) yields

∆V ≈ π

√
−Ee0

2

{
2
π

[( E0

Ee0

)1/2

−
( E
Ee0

)1/2
]

+
2

3π2

[( E0

Ee0

)3/2

−
( E
Ee0

)3/2
]

+
1

10π3

[( E0

Ee0

)5/2

−
( E
Ee0

)5/2
]
− 3

14π4

[( E0

Ee0

)7/2

−
( E
Ee0

)7/2
]

− 107
288π5

[( E0

Ee0

)9/2

−
( E
Ee0

)9/2
]}

(25)

and

∆V ≈
√

−Ee0π

2

[
(e0 − e) +

13
48

(
e3
0 − e3

)
+

383
2, 560

(
e5
0 − e5

)

+
5, 833
57, 344

(
e7
0 − e7

)
+

43, 649
589, 824

(
e9
0 − e9

)]
(26)

where

Ee0 =
E0[

K(e0) − EI(e0)
] (27)

Either of Eqs. (25) and (26) may be used to obtain the ∆V (and hence the time), although their results
will be slightly different due to different truncation errors in the series.

We examine now the region of validity of the assumption that the thrust is small, which allowed
us to make the approximation of Eq. (16). First we note from Eq. (22) that, as energy increases, the
eccentricity decreases. However, we know that when the energy reaches zero, the eccentricity must be
unity, because the radial distance of the spacecraft is finite due to the finite time needed to escape. Thus,
at some point the eccentricity must cease to decrease and instead increase. We know from the preceding
sections, which studied escape from GTO, that the escape from apoapsis characteristic, typically present
in escape spirals with favorable escape times, involves near-circularization about one half revolution in
polar angle before escape. Up to this circularization, a revolution in polar angle corresponds roughly to
a revolution in osculating eccentric anomaly. Thus, just prior to circularization, we estimate the change
in energy per polar angle revolution to be equal to the change in energy over one E-revolution. It is
convenient to introduce the parameter q as the number of quarter revolutions in polar angle that remain
until escape. At circularization, q will be about 2, and we may approximate the change in energy over the
next q quarter revolutions in E, q∆Eπ/2

, as the energy needed to escape. Using Eqs. (12) and (22) along
with judicious series expansions, we may determine the mean eccentricity at which q quarter revolutions
remain until escape:
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e2
xen =

8

3
(

1 +
4πµ/a2

0

3qft[K(e0) − EI(e0)]2

)
(√

4 +
4πµ/a2

0

qft

[
K(e0) − EI(e0)

]2 − 1

)
(28)

The subscript xen denotes energy-based cut-off. Once the mean eccentricity reaches exen, energy is
approximated as increasing linearly with time up to escape. As a cruder approximation, we also take
eccentricity to increase linearly with time up to unity. Since we know both the time of the cut-off [from
Eq. (26)] and the rate of change of energy [from Eq. (13)], we can easily estimate the time to escape.

We now turn to the requirement, for the approximation Eq. (16) to be valid, that eccentricity be
greater than some small number. As the mean eccentricity decreases with increasing energy, there may
come a time when the oscillations about the mean are large enough that the osculating eccentricity will
reach zero. To estimate the amplitude of the oscillations, we approximate the osculating eccentricity as
a sinusoidal variation with E, superimposed on the negligibly varying mean eccentricity, with different
amplitude on the outbound part of the spiral than on the inbound. We also assume fn to be zero, although
a corresponding analysis with non-zero fn should yield similar results, but more laboriously. Accounting
for the difference in Ė between periapsis and apoapsis, we find the minimum osculating eccentricity over
the course of one revolution approximately as

emin ≈ e − 2ft

µ/a2
(1 + e)

√
1 − e2 (29)

where e and a are mean values. The minimum permissible value, ex0, of the mean eccentricity is thus
that value which makes emin zero. Rearranging Eq. (29), we obtain a quartic in ex0:

e4
x0 − 2e3

x0 +
(

µ/a2

2ft

)2

e2
x0 − 2ex0 − 1 ≈ 0 (30)

We may ignore third- and higher-order terms in ex0 to obtain

ex0 ≈
(

2ft

µ/a2

) √
1 +

(
2ft

µ/a2

)2

+
(

2ft

µ/a2

)2

(31)

This is an excellent approximation, even as escape is approached, because the coefficient of e2
x0 in Eq. (30)

is the dominant one very nearly up to escape. When 2ft/(µ/a2) is small, Eq. (31) can be further simplified
to the very compact

ex0 ≈ 2ft

µ/a2
(32)

