
IPN Progress Report 42-153 May 15, 2003

The Guruswami–Sudan Decoding Algorithm
for Reed–Solomon Codes

R. J. McEliece1

This article is a tutorial discussion of the Guruswami–Sudan (GS) Reed–Solomon
decoding algorithm, including self-contained treatments of the Kötter and Roth–
Ruckenstein (RR) improvements. It also contains a number of new results, including
a rigorous discussion of the average size of the decoder’s list, an improvement in
the RR algorithm’s stopping rule, a simplified treatment of the combinatorics of
weighted monomial orders, and a proof of the monotonicity of the GS decoding
radius as a function of the interpolation multiplicity.

I. Introduction

In 1997 Madhu Sudan [23], building on previous work of Welch–Berlekamp [24], Ar et al. [1], and
others, discovered a polynomial-time algorithm for decoding certain low-rate Reed–Solomon (RS) codes
beyond the classical d/2 error-correcting bound. Two years later, Guruswami and Sudan [9] published a
significantly improved version of Sudan’s algorithm, which was capable of decoding virtually every RS code
at least somewhat, and often significantly, beyond the d/2 limit. The main focus of these seminal articles
was on establishing the existence of polynomial-time decoding algorithms, and not on devising practical
implementations. However, several later authors, notably Kötter [12,13] and Roth–Ruckenstein (RR) [21],
were able to find low-complexity (no worse than O(n2)) realizations for the key steps in the Guruswami–
Sudan (GS) algorithm, thus making GS a genuinely practical engineering alternative in storage and
transmission systems requiring RS codes.

This article is a tutorial discussion of the GS algorithm, including the Kötter and Roth–Ruckenstein
improvements. It also contains a number of new results, including a rigorous discussion of the average
size of the decoder’s list, an improvement in the RR algorithm’s stopping rule, a simplified treatment
of the combinatorics of weighted monomial orders, and a proof of the monotonicity of the GS decoding
radius as a function of the interpolation multiplicity.

Here is an outline of the article. In Section II, we give an overview of the GS algorithm and several
numerical examples. In Sections III and IV, we present a self-contained introduction to the algebraic
fundamentals of two-variable polynomials, which are a key component of the GS algorithm. In Section V,
we state and prove the two basic theorems that support the GS algorithm: the Interpolation Theorem and
the Factorization Theorem. With this preliminary material out of the way, in Section VI we give a formal

1 California Institute of Technology, Pasadena, California, and Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

description, and proof of correctness, of the Guruswami–Sudan algorithm. In Sections VII through IX,
we describe the Kötter and Roth–Ruckenstein improvements.

Finally, in Appendices A through D, we present some miscellaneous material related to the GS al-
gorithm: In Appendix B, for example, we explain how to modify the GS algorithm when erasures are
present. In Appendix C, we present a GS-type decoding algorithm that is “conventional” in the sense
that it can correct only up to d/2 errors, and in Appendix D we give a rigorous treatment of the average
number of codewords in the GS output list.

The following notation will be used:

• N: the nonnegative integers, i.e., N = {0, 1, 2, · · ·}.
• |X|: the number of elements in the finite set X.

• F : a field, usually finite.

• F [x]: the ring of polynomials in x, with coefficients from F .

• deg f(x): the degree of the polynomial f(x) ∈ F [x].

• Fv[x]: the polynomials of degree ≤v from F [x].

• F [x, y]: the ring of polynomials in x and y, with coefficients from F . A typical element of
F [x, y]:

Q(x, y) =
∑

(i,j)∈I

ai,jx
iyj

where I = I(Q) is a finite set of indices.

• M[x, y] = {xiyj : i ≥ 0, j ≥ 0}: the set of bivariate (x and y) monomials.

• degu,v Q(x, y): the (u, v)-weighted degree of the polynomial Q(x, y), defined as

degu,v Q(x, y) �= max
(i,j)∈I

{ui + vj}

• The y-degree of Q(x, y) ∈ F [x, y]:

degy Q(x, y) �= deg0,1 Q(x, y) = max
(i,j)∈I

{j}

• FL[x, y]: the polynomials from F [x, y] whose y-degree is ≤L

II. A First Look at the Guruswami–Sudan Algorithm

In this section, we give an overview of the GS algorithm, including a motivating example, an informal
description of the algorithm, and several numerical examples.

Let us recall the definition of an (n, k) Reed–Solomon code over F = GF (q), as given by Reed and
Solomon in the original article [20].

2

Let (α1, · · · , αn) be a fixed list of n distinct elements of F , called the support set of the code. The
encoding process is that of mapping a vector (f0, f1, · · · , fk−1) of k information symbols into an n-symbol
codeword (x1, · · · , xn) by polynomial evaluation, i.e.,

(x1, · · · , xn) =
(
f(α1), · · · , f(αn)

)
(1)

where

f(x) = f0 + f1x + · · · + fk−1x
k−1 (2)

The corresponding Reed–Solomon code consists of all n-vectors of the form in Eq. (1), where f(x) is a
polynomial of degree <k.

It is well-known that this code has minimum Hamming distance d = n−k+1 and, therefore, is capable
of correcting up to

t0 =
⌊

n − k

2

⌋
(3)

errors. Conceptually, this may be accomplished as follows. The decoder searches the Hamming sphere
of radius t0 centered at the received word for codewords. If the sphere contains a unique codeword,
that is the decoder’s output. Otherwise, the decoder reports failure. (This strategy is called bounded
distance decoding (BDD) and dates back to Shannon’s proof of the noisy-channel coding theorem [22,
Section 13]. The conventional RS decoding algorithms, e.g., Berlekamp [2], Berlekamp–Massey [4,15],
continued fractions [18,25], or Euclidean algorithm [16], are all BDD algorithms.) The decoding sphere
cannot contain more than one codeword, since the minimum distance of the code is >2t0. If we attempt
to correct more than t0 errors by increasing the decoding radius, it is possible for the decoding sphere
to contain more than one codeword, in which case the decoder will fail. For this reason, conventional
wisdom asserts that the code is not capable of correcting more than t0 errors. Nevertheless, if we examine
the probability that the decoding sphere will contain multiple codewords, rather than the possibility, we
may reach a different conclusion.

Example 1. Consider the (32,8) RS code over GF (32), with d = 25 and t0 = 12. If the decoding
radius is taken to be t = 13, and the transmitted codeword suffers 13 errors, it is possible for the decoding
sphere to contain two codewords: the transmitted codeword (which we will call the causal codeword) and
one other, a noncausal codeword at distance 12 or 13 from the received word. However, assuming all error
patterns of weight 13 are equally likely, it can be shown (using methods we will describe in Appendix D)
that the probability of this unfavorable happening is 2.08437 × 10−12! In short, the code is capable of
correcting virtually all patterns of 13 errors, despite having a conventional error-correcting capability of
only 12.

Example 1 suggests that it might be possible to design a decoding algorithm for RS codes capable of
correcting more than t0 errors. The Guruswami–Sudan list decoding algorithm [23,9] does just this. It is
a polynomial-time2 algorithm for correcting (in a certain sense) up to tGS errors, where tGS is the largest
integer strictly less than n −

√
(k − 1)n, i.e.,

tGS = n − 1 −
⌊√

(k − 1)n
⌋

(4)

2 Conservatively, the time complexity is O(n2m4), where n is the code length and m is the interpolation multiplicity.

3

It is easy to show that tGS ≥ t0, and often tGS is considerably greater than t0 (see the examples below).
Asymptotically, for RS codes of rate R, the conventional decoding algorithms will correct a fraction
τ0 = (1 − R)/2 of errors, while the GS algorithm can correct up to τGS = 1 −

√
R.3

The GS decoder has an adjustable integer parameter m ≥ 1 called the interpolation multiplicity.
Associated with the interpolation multiplicity m is positive integer t = tm, called the designed decoding
radius. Given a received word, the GS(m) decoder returns a list that includes all codewords with
Hamming distance tm or less from the received word, and perhaps a few others. The exact formula
for tm is a bit complicated, but for now it suffices to say that4

t0 ≤ t1 ≤ t2 ≤ · · ·

and there exists an integer m0 such that

tm0 = tm0+1 = · · · = tGS

Here is an overview of the GS(m) algorithm (a detailed description will be given in Section VI).
Suppose C = (f(α1), · · · , f(αn)) is the transmitted codeword, where f(x) is a polynomial of degree <k,
and that C is received as R = (β1, · · · , βn). Let p(x) be any polynomial of degree <k that maps to an
RS codeword with Hamming distance ≤tm from R, i.e.,

|{i : p(αi) �= βi}| ≤ tm

The GS(m) decoder “finds” p(x) as follows.

(1) The interpolation step. Given the received vector R = (β1, · · · , βn), the decoder constructs
a two-variable polynomial

Q(x, y) =
∑
i,j

ai,jx
iyj

with the property that Q has a zero of multiplicity m (exact definition in Section IV) at
each of the points (αi, βi), and for which the (1, k − 1) weighted degree (exact definition in
Section III) of Q(x, y) is as small as possible.

(2) The factorization step. The decoder then finds all factors of Q(x, y) of the form y − p(x),
where p(x) is a polynomial of degree k − 1 or less. Let

L =
{
p1(x), · · · , pL(x)

}
be the list of polynomials produced by this step. The polynomials (codewords) p(x) ∈ L are
of three possible types:

3 By the arithmetic-geometric mean inequality, 1 −
√

R ≥ (1 − R)/2, with equality iff R = 1.

4 We note in passing that the GS(1) decoder is the original Sudan algorithm [23].

4

(a) Type 1. The transmitted, or causal, codeword.

(b) Type 2. Codewords with Hamming distance ≤tm from R, which we call plausible code-
words.

(c) Type 3. Codewords with distance >tm from R, which we call implausible codewords.

In Section VI, we will give a proof of the following theorem.

Theorem 1. If the GS(m) decoding algorithm is used, all plausible codewords will be in L. In
particular, the transmitted codeword will be in L if the number of channel errors is ≤ tm. The list may
also contain implausible codewords, but the total number of codewords in the list, plausible and implausible,
will satisfy L ≤ Lm, where the exact determination of Lm is given in Section VI, Eq. (45), but which is
conservatively estimated by

Lm <

(
m +

1
2

) √
n

k − 1
(5)

Example 2. Consider again the (32,8) RS code over GF (32), with r = 24 and d = 25. Its conventional
error-correcting capability is t0 = 12 errors, but by Eq. (4), the GS algorithm can correct up to tGS = 17
errors! The value of the designed decoding radius tm as a function of the interpolation multiplicity m is
given in the table below, together with the exact value of Lm as given in Eq. (45), and the value

L(t) = q−r
t∑

s=0

(
n

s

)
(q − 1)t

which is the average number of codewords in a randomly chosen sphere of radius t, and which gives a
heuristic upper bound on the probability that the decoding sphere will contain a noncausal codeword.
Values of m that do not afford a larger value of tm than the previous value are omitted. For example, in
the present example, t2 = t3 = 15, and so m = 3 is omitted from the table. Similarly, t5 = t6 = · · · =
t119 = 16:

m tm Lm L(tm)

0 12 1 1.36305 × 10−10

1 14 2 2.74982 × 10−07

2 15 4 0.0000102619

4 16 8 0.000339205

m0 = 120 17 256 0.00993659

It is interesting to note the growth in the required value of m as t increases from 16 (m = 4) to 17
(m = 120), which indicates that t = 16 is the practical limit for the GS algorithm in this case.

