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The Orbital Dynamics Environment of 433 Eros:
A Case Study for Future Asteroid Missions

D. J. Scheeres,1 J. K. Miller,2 and D. K. Yeomans2

The Near-Earth Asteroid Rendezvous (NEAR)–Shoemaker mission was a mile-
stone in that it represented the practical navigation of a spacecraft in the most
severely perturbed orbital environment (relative to the standard two-body prob-
lem) ever experienced by a spacecraft. Furthermore, all future asteroid orbital
missions will encounter environments similar, in some way, to the environment en-
countered by NEAR at Eros. Thus, it is of interest to discuss the orbital dynamics
that the NEAR-Shoemaker spacecraft was subject to at Eros. This article first pro-
vides a brief review of the measured force and model parameters of Eros. Next, an
evaluation of the resulting orbital dynamics environment in the vicinity of Eros is
made using these estimated values. The Eros dynamical environment is discussed
in the region relatively far from the asteroid, where solar effects are the dominant
perturbation, and in the region close to the asteroid, where the gravity field and
rotation of Eros are most important. In particular, we give limits for stable motion
about Eros and provide analytical descriptions of the dynamical environment found
there. Many of the methods discussed and introduced in this article can be used
for future asteroid missions as well.

I. Introduction

While the force environment at asteroids is unique for each separate body, the analysis and evaluation
of these environments can be formulated in a general manner that can be equally applied to each new
situation. Thus, in this article we consider a somewhat detailed discussion of the dynamical environment
about Eros, formulated in such a fashion as to be applicable to most asteroids. Specifically, we consider
the dynamical environment far from and close to an asteroid, where strong perturbation forces exist. Far
from an asteroid, the perturbations arise from solar radiation pressure and solar tidal forces. Close to
an asteroid, the perturbations arise from the gravity field and rotation state of the body. The one case
that is not explicitly covered in the current analysis is when the solar radiation pressure and asteroid
gravity-field spheres of influence overlap. This situation can lead to interesting interactions between these
competing perturbations and is an area of practical interest as future missions to near-Earth asteroids
likely would fall into this regime.
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II. Navigation Model of Eros Environment

During the course of its mission, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft was used
as a probe to determine the force environment about Eros. This determination arose naturally from the
navigation of the spacecraft, as precision estimates of the force environment are needed to predict, guide,
and reconstruct the spacecraft trajectory [7]. There was also a strong scientific interest in the Eros force
environment, as its gravity field and shape can be used to infer the distribution of mass density within
the body [17].

The estimation of the asteroid’s force parameters involved the simultaneous processing of radio metric
Doppler data and optical images of the asteroid’s surface. Altimetry measurements from the spacecraft
to the asteroid were used in a post-processing mode to determine the asteroid’s shape. A complete and
detailed description of the determination of the shape, gravity, and rotational state of Eros is provided
in Miller et al. [8].

A. Bulk Force Parameters

The bulk parameters of interest for the Eros force environment are its total mass, volume, density,
moments of inertia, and rotational velocity vector. Listed in Table 1 are the estimated values of these
parameters [8].

A few items of interest related to the measured models should be noted. First is that the internal
mass-density distribution of Eros seems remarkably homogeneous. The main observed deviations from this
homogeneity lie at the resolution limit of the gravity field determination, and are statistically significant
but of small magnitude, as can be seen in Fig. 1. Despite this, there is some evidence for a regolith
covering on the surface of the asteroid with a different bulk density [3,8].

Second is the apparently uniform rotation of the asteroid. Specifically, no free precession of the asteroid
has been directly measured from the navigation data. Estimates on the forced and free precession indicate
that the polar motion should have a maximum amplitude of 0.02 deg over 6 months. The small amplitude
of these motions indicates that Eros is essentially in uniform rotation about its maximum moment of
inertia.

Table 1. Nominal parameters for Eros.

Parameter Value Unit

µ (4.4631 ± 0.0003) × 10−4 km3/s2

Volume 2503 ± 25 km3

Density 2.67 ± 0.03 g/cm3

Ixx (normalized) 17.09 km2

Iyy (normalized) 71.79 km2

Izz (normalized) 74.49 km2

Pole right ascension 11.369 ± 0.003 deg

Pole declination 17.227 ± 0.006 deg

Rotation rate 1639.38885 ± 0.0005 deg/day
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Fig. 1.  Accuracy of gravity-field determination.

B. Gravity Field

Two basic models were used to represent the NEAR gravity field. The most accurate model is the
spherical harmonic expansion of the field, as the coefficients of this expansion were directly determined
from the spacecraft tracking data. However, this expansion diverges within the circumscribing sphere
about Eros, negating its use for near-surface operations. In this regime, the NEAR mission used the
constant density polyhedron model [16] for computing the gravity field. This computation is less accurate
as it relies on the measured shape model plus the determined bulk density, and does not account for the
small, but statistically significant, density inhomogeneities present in the asteroid.

The spherical harmonic gravity potential is specified as [4]

U =
µ

r

∞∑
n=0

n∑
m=0

(
r

ro

)n

P̄nm(sin φ)
[
C̄nm cos(mλ) + S̄nm sin(mλ)

]
(1)

or can be expressed in a perturbation form as

U =
µ

|r| + R(r) (2)

where n is the degree and m is the order, C̄nm and S̄nm are the normalized gravity coefficients (listed in
Table 2 up to degree and order 4), P̄nm are the fully normalized Legendre polynomials and associated
functions, ro is the reference radius of Eros (assumed to be 16.0 km for the NEAR mission), φ is the
latitude, and λ is the longitude. The normalized coefficients are related to the unnormalized ones by the
relation

(
C̄nm; S̄nm

)
=

√
(n + m)!

(2 − δ0m)(2n + 1)(n − m)!
(Cnm; Snm) (3)
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Table 2. Normalized gravity coefficients, measured from the space-
craft dynamics and computed from the measured shape with a
constant density assumption.