Another possible approximation is to ignore terms of order two and higher in e in Eq. (29), which results
in

ex0 ≈

2ft

µ/a2

1 − 2ft

µ/a2

(33)
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The quantity ex0 of Eqs. (30) through (33) may be interpreted as the mean eccentricity of an escape
spiral that commences from an initially circular orbit, or, in fact, any orbit with eccentricity less than
ex0, for the mean eccentricity cannot be less than this value because emin would be less than zero, and,
should it rise above ex0, it would quickly descend again, based on Eq. (22). Near escape we may obtain
an analogous relation to Eq. (28): We estimate that when q quarter revolutions remain to escape, the
energy continues to change at the same rate up to escape. With Eqs. (12) and (33) and the appropriate
series expansions, the mean eccentricity at which q quarter revolutions remain to escape is found to be

exen0 ≈ 1
π

2
q − 1

(34)

When about one revolution remains to escape (q ≈ 4), an examination of Eqs. (31) and (34) shows that
the mean eccentricity is just beginning to rise very quickly with 2ft/(µ/a2). As Eq. (34) thus becomes
increasingly inaccurate, we instead estimate that the energy and eccentricity increase linearly with time
after the eccentricity has reached exen0 with q ≈ 4. In the region where the mean eccentricity of the escape
spiral remains below exen0, rather than use Eq. (32) to integrate Eq. (13), we just rearrange Eq. (32)
using our observation that ex0 is also the mean eccentricity for near-circular spirals. The rearrangement
provides, for the case of constant ft, the evolution of mean eccentricity and mean energy from their initial
values:

e

e0
≈ E2

0

E2
=

v4
c0

v4
c

(35)

where vc =
√

µ/a is the circular orbit speed. This expression may still be used with some accuracy when
ft is only nearly constant. The characteristic velocity, and hence the time, may be found by substituting
Eq. (35) into Eq. (13) and integrating with suitable changes in integration variable and series expansions.
The ∆V may be expressed both in terms of the mean circular orbit speed and the mean eccentricity:

∆V ≈ vc0

{(
1 − vc

vc0

)
+

e2
0

28

[(
vc0

vc

)7

− 1

]
+

7e4
0

960

[(
vc0

vc

)15

− 1

]

+
15e6

0

5, 888

[(
vc0

vc

)23

− 1

]
+

723e8
0

507, 904

[(
vc0

vc

)31

− 1

]}
(36)

≈ vc0

{[
1 −

(e0

e

)1/4
]

+
1
28

[
e2

(e0

e

)1/4

− e2
0

]
+

7
960

[
e4

(e0

e

)1/4

− e4
0

]

+
15

5, 888

[
e6

(e0

e

)1/4

− e6
0

]
+

723
507, 904

[
e8

(e0

e

)1/4

− e8
0

]}
(37)

Recall that e0 is not the initial orbit eccentricity, but the initial mean eccentricity to be determined from
any of Eqs. (30) through (33).

Lastly, we determine the point where the mean eccentricity falls below the minimum permissible value,
ex0, for an escape spiral with initially decreasing mean eccentricity. Equation (33) is sufficiently accurate
and also sufficiently simple to allow simultaneous solution with Eq. (22), with the aid of series expansions
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for the elliptic integrals, as usual. The eccentricity that satisfies both equations is, to first order in
eccentricity,

exce ≈ 5ce

5 − ce
(38)

and, to second order in eccentricity,

exce ≈ 5(5 − ce)
4ce




√
1 + 8

(
ce

5 − ce

)2

− 1


 (39)

where

ce =
{

32ftx

π2µ/a2
0

[
K(e0) − EI(e0)

]}1/5

(40)

In the latter expression, ftx is the tangential thrust acceleration at the time when the two curves [Eqs. (22)
and (33)] intersect. If ft is not constant, typically only a small correction will be needed. For example, with
constant thrust, constant, high specific impulse, and large initial mass, the thrust acceleration normally
will increase only slightly, an effect that can be accounted for by solving Eq. (38) [or Eq. (39)] iteratively
with Eqs. (26) and (24). (One iteration normally will be sufficiently accurate. Analytic approximations
may also be available.)

The above observations may be summarized on a plot of eccentricity versus “thrust to semimajor
weight” ratio, ft/(µ/a2), where different regions may be identified based on which of the preceding
analyses are applicable. For ease of reference to this type of plot, we use the term “ef-plot.” For
simplicity, we describe spirals of increasing energy, although a parallel development is possible for spirals
of decreasing energy. In Fig. 6, the circularization boundary, CB , provides not only the mean eccentricity
for initial orbits with eccentricity and thrust to semimajor weight on or below the boundary, but also the
lower bound in mean eccentricity for spirals starting above the boundary. It is obtained from Eq. (33).
Below the circularization boundary is the circular region, C, which is bounded on the right by the Qqc

line (Q4 line in Fig. 6), that is, the line where qc quarter revolutions remain to escape—the value of qc

being taken as 4, in accordance with the discussion of Eq. (34), which provides the intersection point of
the CB curve and the Qqc

line. In Fig. 6, the Qqc
line is labeled Q4, and the intersection with CB is

labeled C4.