5

Example 3. Similarly, for the (16, 4) RS code over GF (16) (t0 = 6 and tGS = 9):

m tm Lm L(tm)

0 6 1 0.000336183

1 7 2 0.00728043

2 8 4 0.124465

m0 = 28 9 64 1.68692

Here we see that for t = tGS = 9, the interpolation multiplicity may be prohibitively large, so that t = 8
is the practical limit.

Example 4. For the (31, 15) RS code over GF (32), t0 = 8 and tGS = 10:

m tm Lm L(tm)

0 8 1 5.62584 × 10−06

3 9 4 0.000446534

m0 = 21 10 31 0.0305164

Example 5 [21, Example 7.1]. For the (18, 2) RS code over GF (19), t0 = 8 and tGS = 13:

m tm Lm L(tm)

0 8 1 1.74158 × 10−06

1 12 4 0.0821209

m0 = 2 13 9 0.700656

Note the large values of L(t), which may obviate the claim, e.g., that the code can correct almost all
patterns of 13 errors.

Example 6. For the (6, 4) RS code over GF (7), t0 = tGS = 1:

m tm Lm L(tm)

m0 = 0 1 1 0.7551

This is a rare example where the GS algorithm provides no improvement over conventional decoding.

6

Example 7. For the (255, 223) RS code over GF (256), t0 = 16 and tGS = 17:

m tm Lm L(tm)

0 16 1 2.609 × 10−14

m0 = 112 17 120 9.35 × 10−11

Not until m = 112 does the GS algorithm offer an improvement over conventional decoders, and even
then the improvement is only one extra error corrected. With the decoding complexity O(m4), it seems
pointless to try to correct the extra error.

III. Polynomials in Two Variables I: Monomial Orders and Generalized Degree

In this section, we present a self-contained introduction to the algebraic fundamentals of two-variable
polynomials. These fundamentals include weighted monomial orderings, generalized degree functions,
and certain related combinatorial results.

If F is a field, we denote by F [x, y] the ring of polynomials in x and y with coefficients from F . A
polynomial Q(x, y) ∈ F [x, y] is, by definition, a finite sum of monomials, viz.,

Q(x, y) =
∑

i,j≥0

ai,jx
iyj (6)

where only a finite number of the coefficients ai,j are nonzero. The summation in Eq. (6) is two-
dimensional, but often it is desirable to have a one-dimensional representation instead. To do this,
we need to have a linear ordering of the set of monomials

M[x, y] = {xiyj : i, j ≥ 0}

In this section, we will describe a general class of monomial orderings.

We first note that the set M[x, y] is isomorphic to the set N
2 of pairs of nonnegative integers under the

bijection xiyj ↔ (i, j). A monomial ordering [7, Section 2.2] is a relation “<” on M[x, y] (equivalently,
on N

2) with the following three properties:5

If a1 ≤ b1 and a2 ≤ b2, then (a1, a2) ≤ (b1, b2). (7)

The relation “ < ” is a total ordering, i.e., if a and b are distinct monomials,

either a < b or b < a. (8)

If a < b and c ∈ N
2, then a + c ≤ b + c. (9)

(Because of Property (7), “<” is said to be a linear extension of the partial order on N
2 induced by the

ordinary meaning of “<,” applied componentwise.)

5 In what follows, the symbol “x ≤ y” will mean “either x < y or x = y.”

7

There are many possible monomial orderings, but for us the most important ones are the weighted
degree (WD) monomial orders. A WD monomial order is characterized by a pair w = (u, v) of nonnegative
integers, not both zero. For a fixed w, the w-degree of the monomial xiyj is defined as

degwxiyj = ui + vj

If we order M[x, y] by w-degree, i.e., declare that φ(x, y) < φ′(x, y) if degwφ(x, y) < degwφ′(x, y), we
only get a partial order, since monomials with equal w-degree are incomparable. It turns out that there
are just two ways to break such ties so that Property (9) is satisfied: w-lexicographic (w-lex) order, and
w-reverse lexicographic (w-revlex) order.

Definition 1. w-lex order is defined as follows:

xi1yj1 < xi2yj2

if either ui1 + vj1 < ui2 + vj2, or ui1 + vj1 = ui2 + vj2 and i1 < i2. w-revlex order is similar, except that
the rule for breaking ties is i1 > i2. (In the special case w = (1, 1), these orderings are called graded-lex,
or grlex, and reverse graded-lex, or grevlex, respectively.)

Example 8. For any monomial order, we have xy < x2y because of Property (7). Also, xy2 <grlex x2y,
but x2y <grevlex xy2. Finally, if w = (1, 3), x6 <wrevlex x3y <wrevlex y2.

Let “<” be a fixed monomial ordering:

1 = φ0(x, y) < φ1(x, y) < φ2(x, y) < · · ·

With respect to this ordering, every nonzero polynomial in F [x, y] can be expressed uniquely in the form

Q(x, y) =
J∑

j=0

aj φj(x, y) (10)

for suitable coefficients aj ∈ F , with aJ �= 0. The integer J is called the rank of Q(x, y), and the monomial
φJ is called the leading monomial of Q(x, y). We indicate this notationally by writing Rank(Q) = J and
LM(Q) = φJ(x, y). The relation LMP = LMQ is an equivalence relation, which we denote by P ≡ Q.
We can extend the order “<” to all of F [x, y] by declaring P < Q to mean LMP < LMQ. In this way,
“<,” which is a total order on the set of monomials, becomes a partial order on F [x, y] and a total order
on the equivalence classes under LM.

In the case of a WD order, the weighted degree of the leading monomial φj is also called the weighted
degree, or w-degree, of Q(x, y), denoted degwQ. Thus,

degwQ(x, y) = max{degwφ(x, y) : aj �= 0}

The w-degree function enjoys the following basic properties:

8

degw 0 = −∞ (11)

degw(PQ) = degwP + degwQ (12)

degw(P + Q) ≤ max(degwP,degwQ) (13)

degw(P + Q) = max(degwP,degwQ), if LMP �= LMQ (14)

If φ0(x, y) < φ1(x, y) < · · · is a fixed monomial ordering, and φ = xiyj is a particular monomial, the
index of φ, denoted Ind(φ), is defined as the unique integer K such that φK(x, y) = φ.

Example 9. Here is a listing of the first few monomials, in the “natural” two-dimensional array, but
labeled according to (1, 3)-lex order:

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j = 0 0 1 2 4 6 8 11 14 17 21 25 29 34 39 44 50 · · ·

1 3 5 7 10 13 16 20 24 28 33 38 43 49
2 9 12 15 19 23 27 32 37 42 48
3 18 22 26 31 36 41 47
4 30 35 40 46

Thus, we have φ0 = 1, φ1 = x, φ2 = x2, φ3 = y, φ4 = x3, · · · , φ48 = x9y2, · · ·. Also, Ind(xy) = 5,
Ind(x2y2) = 15, Ind(x9y2) = 48, etc.

Example 10. Here is a listing of the first few monomials, in the “natural” two-dimensional array,
but labeled according to (1, 3)-revlex order:

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j = 0 0 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45 · · ·

1 4 6 8 10 13 16 19 23 27 31 36 41 46
2 11 14 17 20 24 28 32 37 42 47
3 21 25 29 33 38 43 48
4 34 39 44

Thus, we have φ0 = 1, φ1 = x, φ2 = x2, φ3 = x3, φ4 = y, · · · , φ48 = x6y3, · · ·. Also, Ind(xy) = 6,
Ind(x2y2) = 17, Ind(x9y2) = 47, etc. We shall see below that for (1, v) revlex order, the numbers
Ind(xK) and Ind(yL) are especially important, so we introduce a special notation for them:

A(K, v) �= Ind(xK) (15)

B(L, v) �= Ind(yL) (16)

it being understood that the underlying monomial order is (1, v)-revlex. In terms of the two-dimensional
array given above, the numbers A(K, v) appear in the j = 0 row and the numbers B(L, v) appear in the
i = 0 column. Thus, with v = 3, we have

9

x 0 1 2 3 4 5 6 7 · · ·
A(x, 3) 0 1 2 3 5 7 9 12 · · ·
B(x, 3) 0 4 11 21 34 50 69 90 · · ·

We note that xK is the first monomial of (1, v)-degree K, and yL is the last monomial of (1, v)-degree
vL, so that

A(K, v) = |{(i, j) : i + vj < K}| (17)

B(L, v) = |{(i, j) : i + vj ≤ Lv}| − 1 (18)

We conclude this section with a consideration of two-variable polynomials of the form

Q(x, y) =
J∑

j=0

ajφj(x, y)

where φ0 < φ1 < · · · is (1, v)-revlex order, and {a0, a1, · · · , aJ} are arbitrary elements of F . (N.B., We do
not assume that aJ �= 0.)

Two important questions that will arise are (1) what is the (1, v)-degree of Q(x, y) and (2) what is the
y-degree, i.e., the (0, 1)-degree, of Q(x, y)? From Property (13), we know that

deg1,vQ(x, y) ≤ max{deg1,vφj(x, y) : j = 0, · · · , J}

deg0,1Q(x, y) ≤ max{deg0,1φj(x, y) : j = 0, · · · , J}

Thus, if we define (it being understood that the monomial order is (1, v)-revlex)

D(u, v;J) = max{degu,vφj(x, y) : j = 0, · · · , J} (19)

we have the upper bounds

deg1,vQ(x, y) ≤ D(1, v;J)

deg0,1Q(x, y) ≤ D(0, 1;J)

We need a definition. Let A = {0 = a0 < a1 < a2 < · · ·} be an increasing sequence of integers, and let
x ≥ 0 be a nonnegative real number. The rank of apparition6 of x with respect to A, denoted rA(x), is
the unique index K such that aK ≤ x < aK+1. Alternatively,

rA(x) = max{K : aK ≤ x}

= min{L : x < aL+1}

6 This amusing term was coined by Basil Gordon of UCLA.

10

Theorem 2. With v fixed, define sequences {aK = A(K, v)} and {bL = B(L, v)}. Then

D(1, v;J) = rA(J) (20)

D(0, 1;J) = rB(J) (21)

Proof. This is just a matter of observing that xK is the first monomial of (1, v) degree K and that
yL is the first monomial of (0, 1)-degree L. ❐

Theorem 2 will be helpful only if we can compute the values A(K, v) and B(L, v).

Theorem 3. For K ≥ 0, let r = Kmod v. Then7

A(K, v) =
K2

2v
+

K

2
+

r(v − r)
2v

(22)

B(L, v) =
vL2

2
+

(v + 2)L
2

(23)

Proof. The Equality (23) can be proved by induction, using the recursion

B(L, v) = (|{(i, j) : i + vj ≤ (L − 1)v}| − 1) + |{(i, j) : (L − 1)v + 1 ≤ i + vj ≤ Lv}|

= B(L − 1, v) + vL + 1

which follows from Eq. (18). Alternatively, Eq. (23) follows from Eq. (22), using the relationship B(L, v) =
A(vL+1, v)−1 [see Eq. (18)]. The validity of Eq. (22) follows from Eq. (17): for each j such that vj < K,
i must be in the range 0 ≤ i < K − vj, so that

A(K, v) =
�K/v�∑
j=0

(K − jv)

= v

�T�∑
j=0

(T − j) , where T =
K

v

Now apply Euler’s summation formula [11, Section 1.2.11.2, Eq. (3)], which implies

�T�∑
j=0

(T − j) =
∫ T

0

(T − x)dx +
T

2
−

∫ T

0

{
x − 1

2

}
dx

=
T 2

2
+

T

2
+

{T}(1 − {T})
2

(24)

where {x} �= x− 	x
 is the fractional part of x. Equation (24) is equivalent to Eq. (22) since {T} = r/v.
❐

7 Formula (22) is similar to, but simpler than, those given in [9, Lemma 6] and [14, Lemma 1].

11

Corollary 1. A(n, v) = vF (n/v), where

F (x) =
1
2
(
x2 + x + {x}(1 − {x})

)
(Some important properties of the function F (x) are described in Theorem A-1.)