Solution Solution
Coefficient

spacecraft shape-model
(r0 = 16.0 km)

dynamics integration

C10 0 0.001175

C11 0 −0.000348

S11 0 0.000088

C20 −0.052478 (.000051) −0.052851

C21 0 0.000102

S21 0 0.000012

C22 0.082483 (.000061) 0.083148

S22 −0.027909 (.000035) −0.028197

C30 −0.001400 (.000030) −0.001747

C31 0.004059 (.000006) 0.004086

S31 0.003375 (.000006) 0.003401

C32 0.001791 (.000016) 0.002127

S32 −0.000691 (.000016) −0.000840

C33 −0.010373 (.000027) −0.010492

S33 −0.012104 (.000027) −0.012216

C40 0.012900 (.000070) 0.013077

C41 −0.000106 (.000014) −0.000145

S41 0.000136 (.000015) 0.000165

C42 −0.017488 (.000035) −0.017647

S42 0.004577 (.000030) 0.004624

C43 −0.000320 (.000044) −0.000313

S43 −0.000141 (.000044) −0.000194

C44 0.017552 (.000062) 0.017694

S44 −0.009009 (.000061) −0.009118

C. Solar Effects

When the spacecraft is far from the asteroid, it must contend with strong perturbations from the solar
gravity and radiation pressure. For precision navigation, detailed models of the solar radiation pressure
model for the spacecraft were derived and used during the operations phase.3 This level of detail is not
necessary for understanding the basic effect of the solar radiation pressure on the spacecraft and how it
impinges on the stability of motion. Thus, we will use a simple flat-plate model for the solar radiation
pressure. To compute the solar effects, it is necessary to specify the Eros orbit relative to the Sun. The
current best estimate of the orbit is shown in Table 3.4

3 J. K. Miller and C. Helfrich, “NEAR Solar Pressure Parameters,” JPL Interoffice Memorandum 312.B-95-682 (internal
document), Jet Propulsion Laboratory, Pasadena, California, October 26, 1995.

4 A. Konopliv, personal communication, Jet Propulsion Laboratory, Pasadena, California, September 26, 2000.
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Table 3. Estimates of Eros heliocentric orbit.

Epoch February 14, 2000, 16:00:00.0000 ET
Element

Value Unit

Cartesian

X −1.372619235 × 108 ± 9.46386 × 10−3 km

Y −1.404571499 × 108 ± 3.53961 × 10−2 km

Z −1.045890113 × 108 ± 5.66481 × 10−2 km

Ẋ +1.488152028 × 101 ± 2.51308 × 10−10 km/s

Ẏ −1.759628159 × 101 ± 1.85131 × 10−9 km/s

Ż −7.314516907 × 100 ± 2.87203 × 10−9 km/s

Orbital

a 2.181658374 × 108 km

e 0.222764914 —

i 30.805595 deg

ω 138.798959 deg

Ω 342.384153 deg

ν 107.814684 deg

For our ideal spacecraft model, the solar gravity and radiation pressure forces can be derived from a
force potential written as

VS =
µS − β

|D| (4)

where µS is the gravitation parameter of the Sun, D is the spacecraft position vector from the Sun, and
β is the force parameter of the solar radiation pressure, computed from

β =
G1

B
(5)

where G1 ∼ 1× 108 kg km3/s2/m2 and B is the spacecraft mass-to-area ratio (kg/m2). For a spacecraft,
this usually is computed by dividing the total spacecraft mass by the projected surface area of the solar
arrays plus the projected area of the spacecraft bus. When computing B for a body with complex
geometry, possible attitude dynamics, and specular and diffuse components of reflection, a conservative
assumption is to take the maximum possible value for this parameter. For NEAR, the total surface area
from the front of the spacecraft5 is ∼11.25 m2, and estimates of the NEAR spacecraft mass at rendezvous
were ∼500 kg. This leads to a parameter B ∼ 44 kg/m2.

III. General Orbit Dynamics Description

The measured force parameters and models define the dynamical problem of motion in the vicinity
of Eros. Depending on the values of the asteroid mass, heliocentric orbit, rotation state, and spacecraft
mass-to-area ratio, the character of motion in these equations will take on a variety of forms. Specifically,

5 J. K. Miller and C. Helfrich, op cit.
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for smaller asteroids the regions where solar and gravity field perturbations are important can coincide,
leading to very complicated dynamics. Eros, however, is large enough so that these regions of influence
do not coincide, making it possible to distinguish between a far-field and a close-field regime.

The spacecraft equations of motion, with the solar gravity, solar radiation pressure, and asteroid
gravity accounted for, can be stated in a Sun-centered, inertially oriented frame as

D̈ =
∂VD

∂D
(6)

VD =
µS − β

|D| +
µ

|D − d| + R(D − d) +
µ

d2
d̂ · D (7)

where µ is the asteroid’s gravitational parameter, D is the spacecraft position vector relative to the Sun,
d is the asteroid position vector relative to the Sun, and ˙(−) denotes differentiation with respect to time.
The asteroid motion satisfies d̈ = −µS/d3d.

To change to an asteroid-centered frame, we apply the transformation

D = d + RI (8)

where RI is the asteroid-centered vector, assumed to be in an inertial frame. Substituting these into
Eq. (6) yields

R̈I =
∂VD

∂RI
+

µS

d2
d̂ (9)

=
∂VR

∂RI
(10)

where d̂ is the unit vector pointing from the Sun to the asteroid and the new force potential is

VR =
µ

|RI |
+ R(RI) +

µS − β

|d + RI |
+

µS + µ

d2

(
d̂ · RI

)
(11)

The spacecraft always will be relatively close to the asteroid, meaning that d � RI , and suggesting
that the quantity 1/|d + RI | be expanded, yielding

1
|d + r| =

1
d

[
1 − 1

d
d̂ · r − 1

2d2

{
r · r − 3

(
d̂ · r

)2
}]

+ · · · (12)

Substituting for this expansion, and noting that µS � β � µ, we find the simplified form of the potential:

V (r) =
µ

|r| + R(r) +
β

d2
d̂ · r − 1

2
µS

d3

[
r · r − 3

(
d̂ · r

)2
]

(13)

yielding the final equations of motion:
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R̈I =
∂V (RI)

∂RI
(14)

In the course of analyzing motion about an asteroid, it often is convenient to use the constants of
motion of the two-body problem in order to characterize the strength and effect of the perturbations
acting on the spacecraft. We will introduce these ideas throughout the article and, thus, will introduce
the necessary notation here.