Regions S and E in Fig. 6 are both “elliptic” regions. In particular, Eqs. (12) through (27) (what
might be termed the elliptic analysis) are applicable to spirals starting in these regions. Region E is the
pure elliptic region, so named because spirals starting in this region remain within the elliptic region until
they reach the Qqe

line, on which qe quarter revolutions remain to escape. According to the discussion
of Eq. (28), qe is taken as 2 in the figure, and so the line is labeled Q2. Region S, on the other hand,
is named the semi-elliptic region because spirals starting therein will meet the circularization boundary,
CB , at a point below C4. Thereafter, the spirals follow the circular analysis up to C4. The boundary
between the S and E regions is named the semi-elliptic boundary, SB . It is computed using Eq. (22) with
constant ft and the eccentricity at the C4 point. Its intersection with the Q2 line, labeled S2, is obtained
from Eq. (28). For near-constant ft, as in the constant-thrust, constant-Isp case, the precise boundary
between the S and E regions is close to SB . Rather than compute the precise boundary, following the
discussion of Eqs. (38) and (39), one can assess whether a chosen starting point in the elliptic region will
intersect the circularization boundary at eccentricities below the C4 point, or whether it will continue to
the Q2 boundary.
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S 2.  The light gray parts of curves are not active boundaries.

Region X in Fig. 6 is the escape region. It is bounded on the left by the Q2 line, the part of SB

between C4 and S2, and the Q4 line. The simple approximation that the rate of change of mean energy
remains constant from this left-hand boundary up to escape is quite accurate. Matching of the second
derivative of energy could provide even greater accuracy, should it be desired. The eccentricity may be
roughly modeled as increasing linearly with time from this boundary up to escape. Starting within the
X region, one can use Eq. (13) for the rate of change of energy.

The CB , SB , Q4, and Q2 curves in Fig. 6 are drawn in light-grey where they do not serve as demarcators
of regions. We recall, however, that the active parts of these curves depend on the choice of qc and qe,
which have been taken as 4 and 2, respectively, in the figure. Of course, the intersection points of the
curves could be calculated for other values.

V. Comparisons of Averaging with Full Numerical Integration

As a first example, we return to our original problem of escape from GTO, to determine the efficacy
with which the averaging analysis predicts the time of flight to escape. The numerical analysis in this
section uses the same parameters as in the constant tangential-thrust section. The dependence of the
tangential-thrust escape time on the exact initial orbit was shown already in Fig. 1. All of the orbits of
the figure fall in region E of Fig. 6. Applying the elliptic analysis to them, with qe = 2 and with qe = 3,
we find the escape times shown in Fig. 7, which includes the original data of Fig. 1 for easy compari-
son. We see that the averaging analysis with qe = 2 provides a good estimate of the moving average
escape time, while the qe = 3 curve provides an optimistic estimate of the minimum escape time. The es-
cape time for the αf11 control law applied to the nominal GTO is seen to be just above the line joining the
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minima in escape time for the tangential-thrust case. The escape time from GTO, as optimized2 using
SDC [43,44], is also shown in the figure for comparison.

We now extend the escape time comparison to the same wide range of initial orbits of Fig. 4. The data
of that figure are reproduced in Fig. 8 alongside data obtained from the averaging analysis. The standard
values of qe = 2 and qc = 4 are used. The parameter tecut = 1 specifies that the time at C4 or S2 is
computed using Eq. (37) or Eq. (26), respectively. With tecut = 2, the times are instead computed using
Eq. (36) or Eq. (25), respectively. (In Fig. 7, the value tecut = 2 was used.) The small discontinuities
in the curves for the averaging analysis are due to initial orbits lying in different regions of the ef-plot.
The zoomed subplots show more clearly all the discontinuities due to initial orbits switching from the
S region to the E region. The escape time from the averaging analysis is seen to be close to the numerical
integration values. The fact that the times match better for initial orbits in the E region perhaps belies the
greater accuracy of the analysis in that region compared to the analysis for the circularization boundary,
along which spirals starting in the S region must eventually travel.