Corollary 2. For v ≥ 1, K ≥ 0,

K2

2v
< A(K, v) ≤ (K + v/2)2

2v
(25)

Corollary 3. For v ≥ 1, J ≥ 0,

⌊√
2vJ − v

2

⌋
≤ rA(J) ≤

⌊√
2vJ

⌋
− 1

Proof. These inequalities follow by combining Eq. (25) with Eq. (27), to be proved below. ❐

Corollary 4. For v ≥ 1, J ≥ 0

rB(J) =

√
2J

v
+

(
v + 2
2v

)2
 −

(
v + 2
2v

)

and hence

⌊√
2J

v
− v + 2

2v

⌋
≤ rB(J) ≤

⌊√
2J

v

⌋

Proof. These facts follow by combining Eq. (23) with Eq. (26). ❐

Lemma 1. If aK = f(K), where f(x) is a continuous increasing function of x > 0, then

rA(x) =
⌊
f−1(x)

⌋
(26)

More generally, if g(K) ≤ aK ≤ f(K), where f(x) and g(x) are both continuous, increasing functions of
x > 0, then

⌊
f−1(x)

⌋
≤ rA(x) ≤

⌊
g−1(x)

⌋
(27)

Proof. Suppose K = rA(x). Then by definition,

12

g(K) ≤ aK ≤ x < aK+1 ≤ f(K + 1)

Thus, K ≤ g−1(x) and f−1(x) < K + 1, i.e., rA(x) ≤ g−1(x) and f−1(x) < rA(x) + 1, i.e.,

f−1(x) − 1 < rA(x) ≤ g−1(x)

The desired result, Eq. (27), follows immediately, if we recall that rA(x) is an integer. ❐

IV. Polynomials in Two Variables II: Zeros and Multiple Zeros

In this section, we continue with our study of bivariate polynomials and focus on the notion of a zero,
or a multiple zero, of such polynomials.

If Q(x, y) ∈ F [x, y], and Q(α, β) = 0, we say that Q has a zero at (α, β).8 We shall be interested in
polynomials with multiple zeros.

Definition 2. We say that Q(x, y) =
∑

i,j ai,j xiyj ∈ F [x, y] has a zero of multiplicity, or order m at
(0, 0), and write

ord (Q : 0, 0) = m

if Q(x, y) involves no term of total degree less than m, i.e., ai,j = 0 if i + j < m. Similarly, we say that
Q(x, y) has a zero of order m at (α, β) and write

ord (Q : α, β) = m

if Q(x + α, y + β) has a zero of order m at (0, 0).

Example 11. Let Q(x, y) = x2y + xy3 + x3y. Then Q has a zero of multiplicity 3 (a “triple zero”) at
(0, 0). Similarly, P (x, y) = (x−α)2(y − β) + (x−α)(y − β)3 + (x−α)3(y − β) has a triple zero at (α, β).

To calculate ord (Q : α, β), we need to be able to express Q(x + α, y + β) as a polynomial in x and y.
The following theorems, due to H. Hasse [10], tell us one way to do this. We begin with the one-variable
version of Hasse’s theorem, both because it serves as a simplified introduction to the two-variable case
and because we will need the one-variable theorem in Section IX (Lemma 7).

Theorem 4. If Q(x) =
∑

i aix
i ∈ F [x], then for any α ∈ F , we have

Q(x + α) =
∑

r

Qr(α)xr (28)

where

Qr(x) =
∑

i

(
i

r

)
aix

i−r (29)

8 Alternatively, we say that the curve Q(x, y) = 0 passes through the point (α, β).

13

which is called the rth Hasse derivative of Q(x).9 Note also that

Qr(α) = Coeff
xr

Q(x + α) =
∑

i

(
i

r

)
aiα

i−r (30)

Note that Eq. (28) is Taylor’s formula (without remainder) when F has characteristic 0, since in that
case,

Qr(x) =
1
r!

dr

dxr
Q(x)

Corollary 5. We also have

Q(x) =
∑
r≥0

Qr(α)(x − α)r

Theorem 5. Let Q(x, y) =
∑

i,j ai,jx
iyj ∈ F [x, y]. For any (α, β) ∈ F 2, we have

Q(x + α, y + β) =
∑
r,s

Qr,s(α, β)xrys (31)

where

Qr,s(x, y) =
∑
i,j

(
i

r

)(
j

s

)
ai,jx

i−ryj−s (32)

which is called the (r, s)th Hasse (mixed partial) derivative of Q(x, y).10 Note that Eq. (31) is Taylor’s
formula (without remainder) when F has characteristic 0, since in that case,

Qr,s(x, y) =
1

r!s!
∂r+s

∂xr∂ys
Q(x, y)

Note also the alternative, but equivalent, formula:

Qr,s(α, β) = Coeff
xrys

Q(x + α, y + β) (33)

Proof. Using the binomial theorem, we express Q(x + α, y + β) as a polynomial in x and y:

9 We will sometimes use the alternative notation DrQ(x) instead of Qr(x).

10 We will sometimes use the alternative notation Dr,sQ(x, y) instead of Qr,s(x, y).

14

Q(x + α, y + β) =
∑
i,j

ai,j(x + α)i(y + β)j

=
∑
i,j

ai,j

(∑
r

(
i

r

)
xrαi−r

) (∑
s

(
j

s

)
ysβj−s

)

=
∑
r,s

xrys

∑
i,j

(
i

r

)(
j

s

)
ai,jα

i−rβj−s

=

∑
r,s

Qr,s(α, β)xrys

❐

Corollary 6. We also have

Q(x, y) =
∑
r,s

Qr,s(α, β)(x − α)r(y − β)s

Corollary 7. The polynomial Q(x, y) has a zero of order m at (α, β) if and only if

Qr,s(α, β) = 0 for all r and s such that 0 ≤ r + s < m (34)

Proof. By definition, ord (Q : α, β) ≥ m iff Q(x + α, y + β) has a zero of order m at (0, 0). But by
Eq. (31), Q(x + α, y + β) has a zero of order m at (0, 0) iff Qr,s(α, β) = 0 for all 0 ≤ r + s < m. ❐

Corollary 8. If Q̃(x, y) = xQ(x, y), then

Q̃r,s(x, y) = Qr−1,s(x, y) + xQr,s(x, y)

Similarly, if Q̃(x, y) = yQ(x, y), then

Q̃r,s(x, y) = Qr,s−1(x, y) + yQr,s(x, y)

Proof. By definition, Q̃r,s(α, β) = coeffxrysQ̃(x + α, y + β). But from Eq. (31), we have

Q̃(x + α, y + β) = (x + α)Q(x + α, y + β)

= (x + α)
∑
r,s

Qr,s(α, β)xrys

=
∑
r,s

Qr,s(α, β)xr+1ys +
∑
r,s

αQr,s(α, β)xrys

=
∑
r,s

(
Qr−1,s(α, β) + αQr,s(α, β)

)
xrys

Therefore, Q̃r,s(α, β) = Qr−1,s(α, β) + αQr,s(α, β). ❐

15

V. The Interpolation and Factorization Theorems

In this section, we will state and prove the two basic theorems that support the GS algorithm. We
call these theorems the Interpolation Theorem and the Factorization Theorem.

A. The Interpolation Theorem

Suppose a nonnegative integer m(α) is assigned to each element α ∈ F , and we are asked to construct
a polynomial f(x) of least degree that has a zero of multiplicity m(α), at x = α, for all α ∈ F . Clearly a
minimum-degree solution to this one-dimensional interpolation problems is

f(x) =
∏
α∈F

(x − α)m(α)

deg f(x) =
∑
α∈F

m(α)

We are interested in the analogous two-dimensional interpolation problem: Given a required multiplic-
ity m(α, β) for each (α, β) ∈ F 2, construct a low-degree polynomial Q(x, y) that has zeros of the required
multiplicity. This is a much harder problem, in general, but the following theorem gives a useful upper
bound on the minimum required degree.

Theorem 6: The Interpolation Theorem. Let {m(α, β) : (α, β) ∈ F 2} be a multiplicity function
as above and let φ0 < φ1 < · · · be an arbitrary monomial order. Then there exists a nonzero polynomial
Q(x, y) of the form

Q(x, y) =
C∑

i=0

ai φi(x, y) (35)

where

C =
∑
α,β

(
m(α, β) + 1

2

)

which has a zero of multiplicity m(α, β), at (x, y) = (α, β), for all (α, β) ∈ F 2.

Proof. By Corollary 7, Q(x, y) has a zero of multiplicity m at (α, β) if and only if

Qr,s(α, β) = 0 for all (r, s) such that 0 ≤ r + s < m(α, β) (36)

There are
(
m(α,β)+1

2

)
choices for (r, s) in Eq. (36), and by Eq. (32), each such choice imposes one homoge-

neous linear constraint on the coefficients ai. In total there are C such linear constraints imposed on the
C + 1 coefficients a0, a1, · · · , aC . It follows that there must be at least one nonzero solution to this set of
equations, which corresponds to a nonzero polynomial Q(x, y) of the form in Eq. (35) with the required
multiplicities. ❐

Corollary 9. For any (u, v), there is a nonzero polynomial Q(x, y) with the required zero multiplicities
whose (u, v)-degree is strictly less than

√
2uvC.

16

Proof. Take {φj(x, y)} to be (u, v)-revlex order. Then by Eq. (35),

degu,vQ(x, y) ≤ max{degu,vφj(x, y) : j = 0, · · · , C} = degu,v φC(x, y) = rA(C)

where A = (aK) is the sequence Ind(xK), for (u, v)-revlex order. But rA(C) <
√

2uvC by a straightfor-
ward generalization of Corollary 3. ❐

B. The Factorization Theorem

If Q(x, y) ∈ F [x, y], and f(x) ∈ F [x], define the Q-score of f as

SQ(f) =
∑
α∈F

ord
(
Q : α, f(α)

)

Theorem 7: The Factorization Theorem. Suppose f(x) ∈ Fv[x], Q(x, y) ∈ F [x, y], and

SQ(f) > deg1,v Q

Then y − f(x) is a factor of Q(x, y).

Proof. Let Q(x, y) =
∑

i,j ai,jx
iyj . Then Q

(
x, f(x)

)
is a polynomial in x:

Q
(
x, f(x)

)
=

∑
i,j≥0

ai,jx
if(x)j (37)

The following three lemmas describe important properties of this polynomial.

Lemma 2. If f(x) ∈ Fv[x], then deg Q
(
x, f(x)

)
≤ deg1,v Q(x, y).

Proof. For ai,j �= 0, deg(xif(x)j) ≤ deg(xixvj) = i + vj ≤ max(i + vj : ai,j �= 0) = deg1,v Q(x, y).
❐

Lemma 3. Q
(
x, f(x)

)
= 0 if and only if

(
y − f(x)

)
|Q(x, y).