The classical orbital elements usually defined for a spacecraft can be given as the semi-major axis, a; the
eccentricity, e; the inclination, i; the longitude of the ascending node, Ω; and the argument of periapsis, ω.
Frequently, we will use the true anomaly of the orbit, f , to replace the classical sixth orbit element of
the time of periapsis passage. The variation of these constants due to orbital perturbations generally is
specified using the Lagrange planetary equations with a perturbation function. An extended discussion
of these equations can be found in [2]. For our system, the general force perturbation potential can be
given as

R(r) = R(r) +
β

d2
d̂ · r − 1

2
µS

d3

[
r · r − 3

(
d̂ · r

)2
]

(15)

and combines both gravity field and solar perturbations.

For some specific discussions, it is convenient to refer to a more basic set of two-body-problem constants
of motion, the energy and angular momentum. For our applications, we will refer on occasion to the two-
body energy, or Keplerian energy, C; the angular momentum magnitude, G; and the projection of the
angular momentum onto the axis of rotation of the coordinate system, H. These are defined as

C = − µ

2a
(16)

G =
√

µa(1 − e2) (17)

H = G cos i (18)

The Lagrange equations for these elements are particularly simple and are listed later in the article.

IV. Dynamics in the Far-Field Regime

When relatively far from the asteroid, we can neglect the gravity-field perturbation terms and set the
function R = 0 in the general equations of motion. Then the most important factor driving the forces
acting on the spacecraft is the orbit of Eros about the Sun. The relatively high orbital eccentricity of
Eros will cause variations in all of the perturbation terms. The essential parameters for this case are the
Eros–Sun distance, d, and the true anomaly rate of Eros about the Sun, N :

d =
pS

1 + eS cos ν
(19)

N =
√

µSpS

d2
(20)

Ṅ = − 2
√

µS

pS

eS sin νN

d
(21)
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where µS is the Sun gravitational parameter, pS is the Eros orbit parameter, eS is the Eros orbit eccentric-
ity, ν is the Eros true anomaly about the Sun, and N = ν̇ is the rate of change of the true anomaly. The
angular velocity vector of the orbit about the Sun, N, has a constant direction with a varying magnitude
changing in accord with the above relations.

A. Equations of Motion

Now transform Eq. (14) into a frame that rotates with the asteroid about the Sun, which fixes the
vector d̂. Introduce the vector R as the spacecraft position in this rotating frame to find the new equations
of motion:

R̈ + 2N × Ṙ + N × N × R + Ṅ × R =
∂V (R)

∂R
(22)

The left-hand side of the equations of motion corresponds to the acceleration of a vector in an arbitrarily
rotating frame and is periodic with period equal to the asteroid orbital period about the Sun.

Now we introduce the so-called “pulsating frame,” where the spacecraft position is scaled by the
asteroid–Sun distance, d, and time is replaced with the asteroid true anomaly, ν. Although somewhat
complicated, the introduction of this frame is essential in deriving equations of motion that can be stated
in a simple form and analyzed in this regime. For our case, we scale the position vector by both the
asteroid–Sun distance and by the small parameter ε = (µ/µS)1/3, as in the standard derivation of Hill’s
equations. The relationships between the vector R and its time derivatives and the new vector r and its
asteroid true anomaly derivatives are

R = εdr (23)

Ṙ = εN (d′r + dr′) (24)

R̈ = εN (N ′d′ + Nd′′) r + εN (N ′d + 2Nd′) r′ + εN2dr′′ (25)

where r is the new position vector in this frame and r′ denotes the derivative of this vector with respect
to the asteroid true anomaly.

Substituting these relationships into Eq. (22), simplifying, and dividing through by the factor εN2d
results in the vector equation:

r′′ + 2ẑ × r′ + (ẑ · r) ẑ =
1

1 + eS cos ν

∂U

∂r
(26)

U =
1
|r| + β̃d̂ · r +

3
2

(
d̂ · r

)2

(27)

where β̃ = β/(µSε). It is significant to note that Eq. (26) contains only two parameters, the eccentricity
of the asteroid orbit, eS , and the normalized effect of the solar radiation pressure (SRP) force, β̃, and
that the equations are time periodic in the asteroid true anomaly, ν. These equations have a close affinity
with the classical equations for the elliptic restricted three-body problem, with the addition that Hill’s
approximation has been applied and that they include the effect of the solar radiation pressure. Rewriting
the equations in scalar form (assuming that d̂ = x̂) yields
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x′′ − 2y′ =
1

1 + eS cos ν

[
− x

r3
+ β̃ + 3x

]
(28)

y′′ + 2x′ =
1

1 + eS cos ν

[
− y

r3

]
(29)

z′′ + z =
1

1 + eS cos ν

[
− z

r3

]
(30)

The parameter β̃ is constant and describes the relative acceleration of the SRP on the spacecraft. For
the NEAR spacecraft at Eros, β̃ ∼ 1.14. For comparison, the Rosetta spacecraft at comet Wirtanen and
the Muses-C spacecraft at asteroid 25143 (1998 SF36) will have values of β̃ ∼ 30, while planetary orbiters
will have β̃ � 1.