Figure 9 shows the demarcations of the regions of the ef-plot (Fig. 6) together with traces of spirals
computed using numerical integration for various starting conditions, labeled A through F . The dashed
lines indicate the corresponding behavior predicted by the averaging analysis for starting conditions C
through F which lie in the elliptic regions (S and E). That is, the dashed lines, which might be termed
elliptic averaging contours, are valid only up to their intersection with the circularization boundary (CB)
or the Q2 line. The elliptic averaging contours for C and D intersect CB , whereupon the numerically
integrated solution begins to oscillate roughly about CB instead of about the elliptic averaging contour.
The CB curve is roughly followed up to the Q4 line, and thereafter the escape-region analysis is to be used.
The initial condition E corresponds to the nominal GTO and the same tangential-thrust characteristics

2 G. J. Whiffen, personal communication, Jet Propulsion Laboratory, Pasadena, California, November 2001.
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0.62

Initial periapsis
altitude =

as before. The averaging contours for initial conditions E and F intersect the Q2 line, whereupon the
analysis must switch to the escape region. The initial conditions A and B are in the circular region, and
so the traces approximately follow the circularization boundary from their outset.

Lastly, we examine the behavior of eccentricity and energy as functions of time for various escape
spirals. We start with the two spirals of Fig. 3. The two traces of eccentricity versus time are reproduced
in Fig. 10 together with curves from the averaging analysis. The initial conditions both lie in region E,
very close to the nominal GTO (point E) in Fig. 9. As expected, due to the proximity of the initial
conditions, the two curves based on averaging are almost indistinguishable from each other. The final,
linear increase in eccentricity, starting at the S2 point, occurs in the escape region of the ef-plot. A
similar plot for the nominal GTO itself is shown in Fig. 11; energy versus time is shown in Fig. 12. High
in the elliptic region of Fig. 9 are initial conditions F , which provide also the rightmost data point on
the minimum-escape-time envelope for the 10,000-km periapsis grouping of Fig. 8. The corresponding
averaged and integrated eccentricity and energy histories are shown in Figs. 13 and 14. Compared with
the GTO analysis, these averaged histories show greater deviation from the integrated histories, most
likely due to increased truncation errors and larger oscillations in the osculating eccentricity and energy
on account of the increased thrust-to-semimajor-weight ratio.
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Points C and D of the semi-elliptic region in Fig. 9 correspond to data points on the lower envelopes
for initial periapsis altitudes of 10,000 km and 2000 km, respectively, in Fig. 8. Eccentricity and energy
histories are shown in Figs. 15 through 18. XC marks the point where transition onto the circularization
boundary occurs, and C4 marks the point where the Q4 line is crossed. In the case of energy, the difference
between the averaging analysis and the numerical integration is not apparent at the scale of the plots up
to about the X4 point, where a slight divergence commences. For both C and D, the averaged eccentricity
corresponds well with the integrated.

For the circular region points A and B of Fig. 9, eccentricity and energy versus time are shown in
Figs. 19 through 22. In both cases, the small deviations of the averaged energy from the integrated
slightly increase beyond about the C4 point. Also, the deviation in case A is greater than in case B
due to the larger initial thrust-to-semimajor-weight ratio (more than an order of magnitude greater than
case B). For both A and B, the averaged eccentricity corresponds well with the integrated.

VI. Conclusions

Widely differing thrust histories can provide comparable, good performance in the problem of
minimum-time, multi-revolution, constant-thrust escape or capture. Slight variations in the thrust profile,
or, equivalently, the exact initial orbit, significantly affect the phasing of the final escape revolution. Phas-
ing that provides an “escape from apoapsis” condition is seen to have lower escape times—essentially,
enough thrust is available to circularize the orbit when the final apoapsis is reached, escaping shortly
thereafter.

The need to select and integrate a precise thrust profile in order to compute the escape time is
sidestepped by an averaging analysis that is developed for the full range of initial eccentricities (zero to
almost one) and thrust-to-semimajor-weight ratios (that is, weight at a distance equal to the semimajor
axis). In particular, analytic integrals are found for the averaged variational equations for energy and
eccentricity. The averaging analysis also provides, with reasonable accuracy, relations between mean
energy and mean eccentricity, as well as time as a function of these two quantities. Thus, the analysis
can be used not only for escape and capture, but also for continuous-thrust, co-planar orbit transfers
where the final argument of periapsis is free. Due to the analytic nature of the results, insights into the
spiraling problem and key characteristics of spiraling trajectories can be found rapidly, without the need
for numerical integration. Furthermore, the analytic relations obtained, as well as intermediate results
leading up to them, could be of utility both in optimization based on averaging and in heuristic design
of spirals involving coast arcs.
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