Proof. Let us view Q(x, y) as a polynomial in y over the rational field F (x). Then by the division
algorithm, we can write

Q(x, y) = Q0(x, y)
(
y − f(x)

)
+ r(x) (38)

where r(x) ∈ F (x). Substituting f(x) for y in Eq. (38), we obtain

Q
(
x, f(x)

)
= r(x)

so that Q
(
x, f(x)

)
= 0 if and only if r(x) = 0, which is equivalent to the stated result. ❐

17

Lemma 4. If ord (Q : α, β) = K, and f(α) = β, then

(x − α)K |Q
(
x, f(x)

)

Proof. Using Corollary 6, express Q(x, y) as a polynomial in x − α and y − β:

Q(x, y) =
∑
i,j

bi,j(x − α)i(y − β)j

Then

Q
(
x, f(x)

)
=

∑
i,j

bi,j(x − α)i
(
f(x) − β

)j (39)

since f(α) = β, f(x)−β is divisible by x−α, so that the term (x−α)i
(
f(x)−β

)j in Eq. (39) is divisible
by (x− α)i+j . But ord (Q : α, β) = K implies that if bi,j �= 0, then i + j ≥ K. Thus, every nonzero term
in Eq. (39) is divisible by (x − α)K , i.e., (x − α)K |Q

(
x, f(x)

)
. ❐

We can now complete the proof of Theorem 7. By Lemma 4, we know that
∏

α∈F (x−α)ord (Q:α,f(α)) |
Q

(
x, f(x)

)
. But by Lemma 2, the degree of Q

(
x, f(x)

)
is (at most) deg1,v Q(x, y), and the degree of∏

α∈F (x − α)ord (Q:α,f(α)) is SQ(f). Thus, if SQ(f) exceeds deg1,v Q, it follows that Q
(
x, f(x)

)
= 0, and

so by Lemma 3, y − f(x) divides Q(x, y). ❐

VI. A Second Look at the Guruswami–Sudan Algorithm

Armed with the preliminary material from Sections III through V, in this section we will give a formal
description, and proof of correctness, of the Guruswami–Sudan algorithm.

A. Prerequisite Notation, Concepts, etc.

Here we list some of the technical details needed for a full discussion of the GS algorithm:

• K(f, β) = |{i : f(αi) = βi}|, D(f, β) = |{i : f(αi) �= βi}|.
• C(n, m) = n

(
m+1

2

)
.

• (1, v)-revlex monomial order.

• The indices A(K, v) = Ind(xK) and B(L, v) = Ind(yL) (with respect to (1, v)-revlex order),
with the rank of apparition functions

rA(J) = max{K : A(K, v) ≤ J}

rB(J) = max{L : B(L, v) ≤ J}

18

• The numbers Km, tm, and Lm:

Km(n, k) �= min{K : A(mK, v) > C(n, m)} = 1 + 	rA(C)/m
 (40)

tm(n, k) �= n − Km(n, k) = n − 1 − 	rA(C)/m
 (41)

Lm(n, k) �= max{L : B(L, v) ≤ C(n, m)} = rB(C) (42)

• Estimates of Km and Lm (from Corollaries 3 and 4):

⌊√
vn

m + 1
m

− v

2m

⌋
+ 1 ≤ Km ≤

⌊√
vn

m + 1
m

⌋
(43)

n −
⌊√

vn
m + 1

m

⌋
≤ tm ≤ n − 1 −

⌊√
vn

m + 1
m

− v

2m

⌋
(44)

Lm =

√
n

v
m(m + 1) +

(
v + 2
2v

)2

− v + 2
2v

 <

(
m +

1
2

) √
n

v
(45)

B. The GS Decoding Algorithm, in Detail

Given an (n, k) RS code over the finite field F , with support set (α1, · · · , αn), and a positive integer m,
the GS(m) decoder accepts a vector β = (β1, · · · , βn) ∈ Fn as input, and produces a list of polynomials
{f1, · · · , fL} as output. Here’s how:

1. The GS (m) Decoder. The GS(m) decoder constructs a nonzero two-variable polynomial of the
form

Q(x, y) =
C(n,m)∑

j=0

ajφj(x, y)

where φ0 < φ1 < · · · is (1, v)-revlex monomial order, such that Q(x, y) has a zero of order m at each of
the n points (αi, βi), for i = 1, · · · , n. (The Interpolation Theorem, Theorem 6, guarantees that such a
polynomial exists.) The output of the algorithm is the list of y-roots of Q(x, y), i.e.,

L = {f(x) ∈ F [x] :
(
y − f(x)

)
|Q(x, y)}

Theorem 8. The output list contains every polynomial of degree ≤v such that K(f, β) ≥ Km. Fur-
thermore, the number of polynomials in the list is at most Lm.

Proof. By Eq. (20), deg1,v Q(x, y) ≤ max{deg1,v φi(x, y) : i = 0, · · · , C} = rA(C). Hence, by
Theorem 7, any polynomial f(x) of degree ≤v such that mK(f, β) > rA(C), will be a y-root of Q(x, y).
In other words, if K(f, β) ≥ 1 + 	rA(C)/m
 = Km, f(x) will be on the list.

19

On the other hand, by Eq. (21), the y-degree of Q(x, y) is ≤ rB(C(n, m)) = Lm. Since the number
of y-roots of Q(x, y) cannot exceed its y-degree, it follows that the output list contains at most Lm

polynomials. ❐

With the basic theory out of the way, in the following three sections we describe low-complexity
algorithms for solving the interpolation and factorization problems.

VII. Kötter’s Solution to the Interpolation Problem

In this section, we will give a complete description of Kötter’s solution to the interpolation problem.
Much of this material has apparently never before appeared in print.

In general terms, the interpolation problem is to construct a bivariate polynomial Q(x, y) with minimal
(1, v)-degree that satisfies a number of constraints of the form

Dr,sQ(α, β) = 0

where (r, s) ∈ N
2 and (α, β) ∈ F 2. It turns out that the mapping

Q(x, y) �→ Dr,sQ(α, β)

is an example of what is called a linear functional on F [x, y]. It is no harder mathematically, and much
easier notationally, to consider the more general problem of constructing a bivariate polynomial Q(x, y)
of minimal weighted-degree that satisfies a number of constraints of the form

DiQ(x, y) = 0, for i = 1, 2, · · ·

where each Di is a linear functional. The goal of this section is to describe an algorithm for solving the
more general problem.

A. Linear Functionals on F [x,y]

A mapping D : F [x, y] �→ F is called a linear functional if

D(αP + βQ) = αD(P) + βD(Q) (46)

for all P, Q ∈ F [x, y] and all α, β ∈ F . For us, the primary example of a linear functional is the mapping
that evaluates a Hasse derivative:

Q(x, y) �→ Dr,sQ(α, β)

for fixed values of (r, s) ∈ N
2 and (α, β) ∈ F 2.

If we agree on a particular monomial order, say

φ0(x, y) < φ1(x, y) < · · ·

so that any polynomial Q(x, y) has a unique expansion of the form

20

Q(x, y) =
J∑

j=0

aj φj(x, y)

where aJ �= 0, then any linear functional can be expressed as

D(Q) =
J∑

i=0

ajdj

where dj = D
(
φj(x, y)

)
. The kernel of D is defined to be the set

K = kerD = {Q : D(Q) = 0} (47)

If D is a linear functional with kernel K, the corresponding bilinear mapping [P, Q]D is defined as

[P, Q]D
�= D(Q)P − D(P)Q (48)

This simple mapping is a crucial part of the algorithms we present below; its key properties are given in
the following lemma.

Lemma 5. For all P , Q in F [x, y], [P, Q]D ∈ ker D. Furthermore, if P > Q and Q /∈ K, then
Rank [P, Q]D = Rank P .

Proof. To simplify the notation, let α = D(Q) and β = D(P). Then D([P, Q]D) = D(αP − βQ) =
αD(P) − βD(Q) = αβ − βα = 0, which proves [P, Q]D ∈ ker D. If α �= 0 and P > Q, the expression
[P, Q]D = αP − βQ shows that LM [P, Q]D = LMP , so that Rank [P, Q]D = RankP . ❐

B. Problem Statement

Let FL[x, y] denote the set of polynomials from F [x, y] whose y-degree is ≤L, i.e., those of the form

Q(x, y) =
L∑

k=0

qk(x)yk (49)

where each qk(x) ∈ F [x]. We note that FL[x, y] is an F [x]-module, i.e., if Q(x, y) ∈ FL[x, y], and
p(x) ∈ F [x], then p(x)Q(x, y) ∈ FL[x, y] as well.

Let D1, · · · , DC be C linear functionals defined on FL[x, y], and let K1, · · · , KC be the corresponding
kernels, i.e.,

Ki = {Q(x, y) ∈ FL[x, y] : Di(Q) = 0}

The cumulative kernels K0, · · · ,KC are defined as follows: K0 = FL[x, y] and for i = 1, · · · , C,

21

Ki = Ki−1 ∩ Ki

= K1 ∩ · · · ∩ Ki

= {Q(x, y) ∈ FL[x, y] : D1(Q) = · · · = Di(Q) = 0}

Problem 1: The Generalized Interpolation Problem. Construct a minimal11 element from

KC = K1 ∩ · · · ∩ KC

i.e., calculate

Q0(x, y) ∈ min{Q(x, y) : D1(Q) = · · · = DC(Q) = 0}

As we noted above, the linear functional Di can be written as

Di(Q) =
∑
j≥0

ajdj,i

for suitable coefficients dj,i ∈ F . Thus, the functionals D1, · · · , DC can be represented by a matrix with
C rows and a column for each monomial φj(x, y):

D =

φ0 φ1 · · ·
d1,0 d1,1 · · ·
...

dC,0 dC,1 · · ·

If d(j) denotes the jth column of D, i.e.,

d(j) = (d1,j , d2,j , · · · , dC,j)T

the condition Q(x, y) ∈ KC , i.e.,

Di

(
Q(x, y)

)
= 0 for i = 1, · · · , C

where Q(x, y) is expressed as in Eq. (49), is equivalent to a0d(0) + · · · + aJd(J) = 0. Thus, the least J
such that the first J columns of D are linearly dependent corresponds to a polynomial of least rank that
lies in KC . It turns out that there is an established algorithm, the Feng–Tseng (FT) algorithm, that
is exactly suited to this formulation of the interpolation problem. We will discuss the FT algorithm in
Section VIII.

11 Here and elsewhere, “minimal” means minimal rank with respect to the given monomial order.

22

C. Kötter’s Algorithm

Kötter (K) [12,13] noticed, in effect, that if the cumulative kernels are F [x]-modules, Problem 1 admits
of a less complex solution than the one afforded by the FT algorithm.12 This observation applies to the GS
interpolation problem, since Corollary 8 says that if we enforce the conditions Dr,s(α, β) = 0 for s+r < m
in an order in which (r − 1, s) always precedes (r, s), the cumulative kernels will be F [x]-modules. For
example, (m − 1, 1) lex order, which orders the pairs

(0, 0), (0, 1), · · · , (0, m − 1), (1, 0), (1, 1), · · · , (1, m − 2), · · · , (m − 1, 0)

has the desired property.

In this subsection, we will describe, and prove the correctness of, Kötter’s algorithm for solving this
restricted class of problems.