B. An Algebraic Relation

These equations have an algebraic relation related to the Jacobi integral. Multiplying Eqs. (28)
through (30) by x′, y′, and z′, respectively, summing them up, treating the term (1 + eS cos ν) as a
constant, and integrating yields

C =
1
2

(
v2 + z2

)
− U(r)

1 + eS cos ν
(31)

U(r) =
1
r

+ β̃x +
3
2
x2 (32)

where v2 = x′2 + y′2 + z′2. This expression is only a constant of integration in the special case when the
asteroid is in a circular orbit about the Sun (eS = 0). It serves a useful purpose, however, in establishing
a sufficient criterion for spacecraft capture at the asteroid. The condition itself is a function of true
anomaly, and a previously captured spacecraft can subsequently escape, but before escape can occur the
criterion must first become violated. Following Marchal [6], we re-express Eq. (31) as

Γ = 2U(r) − (1 + eS cos ν)
[
v2 + z2

]
(33)

The complete differential of Γ with respect to true anomaly yields

Γ′ = eS sin ν
[
v2 + z2

]
(34)

showing that this quantity is only conserved for a circular orbit about the Sun.

C. Stability of Far-Field Motion against Escape

Using Eq. (33), it is possible to construct a necessary condition for the escape of a spacecraft from the
asteroid, due to tidal and radiation pressure effects. To derive this result, consider the planar (z = 0)
zero-velocity curves, as then the relationship becomes invariant with respect to asteroid true anomaly:

Γ = 2U(x, y, z = 0) (35)

Thus, even though Γ itself is not constant, we can still derive boundaries for bounded motion that are
constant—analogous to the circular Hill problem. Shown in Fig. 2 are zero-velocity curves for Eq. (35). It
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Fig. 2.  Generic zero-velocity curve for b > 1.
~

is significant to note that the equilibrium points serve the same function in these curves as in the standard
circular problem, as they denote the points at which the region containing the asteroid connect the regions
that are separated from the asteroid. The value of Γ at the equilibrium points (also a constant) then
becomes a useful criterion for whether the spacecraft is guaranteed to be bound to the asteroid or not,
valid independent of asteroid true anomaly.

The equilibrium points for this problem correspond to co-orbital motion about the asteroid, accounting
for solar radiation pressure and asteroid attraction. These are just equilibrium solutions to Eqs. (28)
through (30), and for large and small values of β̃ are computed as y∗ = z∗ = 0 and

x∗ ∼ ±
(

1
3

)1/3

− β̃

9
± 31/3

81
β̃2 + · · · (36)

for β̃ � 1 and are computed as

x∗ ∼




−1
3
β̃ − 9

β̃2
+ · · · x∗ < 0

1√
β̃
− 3

2β̃2
+ · · · x∗ > 0

(37)

for β̃ � 1. Figure 3 shows comparisons of the leading order of these expansions to numerical solutions of
the equilibrium solutions.

For β̃ � 1, the value of Γ at the equilibrium points is

Γ∗
± ∼ 34/3 ± 2

(
1
3

)1/3

β̃ − 2
9
β̃2 + · · · (38)
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Fig. 3.  Equilibrium points:  (a) positive x and (b) negative x.

while for β̃ � 1 the value is computed to be

Γ∗
+ ∼ 4

√
β̃ + · · · (39)

for x∗ > 0 and

Γ∗
− ∼ −1

3
β̃2 + · · · (40)

for x∗ < 0. From the values given above, it is clear that for Γ > Γ∗
+ the region surrounding the body is

separated from the rest of space.

Combining the previous results, we see that there is a simple sufficient criterion for the capture of
a spacecraft at a asteroid. When the current value of Γ for a spacecraft is greater than Γ∗

+, and the
spacecraft is inside of the zero-velocity surface, then the spacecraft is definitely bound to the asteroid.
Since the value of Γ changes over time, meeting the criterion at one time does not guarantee that it will
be satisfied at some point in the future, so its use is somewhat limited. This does fit well, however, with
using the criterion for a spacecraft mission as operations generally will focus on shorter time spans over
which this criterion provides useful results.

To apply this sufficient condition to the stability of an orbit about an asteroid, the value of Γ should
be computed along with the trajectory of the spacecraft. If the trajectory has sustained periods where
the condition Γ > Γ∗

+ is violated, then this trajectory is a candidate for ejection from the asteroid. On
the other hand, should the condition be satisfied throughout the time period of interest, the trajectory is
guaranteed to be bound to the asteroid.

If the nominal spacecraft orbit is relatively close to the asteroid, then the semi-major axis will become
relatively small as compared with the orbit energy. Using this as a justification, in Scheeres and Marzari
[11] the approximate result is found:
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Γ ∼ εd

a
(41)

It is important to note that Γ is multiplied by the asteroid–Sun distance, meaning that even if a spacecraft
were in an orbit with constant orbital elements, the value of Γ would decrease as the asteroid neared the
Sun and increase as the asteroid moved away from the Sun. This is the mechanism that can cause a
previously stable trajectory about a asteroid to become unstable near perihelion—allowing the spacecraft
to be ejected from its orbit about the asteroid.

Using this to evaluate the stability condition for both small and large values of β̃ yields

a <




1
34/3

(
µ

µS

)1/3

d for β̃ � 1

(
µ

µS

)1/3
d

4
√

β̃
for β̃ � 1

(42)

V. Dynamics in the Near-Field Regime

A. Equations of Motion

For the analysis of motion close to the asteroid, we shift our focus from motion relative to the asteroid–
Sun line to motion relative to the rotating asteroid. To simplify the dynamical description of motion
relative to the asteroid, we shift to the asteroid-fixed frame. Since the asteroid is uniformly rotating
with an angular velocity vector Ω with respect to inertial space, the equations of motion relative to the
asteroid have the form

r̈ + 2Ω × ṙ + Ω × Ω × r =
∂V (r)

∂r
(43)

where r denotes the position vector in the body-fixed space and V is computed from Eq. (13). In this
frame, the vector d̂ controls the direction in which the solar perturbations act, and is the direction of the
Sun relative to the asteroid surface. Resolving the equations into a specific body-fixed Cartesian frame
yields