In Kötter’s algorithm, the set of monomials from FL[x, y], viz.,

ML[x, y] = {xiyj : 0 ≤ i, 0 ≤ j ≤ L}

is partitioned according to the exponent of y: ML[x, y] =
⋃L

j=0 Mj , where

Mj = {xiyj : i ≥ 0} (50)

This partition of ML induces a partition on FL[x, y]: FL[x, y] = S0 ∪ · · · ∪ SL, where

Sj = {Q ∈ FL[x, y] : LM(Q) ∈ Mj} (51)

Kötter’s algorithm generates a sequence of lists G0, G1, · · · , GC , with

Gi = (gi,0, · · · , gi,L)

where gi,j is a minimal element of Ki ∩ Sj . The algorithm’s output is the polynomial

Q0(x, y) = min
0≤j≤L

gC,j(x, y)

which is a minimal element of KC .

Kötter’s algorithm is initialized as follows:

g0,j = yj , j = 0, · · · , L

12 O(n2) for K versus O(n3) for FT.

23

Given Gi, Gi+1 is defined recursively:

J0 = {j : Di+1(gi,j) = 0}

J1 = {j : Di+1(gi,j) �= 0}

If J1 is not empty, among the polynomials gi,j with j ∈ J1, let gi,j∗ be the one with minimal rank, and
temporarily denote gi,j∗ by f :

f = min
j∈J1

gi,j

j∗ = argmin
j∈J1

gi,j

 (52)

Then using the notation of Eq. (48), gi+1,j is defined for j = 0, · · · , L:

gi+1,j =

gi,j if j ∈ J0

[gi,j , f]Di+1 if j ∈ J1 but j �= j∗

[xf, f]Di+1 if j = j∗

(53)

Theorem 9. For i = 0, · · · , C, we have

gi,j = min{g : g ∈ Ki ∩ Sj} for j = 0, · · · , L (54)

Proof. Induction on i: The case i = 0 being easily verified, let us assume the truth of Eq. (54) for
the index i, and consider the index i + 1. We must show that Eq. (54) (with i replaced by i + 1) holds
for j = 0, · · · , L. There are three cases to consider, cf., Eq. (53).

Case 1: j ∈ J0. In this case, we have, from Eq. (53),

gi+1,j = gi,j

Since gi,j ∈ Ki ∩ Sj by the induction hypothesis and gi,j ∈ Ki+1 because Di+1(gi,j) = 0, it follows
that gi+1,j ∈ Ki+1 ∩ Sj . But since gi,j is minimal in Ki ∩ Sj , it must also be minimal in the smaller set
Ki+1 ∩ Sj .

Case 2: j ∈ J1 but j �= j∗. In this case, we have, from Eq. (53),

gi+1,j = [gi,j , f]Di+1

Thus, gi+1,j is an F -linear combination of gi,j and f , which are both elements of Ki by the induction
hypothesis. Thus, gi+1,j ∈ Ki as well. Also, gi+1,j ∈ Ki+1 by Lemma 5 and so gi+1,j ∈ Ki∩Ki+1 = Ki+1.

By the induction hypothesis, gi,j ∈ Sj and f ∈ Sj∗ , where j �= j∗, which implies Rank gi,j �= Rank f .
Thus, by Eq. (52), gi,j > f . It follows from Lemma 5 that Rank gi+1,j = Rank gi,j and hence (since
gi,j ∈ Sj) that gi+1,j ∈ Sj as well.

24

But since gi+1,j has the same rank as gi,j , which is minimal in Ki ∩ Sj , it must be minimal in the
smaller set Ki+1 ∩ Sj as well.

Case 3: j = j∗. In this case, we have, from Eq. (53),

gi+1,j = [xf, f]Di+1

Thus, gi+1,j is an F -linear combination of xf and f . But f ∈ Ki by the induction hypothesis, and
xf ∈ Ki because Ki is an F [x]-module.13 Thus, gi+1,j ∈ Ki. Also, gi+1,j ∈ Ki+1 by Lemma 5 and so
gi+1,j ∈ Ki ∩ Ki+1 = Ki+1.

Also, f ∈ Sj by the induction hypothesis, and since Sj is closed under multiplication by x, xf ∈ Sj as
well. But clearly xf > f , and so by Lemma 5, Rank gi+1,j = Rankxgi,j , which means (since xf ∈ Sj),
that gi+1,j ∈ Sj as well.

It remains only to prove that gi+1,j is minimal in Ki+1 ∩ Sj . If it is not minimal, there exists a
polynomial h ∈ Ki+1∩Sj such that h < gi+1,j . Also, since h ∈ Ki∩Sj , f ≤ h. But Rank gi+1,j = Rankxf ,
and since there can be no polynomial f ′ ∈ Sj with Rank f < Rank f ′ < Rankxf , it follows that h ≡ f .
By a suitable normalization, we can arrange to have the leading coefficient of h equal to that of f . Now
consider the polynomial f ′ = h − f . Clearly f ′ ∈ Ki, and f ′ < h ≡ f . Also, Di+1(f ′) �= 0 since
Di+1(h) = 0 (since h ∈ Ki+1) and Di+1(f) �= 0 (since j ∈ J1).

In summary, if gi+1,j is not minimal in Ki+1 ∩Sj , we can construct a nonzero polynomial f ′ such that

f ′ ∈ Ki \ Ki+1

f ′ < f

 (55)

But this contradicts Eq. (52), which says, in effect, that f is a minimal element of Ki \ Ki+1. ❐

13 Cf. the remarks at the beginning of this subsection.

25

D. Pseudocode for Kötter’s Algorithm

/* Kötter’s Algorithm -- General Formulation */

/* Complexity O(C2) */

BEGIN (Given L, (Di)C
i=1, arbitrary monomial order)

1. FOR j = 0 to L

2. gj := yj

3. FOR i = 1 to C DO

4. FOR j = 0 to L DO

5. ∆j := Di(gj) /* jth discrepancy */

6. j := {j : ∆j �= 0}
7. IF j �= 0/

8. j∗ := argmin {gj : ∆; �= 0} /* "min" wrt monomial order */

9. f := gj∗; ∆ := ∆j∗

10. FOR j ∈ J DO

11. IF (j �= J∗)
12. gj := ∆gj − ∆j f /* No change in Rank gj */

13. ELSE IF (j = J∗)
14. gj := ∆(xf) − Di(xf) f /* Rank gj increases by min */

15. Q0(x, y) := minL
j=0{gj(x, y)}

END

Theorem 10. At the end of Kötter’s algorithm,

gj(x, y) = min{g ∈ KC ∩ Sj}

Q0(x, y) = min{g ∈ KC}

where the “min” is with respect to the given monomial order.

26

/* Kötter’s Interpolation Algorithm -- Special Case for GS Decoding */

/* Complexity O(n2m4) if mi = m for all i */

BEGIN (Given L, (αi, βi)n
i=1, (mi)n

i=1, (1, k − 1) wdeg monomial order)

1. FOR j = 0 to L

gj := yj

2. FOR i = 1 to n DO

3. FOR (r, s) = (0, 0) to (mi − 1, 0) DO /* by (mi − 1, 1) lex order */

4. FOR j = 0 to L DO

5. ∆j := Dr,sgj(αi, βi) /* jth discrepancy */

6. J := {j : ∆j �= 0}
7. IF J �= 0/

8. j∗ := argmin{gj : j ∈ J}
9. f := gj∗; ∆ := ∆j∗

10. FOR j ∈ J DO

11. IF (j �= j∗)
12. gj := ∆gj − ∆j f /* No change in wdeg */

13. ELSE IF (j = J∗)
14. gj := ∆(x − αi)f /* wdeg increases by 1 */

15. Q0(x, y) := minj{gj(x, y)} /* The Interpolation Polynomial */

END

Derivation of Line 14:

gj = ∆(xf) − Di(xf)f

= Dr,sf(αi, βi) ·
(
xf(x, y)

)
− Dr,s

(
xf(x, y)

)∣∣∣
x=αi
y=βi

· f(x, y)

= Dr,sf(αi, βi) ·
(
xf(x, y)

)
− αiDr,sf(αi, βi) · f(x, y) (Corollary 8)

= Dr,sf(αi, βi)f(x, y) (x − αi)

= K(x − αi)f

Theorem 11. When Kötter’s Interpolation Algorithm terminates,

gj(x, y) = min{f ∈ I(m) ∩ FL[x, y] ∩ Sj}

Q0(x, y) = min{f ∈ I(m) ∩ FL[x, y]}

27

where

I(m) = {Q(x, y) : ord (Q : αi, βi) = mi, i = 1, · · · , n}

/* Kötter’s Interpolation Algorithm -- Special Case m = 1 */

/* Complexity O(n2) */

BEGIN (Given L, (αi, βi)n
i=1, (1, k − 1) wdeg to order polynomials)

1. FOR j = 0 to L

gj := yj /* If re-encoding trick is not used */

2. FOR i = 1 to n DO

3. FOR j = 0 to L DO

4. ∆j := gj(αi, βi) /* jth discrepancy */

5. J := {j : ∆j �= 0}
6. IF j �= 0/

7. J∗ := argmin{gj : j ∈ J}
8. f := gj∗; ∆ := ∆j∗

9. FOR j ∈ J DO

10. IF (j �= j∗)
11. gj := ∆gj − ∆j f /* No change in wdeg */

12. ELSE IF (j = J∗)
13. gj := (x − αi)f /* wdeg increases by 1 */

14. Q0(x, y) := minj{gj(x, y)} /* The Interpolation Polynomial */

END

VIII. An Alternative to Kötter’s Solution: The Feng–Tzeng Algorithm

In this section, we will describe the Feng–Tzeng algorithm, which inspired Kötter, and which standing
alone can provide a practical (O(n3)) solution to the interpolation problem.

Let A = (ai,j) be an m × n matrix over F with m < n. Let ai = (ai,1, · · · , ai,n) denote the ith
row of A, and let a(j) = (a1,j , · · · , am,j) denote the jth column. The FT algorithm [8] finds the largest
integer L such that the first L columns of A are linearly independent. It also produces an L + 1-vector
d = (d1, · · · , dL, 1) such that d1a(1) + · · · + dLa(L) + a(L+1) = 0.

28

/* The Feng-Tzeng Algorithm */

/* Complexity O(n3) */

BEGIN

FOR u = 1 to n DO

ρ(u) = 0; δ(u) = 0;

s := 0

DO

1. s := s + 1; r := 0; b := 0(s−1)1; columnblocked := false

/* any b of the form b1b2 · · · bs−11 will do.*/

DO

2. r := r + 1

3. ∆ := ar · b
4. IF (∆ �= 0)

5. IF (there is a u < s for which ρ(u) = r)

6. b := b − ∆
δ(u)

cu /* now ai · b = 0 for all 1 ≤ i ≤ r.*/

7. ELSE (there is no u < s for which ρ(u) = r)

8. ρ(s) := r; δ(s) := ∆; cs := b

columnblocked := true

WHILE (r < m and columnblocked = false)

WHILE (columnblocked = true)

9. cs := b; L := s − 1

END

The following theorem describes the most important properties of the FT algorithm.