ẍ − 2ωE ẏ = ω2
Ex − µ

r3
x +

∂R

∂x
− µS

d3
x +

[
β

d2
+

µS

d3

(
d̂ · r

)]
d̂x (44)

ÿ + 2ωE ẋ = ω2
Ey − µ

r3
y +

∂R

∂y
− µS

d3
y +

[
β

d2
+

µS

d3

(
d̂ · r

)]
d̂y (45)

z̈ = − µ

r3
z +

∂R

∂z
− µS

d3
z +

[
β

d2
+

µS

d3

(
d̂ · r

)]
d̂z (46)

where x, y, and z are generally measured along the asteroid’s minimum, intermediate, and maximum
moment of inertia axes in the body-fixed frame and ωE is the rotation rate of the asteroid. The terms
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d and d̂ will vary in time as the asteroid moves about the Sun and as the asteroid rotates in inertial
space.

In general, these equations of motion will have no integrals of their motion. However, for motion close
to Eros, we can disregard terms of the order µS/d3 and β/d2 relative to the gravity field. Then the
resulting equations are time invariant and the Jacobi integral exists:

J =
1
2

(
ẋ2 + ẏ2 + ż2

)
− 1

2
ω2

E

(
x2 + y2

)
− µ

r
− R (47)

B. Stability of Near-Field Motion against Impact

The Jacobi integral in the near-field motion can be used to construct a barrier to impact with the
asteroid surface. The zero-velocity curves of this system are found by computing the contours of the
gravity-plus-centripetal potential in the body-fixed position space, x, y, and z, where J denotes a par-
ticular value of the Jacobi constant. These contour lines then define the limits of physical motion that
a spacecraft can have in the body-fixed space, given that value of the Jacobi constant. In general, the
spacecraft dynamics must satisfy the inequality constraint:

U +
1
2
ω2

E

(
x2 + y2

)
+ J ≥ 0 (48)

which constrains the spacecraft to lie on one side of the zero-velocity curves. Figure 4 shows the zero-
velocity curves corresponding to the Eros shape model.

For the purpose of characterizing spacecraft dynamics about this body, we are primarily interested in
finding the value of the Jacobi constant such that, for all values of J less than this, the zero-velocity curves

Fig. 4.  Zero-velocity curve for motion close to Eros.
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are guaranteed to separate the trajectory space containing the asteroid and the space not containing
the asteroid. Then we have explicitly that a spacecraft in orbit in the outer region with the appropriate
Jacobi integral value can never, under gravitational dynamics alone, impact onto the asteroid surface. For
the Eros gravity field, Jo = −4.9 × 10−5 km2/s2 and corresponds to the equilibrium point shown in the
zero-velocity curve. To ensure stability against impact, we must choose the initial spacecraft conditions
such that the spacecraft position resides in the outer portion of the zero-velocity curve and that the value
of the Jacobi integral is less than or equal to Jo:

C − ωEH − R ≤ Jo (49)

which provides a simple check in terms of osculating orbital elements for whether or not the spacecraft
might impact with the surface at some point in the future. This relation can be expressed in terms
of initial osculating elements for an assumed direct, equatorial orbit specified by its periapsis radius,
eccentricity, and initial longitude λ in the body-fixed frame:

−µ(1 − e)
2rp

+ ωE

√
µrp(1 + e) + R(r = rp, λ) + Jo = 0 (50)

Figure 5 shows a plot of the limiting stability against impact curve for the Eros system (including the full
effect of the gravity field) in terms of initial periapsis radius and eccentricity for an equatorial orbit. To
find this curve, the family of curves for values of λ ∈ [0, 360] deg were generated and the limiting curve
to the right (into the impact stability region) was found. Note that this curve is significantly shifted as
compared with the results given earlier, which were based on the initial NEAR flyby of the asteroid [12].

While this result is sharp, it is limited to the orbits that have relatively low inclination. For orbits
with higher inclinations, this result becomes less useful and doesn’t place any real limits on spacecraft
motion. In these regions, different approaches to the problem are needed.
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Fig. 5.  Stability against impact curve for
equatorial, direct orbits.  Initial orbits to the left
of this line may impact with Eros at some point
in the future; orbits to the right of this line will
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C. Stability Limits in Phase Space

In addition to the Hill-stability results found above, it also is possible to characterize the local stability
of orbital motion. In this approach, one considers a certain orbit and computes the linear characteristics
of motion to determine if neighboring trajectories will remain close to the trajectory or will diverge from
it. Such analysis generally is applied to periodic orbits and is described in greater detail in [12]. For
Eros, we have applied this approach to families of near-equatorial direct and retrograde orbits in order to
characterize the minimum orbital radius for linearly stable motion. When relatively far from the asteroid,
orbits will be stable as the perturbations from the gravity field diminish with distance. Conversely, when
close to the asteroid, the motion will be unstable, indicating that the gravity field perturbations have
become large enough to seriously disrupt the motion. In this approach, we compute the distance at which
near-circular orbits transition from stable to unstable, providing an indication of the stability limit.

The transition from stable to unstable circular orbits in the equatorial plane (inclination ∼0) occurs
at a radius of 33.4 km, a slight shift from the results reported previously [12]. This particular limit is
only of theoretical interest as an orbiter perturbed sufficiently from these “stable” circular orbits will feel
strong perturbations from the rotating Eros gravity field. It also is important to note that this is within
the Hill stability limit for impact on the surface, showing that the limiting members of these periodic
orbits theoretically can transition into impacting trajectories if given a sufficient perturbation. Backing
off a few kilometers to orbits outside of 34 km will ensure stability against impact, although the orbit
still may experience an escape.

The transition from stable to unstable circular orbits retrograde in the equatorial plane (inclination
∼180 deg) now occurs at a radius of 20.8 km (again close to the previously reported value [12]). This
particular limit is of practical interest since the NEAR mission plan included an extended period of
low-radius, retrograde, near-equatorial, near-circular orbits. This stability transition corresponds to an
intersection of the retrograde circular orbits with an out-of-plane family of twice the period.