Theorem 12. First,

ρ(1), · · · , ρ(L) are distinct elements of {1, · · · , m} (56)

Next, for s = 1, · · · , L,

ar · cs =
{

0 for 1 ≤ r < ρ(s)
δ(s) �= 0 for r = ρ(s) (57)

Finally,

ar · cL+1 = 0 for 1 ≤ r ≤ m (58)

Proof. See [8]. ❐

29

Corollary 10. The first L columns of A are linearly independent. The first L + 1 columns of A are
linearly dependent. In fact, if cL+1 = (d1, · · · , dL, 1), then

d1a(1) + · · · + dLa(L) + a(L+1) = 0 (59)

Proof. Denote by AL+1 the m × (L + 1) matrix formed by the first L + 1 columns of A, i.e.,

AL+1 =
(
a(1) · · · a(L+1)

)

and by C the (L + 1) × (L + 1) matrix whose rows are the vectors c1, · · · , cL, cL+1, i.e.,

C =

c1
...

cL

cL+1

 =

1 0 0 0

∗ 1 0
...

...
...

... 0
∗ ∗ ∗ 1

Now consider the m× (L+1) matrix D = AL+1C
T . Because C has the lower triangular form shown, the

first s columns of D are column-equivalent to the first s columns of AL+1, for s = 1, · · · , L + 1. But the
(r, s)th entry in D is ar · cs, and so by Eq. (57), the sth column of D has ρ(s) − 1 leading 0’s followed
by the nonzero entry δ(s), for s = 1, · · · , L. But by Eq. (56), the indices ρ(1), · · · , ρ(L) are distinct,
which implies that the first L columns of D, and hence also those of A, are linearly independent. Finally,
Eq. (58) says that the L+1st column of D is identically zero, which implies the first L+1 columns of D,
and hence also of A, are linearly dependent. Equation (58) shows that Eq. (59) is true. ❐

Example 12. (Taken from [8]). Let A be the following 6 × 6 matrix over GF (2):

A =

1 2 3 4 5 6
1 0 0 1 1 0 1
2 1 0 0 0 0 1
3 0 0 0 0 0 0
4 0 1 0 1 0 0
5 0 0 0 1 1 1
6 0 0 1 0 1 1

The result of running the FT algorithm is

C =

c1 1
c2 0 1
c3 0 0 1
c4 0 1 1 1
c5 0 1 1 1 1

30

D = A5C
T =

c1 c2 c3 c4 c5

a1 0 0 1 0 0
a2 1 0 0 0 0
a3 0 0 0 0 0
a4 0 1 0 0 0
a5 0 0 0 1 0

The first four columns of D show that ρ(1) = 2, ρ(2) = 4, ρ(3) = 1, and ρ(4) = 5. Thus, L = 4 and the
leftmost linear dependence among the columns of A is

a(2) + a(3) + a(4) + a(5) = 0

Example 13. Let F = GF (8), with primitive root γ satisfying γ3 = γ+1. Let’s use the FT algorithm
to construct a two-variable polynomial Q(x, y) of minimal (1, 3)-revlex rank such that ord (Q : 1, γ) ≥ 1,
and ord (Q : γ, γ6) ≥ 2. There are four constraints: Q0,0(1, γ) = Q0,0(γ, γ6) = Q0,1(γ, γ6) = Q1,0(γ, γ6)
= 0, so we know that some linear combination of the first five monomials listed in (1, 3)-revlex order,
viz., 1, x, x2, x3, y, will suffice. Thus, for the matrix A we will take the 4 × 5 matrix whose columns are
indexed by the first five monomials {1, x, x2, x3, y} in (1, 3)-revlex order, and whose rows are indexed by
the four coefficient constraints corresponding to the conditions (1) Q0,0(1, γ) = 0; (2) Q0,0(γ, γ6) = 0;
(3) Q0,1(γ, γ6) = 0; and (4) Q1,0(γ, γ6) = 0. Here is a summary of the work:

A =

1 x x2 x3 y

a1 1 1 1 1 γ

a2 1 γ γ2 γ3 γ6

a3 0 0 0 0 1

a4 0 1 0 γ2 0

C =

c1 1

c2 1 1

c3 γ γ3 1

c4 γ2 γ2 1 1

D = A4C
T =

c1 c2 c3 c4

a1 1 0 0 0

a2 1 γ3 0 0

a3 0 0 0 0

a4 0 1 γ3 0

31

The first three columns of D tell us that ρ(1) = 1, δ(1) = 1; ρ(2) = 2, δ(2) = γ3; and ρ(3) = 4, δ(3) = γ3.
Thus, the algorithm returns L = 3, and c4 = (γ2, γ2, 1, 1), i.e., Q(x, y) = γ2 + γ2x+x2 +x3 is the unique
(up to scalar multiplication) polynomial of minimal (1, 3)-revlex rank satisfying the given conditions.

Example 14. [16, Example 9.3]. Let us use the FT algorithm to find the “linear complexity” of the
sequence (S1, S2, · · · , S8) = (1, 1, 1, 0, 1, 0, 1, 0). The appropriate matrix A is as shown below. It has the
general form

A =

S1 S2 S3 · · · S7 S8

S2 S3 S4 · · · S8
...

S7 S8

S8

(The missing entries are “don’t cares” that do not enter into the calculations.) According to [8], the
algorithm stops when s + r ≥ n + 1, i.e., when otherwise the next entry of A to be processed is a don’t
care. The final vector c5 = (0, 0, 1, 0, 1) indicates that the “shortest” linear recurrence relation satisfied
by the given sequence is

Sj = Sj−2 for j ≥ 5

(This example is somewhat pathological, since in general an 8-term sequence (S1, S2, · · · , S8) will satisfy
a degree-4 recurrence relation of the form

Sj = σ1Sj−1 + σ2Sj−2 + σ3Sj−3 + σ4Sj−4 for j ≥ 5

It appears to be an accident that σ3 = σ4 = 0 in this case.)

32

A =

1 2 3 4 5 6 7 8

1 1 1 1 0 1 0 1 0

2 1 1 0 1 0 1 0

3 1 0 1 0 1 0

4 0 1 0 1 0

5 1 0 1 0

6 0 1 0

7 1 0

8 0

C =

c1 1

c2 1 1

c3 1 0 1

c4 1 0 1 1

c5 0 0 1 0 1

D = A4C
T =

c1 c2 c3 c4 c5

a1 1 0 0 0 0

a2 1 0 1 0 0

a3 1 1 0 0 0

a4 0 1 0 1 0

a5 1 1 0 0 0

IX. The Roth–Ruckenstein Solution to the Factorization Problem

In this section, we will present the most efficient algorithm currently known for solving the factorization
problem, due to Roth and Ruckenstein [21]. Our exposition includes an improved stopping rule and a
“depth first search” implementation.

The factorization problem is this: given a polynomial Q(x, y) ∈ F [x, y], find all polynomials f(x) of
degree ≤v such that (y − f(x)) |Q(x, y). Alternatively, by Lemma 3, find all f(x) ∈ Fv[x] such that

Q
(
x, f(x)

)
≡ 0 (60)

If Eq. (60) holds, we call f(x) a y-root of Q(x, y). In this section, we will describe an algorithm due to
Roth and Ruckenstein [21] for finding y-roots.

33

If Q(x, y) is a two-variable polynomial such that xm |Q(x, y), but xm+1/|Q(x, y), define

〈〈Q(x, y)〉〉 =
Q(x, y)

xm

Although Q(0, y) might be identically zero, nevertheless 〈〈Q(0, y)〉〉 is a nonzero polynomial in y (e.g., if
Q(x, y) = xy, Q(0, y) = 0 but 〈〈Q(0, y)〉〉 = y).

Suppose

f(x) = a0 + a1x + · · · + avxv (61)

is a y-root of Q(x, y). We will see that the coefficients a0, a1, · · · , av can be “picked off,” one at a time.
As a start, the following lemma shows how to determine a0.

Lemma 6. If
(
y − f(x)

)
|Q(x, y), then y = f(0) = a0 is a root of the equation

Q0(0, y) = 0

where Q0(x, y) = 〈〈Q(x, y)〉〉.

Proof. By definition, Q(x, y) = xmQ0(x, y) for some m ≥ 0. Thus, if (y − f(x)) |Q(x, y), then
(y − f(x)) |Q0(x, y) as well, so that Q0(x, y) =

(
y − f(x)

)
T0(x, y) for some polynomial T0(x, y). Thus,

y = f(0) is a solution of the equation Q0(0, y) = 0. ❐

We now proceed by induction, defining three sequences of polynomials, fj(x), Tj(x, y), and Qj(x, y),
for j = 0, 1, · · · , v, as follows.

Initially, f0 := f(x), Q0(x, y) := 〈〈Q(x, y)〉〉. For j ≥ 1, define

fj(x) :=
(
fj−1(x) − fj−1(0)

)
/x = aj + · · · + avxv−j (62)

Tj(x, y) := Qj−1(x, xy + aj−1) (63)

Qj(x, y) := 〈〈Tj(x, y)〉〉 (64)

Theorem 13. Given f(x) = a0 + a1x+ · · ·+ avxv ∈ Fv[x], and Q(x, y) ∈ F [x, y], define the sequences
fj(x) and Qj(x, y) as in Eqs. (62) and (64). Then for any j ≥ 1, (y − f(x)) |Q(x, y) if and only if
(y − fj(x)) |Qj(x, y).

Proof. We will show that if j ≥ 1,
(
y − fj(x)

)
|Qj(x, y) ↔

(
y − fj−1(x)

)
|Qj−1(x, y).

1. (→). Assuming
(
y − fj(x)

)
|Qj(x, y), by Eq. (64), Tj(x, y) = xmQj(x, y) for some m ≥ 0. Then

(
y − fj(x)

)
|xmQj(x, y) = Tj(x, y) = Qj−1(x, xy + aj−1)

Therefore,

34

Qj−1(x, xy + aj−1) =
(
y − fj(x)

)
U(x, y) (65)

for some U(x, y) ∈ F [x, y]. Now substitute (y − aj−1)/x for y in Eq. (65):

Qj−1(x, y) =
(

y − aj−1

x
− fj(x)

)
U

(
x,

y − aj−1

x

)
(66)

Multiplying both sides of Eq. (66) by a sufficiently large power of x, we obtain

xLQj−1(x, y) =
(
y − fj−1(x)

)
V (x, y)

for some V (x, y) ∈ F [x, y]. Thus, y− fj−1(x) divides xLQj−1(x, y); but xL and y− fj−1(x) are relatively
prime, so y − fj−1(x) divides Qj−1(x, y), as asserted.

2. (←). Assuming
(
y − fj−1(x)

)
|Qj−1(x, y),

Qj−1(x, y) =
(
y − fj−1(x)

)
U(x, y)

for some polynomial U(x, y). Thus, by Eq. (63),

Tj(x, y) =
(
xy + aj−1 − fj−1(x)

)
· U(x, xy + aj−1)

= x
(
y − fj(x)

)
· U(x, xy + aj−1)

which proves that
(
y−fj(x)

)
|Tj(x, y). But since Tj(x, y) = xmQj(x, y), it follows that

(
y−fj(x)

)
|Qj(x, y)

as well. ❐

Here is the “picking off” theorem.

Corollary 11. [21, Lemma 5.1]. If
(
y − f(x)

)
|Q(x, y), then y = aj is a root of the equation

Qj(0, y) = 0, for j = 0, · · · , v

Proof. By Theorem 13, y − fj(x) divides Qj(x, y) for all j ≥ 0. Substituting x = 0 yields the stated
result, since fj(0) = aj . ❐

Corollary 12. If y |Qv+1(x, y), i.e., if Qv+1(x, 0) = 0, then f(x) = a0 + · · · + avxv is a y-root of
Q(x, y).

Proof. Note that, by Eq. (62), fj(x) = 0 for all j ≥ v + 1, so that the hypothesis y |Qv+1(x, y) says
that

(
y − fv+1(x)

)
|Qv+1(x, y). Now apply Theorem 13. ❐

The following lemma provides some insight into the all-important transformation Q(x, y) →
Q(x, xy + a).

35

Lemma 7. If

Q(x, y) =
∑

i

xigi(y)

=
∑
i,j

xiyjDjgi(0)

then

Q(x, xy + a) =
∑
i,j

xiyjDjgi−j(a)

where Di denotes the ith one-dimensional Hasse derivative.

Proof. By Theorem 4, we have

gs(z + a) =
∑

r

zrDrgs(a)

and so

Q(x, z + a) =
∑

s

xs
∑

r

zrDrgs(a) (67)

Substituting xy for z in Eq. (67), we have

Q(x, xy + a) =
∑
s,r

xs+ryrDrgs(a)

=
∑
i,j

xiyjDjgi−j(a)

❐
Symbolically, Lemma 7 can be summarized as follows:

Q(x, y) =

g0(0) g1(0) g2(0) g3(0) · · ·

D1g0(0) D1g1(0) D1g2(0) D1g3(0)
D2g0(0) D2g1(0) D2g2(0) D2g3(0)

...

Q(x, xy + a) =

g0(a) g1(a) g2(a) g3(a) · · ·

0 D1g0(a) D1g1(a) D1g2(a)
0 0 D2g0(a) D2g1(a)
0 0 0 D3g0(a)
...

36

In words: if the entries of column j of Q(x, y) are interpreted as the coefficients of a polynomial, say
gj(z), then the entries of the jth diagonal of Q(x, xy + a) are the coefficients of the polynomial gj(z + a).

We now give a pseudocode representation of the RR algorithm. It takes as input a bivariate polynomial
Q(x, y) and positive integer D, and returns as output the set of all y-roots of Q(x, y) of degree ≤D. The
strategy adopted by the algorithm is “depth-first search,” as described, for example, in [6, Section 23.3].

/* The Roth-Ruckenstein Algorithm */

/* Input: {Q(x, y), D}; Output: {f(x) :
(
y − f(x)

)
|Q(x, y); deg f(x) ≤ D}. ∗/

BEGIN

1. π[0] = NIL; deg[0] = −1; Q0(x, y) = Q(x, y);

t = 1; u = 0

2. DFS[u]

END

/* DFS[u]: Depth-first search beginning at u */

BEGIN

3. IF (Qu(x, 0) = 0)

4. Output f[u](x) /* using traceback */

5. ELSE IF (deg[u] < D) /* explore edges from vertex u */

6. R = RootList[Qu(0, y)]

7. FOR (α ∈ R) DO

8. v = t; t = t + 1;

9. π[v] = u; deg[v] = deg[u] + 1; Coeff[v] = α;

10. Qv(x, y) = 〈〈Qu(x, xy + α)〉〉
11. DFS[v]

END

Glossary:

π[u] = Parent of u

deg[u] = “degree” of u = distance from root - 1

Coeff[u] = polynomial coefficient at u

f[u](x) = “partial” polynomial at u :

= Coeff[u]xdeg[u] + Coeff[π[u]]xdeg[π[u]] + · · ·
Qu(x, y): See Eq. (64)

Example 15. [21, Example 7.1]. Let F = GF (19) and let us use the RR algorithm to find the y-roots
of the degree ≤1 of the polynomial Q(x, y) given below.

37

Q(x, y) = (4 + 12x + 5x2 + 11x3 + 8x4 + 13x5)

+ (14 + 14x + 9x2 + 16x3 + 8x4)y

+ (14 + 13x + x2)y2

+ (2 + 11x + x2)y3

+ 17y4

In general, the RR algorithm navigates its way through a tree structure, with the potential y-roots
forming paths from the root (vertex 0). This particular example is summarized in Table 1 and Fig. 1.
Each vertex is labeled with a “timestamp,” which indicates the order in which the vertices are visited.
The edge labels descending from vertex [u] correspond to the roots of the equation Qu(0, y) = 0, i.e.,
RootList[u]. Similarly, the label on the edge going up from u to π[u] is Coeff [u]. Finally, the termination
symbols indicate terminal vertices, i.e., either vertices corresponding to y-roots of Q(x, y) (unshaded icon)
or vertices whose depth exceeds v (shaded icon).

Table 1. Summary of Example 15.

u π[u] deg[u] Coeff [u] RootList[u]

0 NIL −1 NIL {18, 18, 14, 8}
1 0 0 18 {14, 15}
2 1 1 14 −
3 1 1 15 −
4 0 0 14 {16}
5 4 1 16 −
6 0 0 8 {8}
7 6 1 8 −

0

4

5 732

61

14 15 16 8

814

deg -1

deg 0

deg 1

{18,18}

Fig. 1. The RR tree for Example 15.

38

• We begin with Vertex 0 (π[0] = NIL; deg[0] = −1):

Q0(x, y) = 〈〈Q(x, y)〉〉

=

1 x x2 x3 x4 x5

1 4 12 5 11 8 13

y 14 14 9 16 8

y2 14 13 1

y3 2 11 1

y4 17

Q0(x, 0) = 4 + 12x + · · · �= 0; deg[0] < 1;

Q0(0, y) = 4 + 14y + 14y2 + 2y3 + 17y4

= 17(y − 18)2(y − 14)(y − 8)

RootList[0] = {18, 14, 8}

• Vertex 1 (π[1] = 0; deg[1] = 0; Coeff [1] = 18):

Q1(x, y) = 〈〈Q0(x, xy + 18)〉〉

=

1 x x2 x3

1 15 14 0 13

y 2 10 16 8

y2 15 18 17

y3 10 11 1

y4 17

Q1(x, 0) = 15 + 14x + · · · �= 0,deg[1] < 1

Q1(0, y) = 15 + 2y + 15y2

= 15(y − 14)(y − 15) = 0,

Rootlist[1] = {14, 15}

39

• Vertex 2 (π[2] = 1; deg[2] = 1; Coeff[2] = 14):

Q2(x, y) = 〈〈Q1(x, xy + 14)〉〉

=

1 x x2 x3 x4 x5

1

y 4 10 18 7

y2 15 1 8 4

y3 10 13 1

y4 17

Q2(x, 0) = 0;

Output f[2](x) = 14x + 18

• Vertex 3 (π[3] = 0; deg[3] = 1; Coeff[3] = 15):

Q3(x, y) = 〈〈Q1(x, xy + 15)〉〉

=

1 x x2 x3 x4 x5

1 2 18 12 0

y 15 4 8 18

y2 15 12 16 7

y3 10 5 1

y4 17

Q3(x, 0) = 2 + 18x + · · · �= 0; deg[3] �< 1;

(No Output)

• Vertex 4 (π[4] = 1; deg[4] = 0; Coeff [4] = 14):

Q4(x, y) = 〈〈Q0(x, xy + 14)〉〉

=

1 x x2 x3 x4

1 13 12 7 6 13

y 17 6 17 16 8

y2 7 0 5 0

y3 4 11 1

y4 17

Q4(x, 0) = 13 + 12x + · · · �= 0; deg[4] < 1;

Q4(0, y) = 13 + 17y

Rootlist[4] = {16}

40

• Vertex 5 (π[5] = 4; deg[5] = 1; Coeff [5] = 16):

Q5(x, y) = 〈〈Q4(x, xy + 16)〉〉

=

1 x x2 x3 x4 x5 x6

1

y 17 2 11 5 16

y2 7 2 7 10

y3 4 16 1

y4 17

Q5(x, 0) = 0

Output f[5](x) = 16x + 14

• Vertex 6 (π[6] = 0; deg[6] = 0; Coeff [6] = 8):

Q6(x, y) = 〈〈Q0(x, xy + 8)〉〉

=

1 x x2 x3 x4

1 14 7 6 15 13

y 3 16 8 16 8

y2 16 11 6 0

y3 14 11 1

y4 17

Q6(x, 0) = 14 + 7x + · · · �= 0; deg[6] < 1;

Q6(0, y) = 14 + 3y

RootList[6] = {8}

• Vertex 7 (π[7] = 6; deg[7] = 1; Coeff [7] = 8):

Q7(x, y) = 〈〈Q6(x, xy + 8)〉〉

=

1 x x2 x3 x4 x5

1

y 3 6 3 9 10

y2 16 5 15 5

y3 14 4 1

y4 17

Q7(x, 0) = 0

Output f[7](x) = 8x + 8

Thus, the output of the RR algorithm in this case is

{14x + 18, 16x + 14, 8x + 8}

41

References

[1] S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan, “Reconstructing Algebraic Func-
tions from Mixed Data,” SIAM J. Computation, vol. 28, no. 2, pp. 488–511,
1999.

[2] E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[3] E. R. Berlekamp and J. L. Ramsey, “Readable Erasures Improve the Performance
of Reed–Solomon Codes,”IEEE Trans. Inform. Theory, vol. 24, no. 5, pp. 632–
633, September 1978.

[4] R. E. Blahut, Theory and Practice of Error-Control Codes, Reading, Massa-
chusetts: Addison-Wesley, 1983.

[5] K.-M. Cheung, “More on the Decoder Error Probability for Reed–Solomon
Codes,” IEEE Trans. Inform. Theory, vol. 35, no. 4, pp. 895–900, July 1989.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
Cambridge, Massachusetts: MIT Press, 1990.

[7] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, New York:
Springer-Verlag, 1992.

[8] G.-L. Feng and K. K. Tzeng, “A Generalization of the Berlekamp–Massey Al-
gorithm for Multisequence Shift-Register Synthesis with Applications to Decod-
ing Cyclic Codes,” IEEE Trans. Inform. Theory, vol. 37, no. 5, pp. 1274–1287,
September 1991.

[9] V. Guruswami and M. Sudan, “Improved Decoding of Reed–Solomon Codes
and Algebraic Geometry Codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6,
pp. 1757–1767, September 1999.

[10] H. Hasse, “Theorie der höheren Differentiale in einem algebraishen Funcktio-
nenkörper mit vollkommenem Konstantenkörper nei beliebeger Charakteristic,”
J. Reine. Ang. Math., vol. 175, pp. 50–54, 1936.

[11] D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algo-
rithms, Reading, Massachusetts: Addison-Wesley, 1973.

[12] R. Kötter, On Algebraic Decoding of Algebraic-Geometric and Cyclic Codes,
Linköping Studies in Science and Technology, no. 419 (Ph.D. Dissertation, De-
partment of Electrical Engineering), Linköping U., 1996.

[13] R. Kötter, “Fast Generalized Minimum-Distance Decoding of Algebraic-
Geometry and Reed–Solomon Codes,” IEEE Trans. Inform. Theory, vol. 42,
no. 3, pp. 721–736, May 1996.

[14] R. Kötter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed–Solomon
Codes,” submitted to IEEE Trans. Inform. Theory, preprint dated May 31, 2000,
and preprint dated August 31, 2001.

[15] J. L. Massey, “Shift-Register Synthesis and BCH Decoding,” IEEE Trans. In-
form. Theory, vol. 15, no. 1, pp. 122–127, January 1969.

[16] R. J. McEliece, The Theory of Information and Coding, 2nd ed. Cambridge,
England: Cambridge U. Press, 2002.

[17] R. J. McEliece and L. Swanson, “On the Decoder Error Probability for Reed–
Solomon Codes,” IEEE Trans. Inform. Theory, vol. IT-32, no. 5, pp. 701–703,
September 1986.