Currently, work is being done to characterize the stability of motion using three-dimensional periodic
orbit families. In [5], the stability transitions for three-dimensional periodic orbits about Eros were
investigated. The periodic orbits used to compute the stability transitions bifurcate from planar orbits
with resonance between the asteroid rotation rate and the out-of-plane frequency. Results of this analysis
are shown in Fig. 6. This figure shows the transition from stable regions to unstable regions as inclination
changes from retrograde to direct for different values of the semi-major axis.
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Fig. 6.  Stability regions for three-dimensional
motion around the asteroid Eros.
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D. Analytical Stability Analysis of Polar Orbits

Polar orbits and the global coverage they provide were of particular interest to the NEAR mission and
to any asteroid-mapping experiment. In fact, the NEAR mission had an extended period in a polar orbit,
and there was interest in decreasing the orbit radius as much as possible to gain additional signal in the
gravitational measurements. During the mission, it was determined numerically that polar orbits had a
lower limit on radius that, if violated, soon led to unstable (escaping) orbital motion.

It is, in fact, possible to better understand this lower limit using classical analytical and averaging
techniques combined with more modern characterizations found for asteroid orbiters. To better under-
stand the dynamics in this particular case, we must consider the combined effects of the C20, C30, and
C40 gravity coefficients on a polar orbit, represented by the potential contributions:

U20 =
µr2

oC20

r3

(
1 − 3

2
cos2 δ

)
(51)

U30 =
µr3

oC30

2r4
sin δ

(
5 sin2 δ − 3

)
(52)

U40 =
µr4

oC40

8r5

[
35 sin4 δ − 40 sin2 δ + 3

]
(53)

sin δ = sin i sin(ω + f) (54)

Each of these terms can be averaged over one spacecraft orbit, yielding the secular potentials:

Ū20 =
µr2

oC20

2a3(1 − e2)3/2

(
3
2

sin2 i − 1
)

(55)

Ū30 =
3µr3

oC30

2a4(1 − e2)5/2
sin i sin ωe

(
5
4

sin2 i − 1
)

(56)

Ū40 =
3µr4

oC40

8a5(1 − e2)7/2

[(
35
8

sin4 i − 5 sin2 i + 1
) (

1 +
3
2
e2

)
+

5
4

sin2 i cos(2ω)
(

3 − 7
2

sin2 i

)
e2

]
(57)

Of particular interest to us is the evolution of the eccentricity, which follows the basic equation:

ė = −
√

1 − e2

na2e

∂R

∂ω
(58)

e′ = − r2

µae

∂R

∂ω
(59)

n =
√

µ

a3
(60)
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where e′ denotes differentiation with respect to orbit true anomaly. We also should note the familiar result
from the standard averaging analysis of C20, that the argument of periapsis has a secular component
defined as

ẇ =
3nr2

oC20

2a2(1 − e2)2

(
5
2

sin2 i − 2
)

(61)

meaning that the argument of periapsis will have a constant rate of change on average, and that the
eccentricity will have no secular evolution due to this gravity term.

What is observed numerically for orbiters near Eros, however, is a large transient oscillation in eccen-
tricity that causes the orbit periapsis occasionally to dip closer or farther from the asteroid. As established
previously in [12], it is the orbit periapsis and eccentricity that control the coupling of the asteroid gravity
field to the orbit dynamics, and periapsis passages at a close enough distance can rapidly destabilize the
motion. Thus, it is of interest to characterize analytically the expected variations in eccentricity due to
the gravity field perturbations. To do this, we will look at the transient variations in eccentricity due
to C20, and at the long-period variations in eccentricity due to C30 and C40 combined with the secular
motion of the argument of periapsis. In the following, we will make the assumption that the orbit is
near-circular and, thus, that we can ignore higher orders of eccentricity.

First we note that the differential equation for eccentricity with respect to C20 can be written as

e′ =
3
2

C20 sin2 i

a2

[
sin(2ω)

(
cos(3f) + cos(f)

)
+ cos(2ω)

(
sin(3f) + sin(f)

)
+ O(e)

]
(62)

which can be integrated with respect to true anomaly to yield

∆e20 =
3
2

C20 sin2 i

a2

[
sin(2ω)

(
1
3

sin(3f) + sin(f)
)

+ cos(2ω)
(

1
3
(
1 − cos(3f)

)
+ 1 − cos(f)

)
+ O(e)

]

(63)

This gives the amplitude of the eccentricity fluctuation about its mean value, which must still be com-
puted. This is found by taking the average of the above equation over one orbit, or

∆̄e20 =
1
2π

∫ 2π

0

∆edM (64)

=
2r2

oC20

a2
sin2 i cos(2ω) + O(e) (65)

Thus, the total fluctuation in eccentricity due to C20 is computed as ∆̄e20 +∆e20, for which a reasonable
bound can be found:

∆̄e20 + ∆e20 ≤ 10
3

r2
oC20

a2
sin2 i (66)

This upper limit does not agree, however, with numerical integration of an orbit in the full gravitational
field.
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To analyze the contribution of C30 to the variation of e, we note that the differential equation for this
term is

ė30 = −3
2

nr3
oC30

a3(1 − e2)2

(
5
4

sin2 i − 1
)

sin i cos ω (67)

Now, the presence of cos ω in the equation is important, as we note that this term will have a secular
change due to C20. Thus, we change the independent variable to ω to find

de30

dω
=

ė30

ω̇20
(68)

= − 1
2

r3
oC30

ar2
oC20

sin i cos ω (69)

which can be integrated immediately to find

∆e30 = −1
2

r3
oC30

ar2
oC20

sin i sin ω (70)

By combining an analysis of the effect of C20 and C30 on a near-circular, polar orbit, we find the
following relation for the maximum value of eccentricity over one circulation period of the argument of
periapsis:

emax ∼ 10
3

r2
o|C20|
a2

+
r3
o|C30|

ar2
o|C20|

(71)

From this relation, we find that the maximum excursion in eccentricity is 0.125 for a 35-km orbit, 0.1 for
a 40-km orbit, and 0.07 for a 50-km orbit. The equation is plotted in Fig. 7(a) for the values of Eros. The
period of the oscillation is computed from secular C20 theory for the circulation in argument of periapsis:

Tω =
8π

3
a3.5

√
µr2

o|C20|
(72)

and is equal to 41 days in a 35-km orbit, 62 days in a 40-km orbit, and 142 days in a 50-km orbit. This
long period oscillation in eccentricity does not seem to affect the long-term stability of the orbit until the
semi-major axis drops below 35 km. These approximate limits and numerical integrations for long-term
stable orbits seem to agree well [see Figs. 7(b) and 7(c)].

When the polar orbit radius drops below 35 km, it enters a region of stronger interaction with the
rotating gravity field (see Figs. 3 and 4 in [12]). This also coincides with a 5:2 resonance at a =35 km
and a 3:1 resonance at a =33 km between the orbit period and the rotating asteroid. The mechanism of
the instability at this limit follows a pattern that involves the long-term eccentricity oscillation plus the
(small) effect of the C40 gravity coefficient term.

As shown in Scheeres et al. [12], the strength of the Eros–orbit interactions increases with eccentricity.
Thus, an initially circular orbit at a semi-major axis of 33 km will experience a mounting perturbation
as the eccentricity increases (due to C20 and C30). However, numerical integration of the spacecraft motion
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Fig. 7.  Eccentricity:  (a) maximum eccentricity due to C 20 and C 30 perturbations over one circulation period
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ment of periapsis, (c) eccentricity of a polar, 40   40 km orbit over one circulation period of argument of
periapsis, and (d) eccentricity of a polar, 33   33 km orbit over 50 days.

in an Eros gravity field taken to the third degree and order only, starting at this semi-major axis value,
will not experience a long-term instability. This is due to the maximum eccentricity amplitude not being
large enough to bring the orbit into a region of strong interaction with the gravity field. If we model
the effect of the C40 gravity term, however, we see that it boosts the maximum eccentricity by a small
amount, characterized as a function of argument of periapsis. To find this contribution, we consider
the averaged equation for eccentricity due to this gravity term with respect to time and with respect to
argument of periapsis:

ė40 =
15
16

nr4
oC40

a4(1 − e2)3

(
3 − 7

2
sin2 i

)
sin2 i sin(2ω)e (73)

de40

dω
= − 15

16
r4
oC40

a2(1 − e2)r2
oC20

(
7
6

sin2 i − 1
)

(
5
4

sin2 i − 1
) sin(2ω)e (74)
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Assuming small e again, and allowing the inclination to be equal to 90 deg gives us

e40 = eo exp
[
−5

8
R4

oC40

a2R2
oC20

sin2 ω

]
(75)

At a semi-major axis of 35 km, we find that this perturbation can increase eccentricity by at most
4.5 percent. At a = 33 km, the effect of this gravity term is sufficient to nudge the orbit into a region
of unstable motion, characterized by large changes in orbit energy and angular momentum from orbit to
orbit. Numerical integrations back up this result, as is evident from Fig. 7(d).

For initial values of the semi-major axis chosen lower than ∼33 km, the long-term oscillation in
eccentricity coupled with the increasing strength of the transient fluctuations in energy and angular
momentum combine to make it infeasible to safely orbit the asteroid. It is interesting to note that this
is approximately the same limit found for the linear stability of direct, near-equatorial orbits and agrees
with the results in Fig. 6.

E. Effect of Transient Perturbations

In the extremely perturbed environment close to an asteroid such as Eros, the spacecraft can be subject
to large changes in its orbital elements over a relatively short time period. Such situations have not arisen
in classical astrodynamics, where perturbations are generally small and effects take many orbits or days to
become significant. In the asteroid environment, however, large fluctuations in an orbit can be observed
per orbit about the body, in many cases causing a chaotic evolution of an orbit leading to an impact or
escape from the body. Even though these effects are large, it is possible to characterize them analytically
and even to use them in the design of close-proximity operations [1,14].

For our analytical computations, it is more useful to use the “canonical” form of the Lagrange planetary
equations [2], which expresses the change in orbit Keplerian energy, angular momentum, and angular
momentum projected onto the z-axis as a function of the gravitational perturbations acting on them.
The equations describing the change of these variables then can be expressed as

dC

dt
=

∂R

∂t
(76)

dG

dt
=

∂R

∂ω
(77)

dH

dt
=

∂R

∂Ω
(78)

where

C =
−µ

2a
(79)

G =
√

µa(1 − e2) (80)

H = G cos i (81)

R = U − µ

r
(82)
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and a, e, i, ω, and Ω are the osculating orbital elements. Equations (77) and (78) are taken from classical
results [2], while Eq. (76) is derived by applying the chain rule, taking the partial of R with respect to the
true anomaly f first and then taking the partial of the true anomaly f with respect to the time [9]. Note
that we neglect to add the additional equations describing the dynamics of the argument of periapsis,
longitude of the ascending node, and mean epoch, as we will not explicitly study those equations here.
The Jacobi integral can be restated in terms of these basic variables:

J = C − ωEH − R (83)

The strongest perturbation that the trajectory feels when in close proximity to the asteroid is mainly
due to the second-degree and -order gravity field of the rotating body [12], which has the explicit form

U20+22 =
µR2

o

r3

[
C20

(
1 − 3

2
cos2 δ

)
+ 3C22 cos2 δ cos 2λ

]
(84)

For our analytical estimates, we will consider only the contribution from these terms.

Although the orbital dynamics are best computed using numerical integrations, a class of estimates
for the change in orbit energy and angular momentum can be derived that provides a great deal of insight
into the effect of a close flyby on the resulting orbit. The basic application of this theory is found in [10],
and the results are restated here. Of particular interest is the change in orbit parameters as a spacecraft
descends from a relatively high apoapsis to a periapsis close to the asteroid surface, and the change in
orbit parameters as the spacecraft travels through a full orbit, from apoapsis to apoapsis. In the following,
we state explicit formulae for the change in energy, C; angular momentum, G; and the projection of the
angular momentum along the z axis, H. Changes in these parameters can be related to changes in the
classical orbital elements [15].

1. Half-Orbit Perturbations. Over an orbit transfer from apoapsis to periapsis, we find variations
in the orbital elements due to both the C20 and the C22 gravity coefficients.

The projected angular momentum, H, is identically conserved under perturbation from C20, and thus
will not vary. The energy and total angular momentum, C and G, will vary over a half orbit, however,
yielding changes of

∆GC20 = 2
√

µ

p3
C20 cos 2ω sin2 ie (85)

∆CC20 =
µ

2p3
C20

[
−1 + 3

(
cos2 i + sin2 i cos 2ω

)] (
3 + e2

)
e (86)

Similarly, and leading to more detailed results, the change in orbit elements C, G, and H due to C22

over one-half an orbit also can be predicted approximately:
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∆GC22 = − 3C22

√
µ

p3

×
[
cos4

(
i

2

) {
sin 2(ω + Ω)I1

2 + cos 2(ω + Ω)J1
2

}

+sin4

(
i

2

) {
sin 2(ω − Ω)I1

−2 − cos 2(ω − Ω)J1
−2

}]
(87)

∆HC22 = − 3C22

√
µ

p3

[
1
2

sin2 i
{
sin 2ΩI1

0 + cos 2ΩJ1
0

}

+ cos4
(

i

2

) {
sin 2(ω + Ω)I1

2 + cos 2(ω + Ω)J1
2

}

− sin4

(
i

2

) {
sin 2(ω − Ω)I1

−2 − cos 2(ω − Ω)J1
−2

}]
(88)

and the variation in C can be found from the Jacobi integral. The integrals In
m and Jn

m have the definitions

In
m = 2

∫ π

0

(1 + e cos ν)n cos (mf − 2ωEt) df (89)

Jn
m = 2

∫ π

0

(1 + e cos ν)n sin (mf − 2ωEt) df (90)

These integrals cannot be expressed in closed form in general except for the particular cases:

I−2
0 =

sin
(
2π

√
ω2

Ea3/µ
)

√
ω2

Ep3/µ
(91)

J−2
0 =

cos
(
2π

√
ω2

Ea3/µ
)

√
ω2

Ep3/µ
(92)

The numerical quadrature of these integrals has been treated previously [10]. We note that these integrals
are intimately related to the Hansen coefficients [13]. Figure 8 shows the values of these integrals over an
interval of parameter values of interest. The total variation in these elements over an apoapsis-to-periapsis
passage then is computed as

∆G = ∆GC20 + ∆GC22 (93)

∆H = ∆HC20 + ∆HC22 (94)

∆C = ∆CC20 + ∆CC22 (95)
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Using these results, it is possible to predict the change in orbital parameters between apoapsis of the
transfer ellipse to periapsis of the ellipse. In general, the variation in energy and angular momentum can
be quite large, implying that using Keplerian orbits to initiate numerical targeting routines may be an
inefficient way in which to choose a target flyover condition. Rather, using the above relations in the
initial design of a de-orbit maneuver can provide additional insight into the selection of target points on
the asteroid surface.

2. Full-Orbit Perturbations. For analysis of the low-altitude flyovers, the orbit is continued through
periapsis up to its next apoapsis passage, experiencing additional perturbations along the way. For the
effect of the C20 gravity term, these additional perturbations erase the fluctuations in angular momentum
and energy. For the C22 effects, however, only a partial cancellation occurs, leaving a residual change
in the orbit elements that is often rather large [10,12]. The results are similar to the half-orbit results,
except that the integrals Jn

m will cancel out over a full orbit pass, leaving only the terms containing the
integrals In

m:

∆G = − 6C22

√
µ

p3

×
[
cos4

(
i

2

)
sin 2(ω + Ω)I1

2 + sin4

(
i

2

)
sin 2(ω − Ω)I1

−2

]
(96)

∆H = − 6C22

√
µ

p3

×
[
1
2

sin2 i sin 2ΩI1
0 + cos4

(
i

2

)
sin 2(ω + Ω)I1

2 − sin4

(
i

2

)
sin 2(ω − Ω)I1

−2

]
(97)

∆C = − 6C22ωE

√
µ

p3
×

[
1
2

sin2 i sin 2Ω
{
I1
0 − (1 − e)3I−2

0

}

+ cos4
(

i

2

)
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{
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0

}

− sin4

(
i

2

)
sin 2(ω − Ω)

{
I1
−2 − (1 − e)3I−2

0

}]
(98)

Note from Fig. 8 that I1
2 � I1

−2 and I1
2 � I1

0 in the regions of interest to us. Thus, direct, low-inclination
orbits will be subject to the terms I1

2 while retrograde, near-equatorial orbits primarily will be subject to
the terms I1

−2. Inspecting the contour plots, it is obvious that direct orbits will experience much larger
changes in energy and angular momentum over each orbit, while the retrograde orbits will experience
little, if any, change per orbit.

VI. Conclusions

In this article, we review the estimated force parameters for Eros as measured by the NEAR space-
craft. Then, using these parameter values as motivation, we discuss all significant elements of the orbital
dynamics environment about Eros. The general equations of motion are derived, suitable for analytical
and numerical study. These are then specialized to motion far from the asteroid and motion close to the
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asteroid. Some specific analytical stability criteria are derived, as are some numerically based criteria.
Finally, a qualitative approach to the description of orbital dynamics perturbations when close to the
asteroid is presented and discussed.
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