42

[18] W. H. Mills, “Continued Fractions and Linear Recurrences,” Mathematics of
Computation, vol. 29, no. 129, pp. 173–180, January 1975.

[19] R. Nielsen and T. Hoeholdt, “Decoding Reed–Solomon Codes beyond Half the
Minimum Distance,” in Cryptography and Related Areas, J. Buchmann, T. Hoe-
holdt, H. Stichenoth, and H. Tapia-Recillas, eds., Springer-Verlag, pp. 221–236,
2000.

[20] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,”
J. Soc. Industrial Appl. Math., vol. 8, pp. 300–304, 1960.

[21] R. Roth and G. Ruckenstein, “Efficient Decoding of Reed–Solomon Codes be-
yond Half the Minimum Distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1,
pp. 246–257, January 2000.

[22] C. E. Shannon, The Mathematical Theory of Communication, Urbana Illinois:
University of Illinois Press, 1949.

[23] M. Sudan, “Decoding of Reed–Solomon Codes beyond the Error-Correction
Bound,” J. Complexity, vol. 13, pp. 180–193, 1997.

[24] L. R. Welch and E. R. Berlekamp, “Error Correction for Algebraic Block Codes,”
U.S. Patent no. 4,633,470, December 30, 1986.

[25] L. R. Welch and R. A. Scholtz, “Continued Fractions and Berlekamp’s Algo-
rithm,” IEEE Trans. Inform. Theory, vol. 25, no. 1, pp. 19–27, January 1979.

43

Appendix A

The Function F (x) and the Numbers Km

In this appendix, we collect for reference a number of technical results that are needed in order to give
precise descriptions of various parameters associated with the GS(m)-decoder.

I. The Function F (x)

In this subsection, we collect for reference the important properties of the function F (x), defined for
x ≥ 0 by

F (x) �=
1
2
(
x2 + x + f(x)

)
(A-1)

where

f(x) �= {x}
(
1 − {x}

)
(A-2)

and {x} denotes the fractional part of x, i.e., {x} = x−	x
. As we will see below, Eq. (A-5), the function
F (x) is piecewise linear and its graph consists of a sequence of chords connecting the points

{
(0, 0), (1, 1), (2, 3), (3, 6), · · · ,

(
m,

(
m + 1

2

))
, · · ·

}
as shown in Fig. A-1.

1

2

3

4

5

6

0.5 1.0 1.5 2.0 2.5 3.0

F (x)

(x
2 + x)/2

Fig. A-1. The functions F (x) and
(x 2 + x) / 2, 0 £ x £ 3.

44

Of course the reason F (x) interests us is Corollary 1:

A(K, v) = vF

(
K

v

)
(A-3)

Here are the important properties of F (x).

Theorem A-1. F (x) has the following properties.

1
2
(
x2 + x

)
≤ F (x) ≤ 1

2
(x + 1/2)2 , for all x > 0 (A-4)

F (x) = mx −
(

m

2

)
, for m − 1 ≤ x ≤ m (A-5)

F ′(x) = �x�, if x /∈ N (A-6)

F (x) ≥ mx −
(

m

2

)
, for all m ≥ 1 (A-7)

F (x) ≤ m + 1
2m

x2, for x ≥ m (A-8)

F (mx) ≤ m

m + 2
F

(
(m + 1)x

)
, if x ≥ 1 (A-9)

Proof of Eq. (A-4). These inequalities follow immediately from Definition (A-1) and the observation
that 0 ≤ f(x) ≤ 1/4. ❐

Proof of Eq. (A-5). This follows from Definition (A-1) and the observation that m − 1 ≤ x ≤ m
implies {x}(1 − {x}) = (x − m + 1)(m − x) = −x2 + (2m − 1)x − m(m − 1), so F (x) = (1/2)(x2 + x −
x2 + (2m − 1)x − m(m − 1)) = mx − m(m − 1)/2. ❐

Proof of Eq. (A-6). This follows immediately from Eq. (A-5). ❐

Proof of Eq. (A-7). This follows from Eq. (A-5) and the fact that F (x) is convex ∪. ❐

Proof of Eq. (A-8). If m and m′ are positive integers, define

Pm,m′(x) �= (m′ + 1)x −
(

m′ + 1
2

)
− m + 1

2m
x2 (A-10)

Note that Pm,m′(0) = −
(
m′+1

2

)
< 0. The discriminant of Pm,m′(x) is

∆m,m′ =
m′ + 1

m
(m − m′)

45

which is ≤0 if m′ ≥ m. Hence, if m′ ≥ m, Pm,m′(x) never changes sign and therefore must be ≤0 for
all x. But by Eq. (A-5), Pm,m′(x) = F (x) − ([m + 1]/2m)x2 for m′ ≤ x ≤ m′ + 1. ❐

Proof of Eq. (A-9). We have, by routine algebra,

(m + 2)F (mx) − mF
(
(m + 1)x

)
=

m

2

(
x − x2 +

m + 2
m

f(mx) − f
(
(m + 1)x

))

where f(x) is as defined in Eq. (A-2). Thus, Eq. (A-9) is equivalent to

Fm(x) ≤ x2 − x for x ≥ 1 (A-11)

where

Fm(x) �=
(

1 +
2
m

)
f(mx) − f

(
(m + 1)x

)
(A-12)

Since the function Fm(x) is periodic of period 1, Eq. (A-11) is equivalent to

Fm(x) ≤ (x + 1)2 − (x + 1) = x2 + x for x ≥ 0 (A-13)

as illustrated in Fig. A-2. To prove Eq. (A-13), we need a lemma.

Lemma A-1. Fm(x) satisfies the following (see Fig. A-3):

−f(x) ≤ Fm(x) ≤ (1 + 2/m) f(x) for x ≥ 0 (A-14)

Fm(x) = (x + 1)x for 0 ≤ x ≤ 1/(m + 1) (A-15)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0.5 1.0 1.5 2.00.0

F4 (x)

x
2 + x

Fig. A-2. The functions F4 (x), x 2 + x , and x 2 - x, 0 £ x £ 2.

x
2 - x

46

0.5

-0.1

0.5 1.0 1.5 2.00.0

-f (x)

x
2 + x

Fig. A-3. The function F4 (x) , and friends, 0 £ x £ 2.

0.4

0.3

0.2

0.1

0.0

-0.2

(6/4) f (x)

Proof. A tedious exercise in algebra yields the following: For x ∈ [k/m, (k + 1)/(m + 1)], k =
0, · · · , m − 1:

mFm(x) = mx2 + m(2k + 1)x − 2k(k + 1) (A-16)

mFm(x) − (m + 2)f(x) = 2
(
(m + 1)x − (k + 1)

)
(x + k) (A-17)

mFm(x) + mf(x) = 2(mx − k)(k + 1) (A-18)

and for x ∈ [k/(m + 1), k/m], k = 1, · · · , m:

mFm(x) = mx2 − (2m2 − 2km + 3m)x + 2k(m − k + 1) (A-19)

mFm(x) − (m + 2)f(x) = 2
(
(m + 1)x − k

)(
x − (m − k + 1)

)
(A-20)

mFm(x) + mf(x) = − 2(mx − k)(m − k + 1) (A-21)

Note that Eq. (A-15) follows immediately from Eq. (A-16) if we let k = 0. To prove Eq. (A-14), we
consider two cases:

Case A-1: x ∈ [k/m, (k + 1)/(m + 1)], for k = 0, · · · , m − 1. Here the right side of Eq. (A-17) is
negative, which proves the right inequality of Eq. (A-14). On the other hand, the right side of Eq. (A-18)
is positive, which proves the left inequality of Eq. (A-14).

Case A-2: x ∈ [k/(m + 1), k/m], for k = 1, · · · , m. Here the right side of Eq. (A-20) is negative, which
proves the right inequality of Eq. (A-14). On the other hand, the right side of Eq. (A-21) is positive,
which proves the left inequality of Eq. (A-14).

47

Finally,

Fm(x)
(A-15)

= x2 + x for 0 ≤ x ≤ 1
m + 1

(A-14)
≤ (1 + 2/m) f(x) < x2 + x for x >

1
m + 1

which completes the proof of Eq. (A-13) and therefore Eq. (A-9). ❐

II. The Numbers Km

The GS(m)-decoder for an (n, k = v+1) RS code is guaranteed to correct any pattern of up to t errors
if there exists a positive integer D such that14

m(n − t) ≥ D

n

(
m + 1

2

)
< A(D, v)

 (A-22)

which is equivalent to the condition

A
(
m(n − t), v

)
> n

(
m + 1

2

)
(A-23)

Using K (for “Korrect,” or “Koradius”) for n − t, an equivalent statement is that K correct received
symbols are sufficient to guarantee that GS(m) can identify the transmitted codeword if

A(mK, v) > n

(
m + 1

2

)
(A-24)

Now define for 1 ≤ v < n,

K0
�=

⌈
n + v + 1

2

⌉
(A-25)

Km
�= min

{
K : A(mK, v) > n

(
m + 1

2

)}
for m ≥ 1 (A-26)

K∞
�=

⌊√
vn

⌋
+ 1

(
(K∞ − 1)2 ≤ vn < K2

∞

)
(A-27)

The most important properties of the sequence K0, K1, · · · , Km, · · · , K∞ are given in the following theo-
rem. We might summarize these properties as follows:

14 Here D = 1 + deg1,v Q(x, y).

48

K0 (Conventional decoder)
≥ K1 (Sudan decoder)
...
≥ Km (GS decoder with interpolation multiplicity m)
...
= K∞ (Most powerful, most complex GS decoder)

Theorem A-2.

K0 ≥ K∞ ≥ v + 1 (A-28)

K0 ≥ K1 (A-29)

Km ≥ K∞ if m ≥ 1 (A-30)

Km ≥ Km+1 if m ≥ 1 (A-31)

Km = K∞ for all sufficiently large m (A-32)

Proof of Eq. (A-28). First note that, if x and y are real numbers,

x > y implies �x� ≥ 	y
 + 1 (A-33)

Now by the arithmetic-geometric inequality,

n + v + 1
2

≥
√

(v + 1)n >
√

vn (A-34)

Combining Eq. (A-34) with Eq. (A-33), we get Eq. (A-28). ❐

Proof of Eq. (A-29). Since K1 is defined in Eq. (A-26) as the least integer K such that A(K, v) > n,
it is sufficient to show that A(K0, v) > n. But

A(K0, v)
(A-3)
= vF (K0/v)

(A-7)m=2≥ v (2K0/v − 1) = 2K0 − v
(A-25)
≥ n + 1

❐
Proof of Eq. (A-30). We will show that for all m ≥ 1,

A
(
m(K∞ − 1), v

)
≤ n

(
m + 1

2

)
(A-35)

which implies Km ≥ K∞ for all m ≥ 1. Here we go:

49

A
(
m(K∞ − 1), v

) (A-3)
= vF

(
m

K∞ − 1
v

)
(A-8)
≤ v

m + 1
2m

m2 (K∞ − 1)2

v2

(
since m(K∞ − 1)/v ≥ m by Eq. (A-28)

)
≤ n

(
m + 1

2

) (
since (K∞ − 1)2 ≤ vn by Eq. (A-27)

)
❐

Proof of Eq. (A-31).

n

(
m + 1

2

)
(A-26)

< A(mKm, v)

(A-3)
= vF (mKm/v)

(A-9)
≤ v

m

m + 2
F

(
(m + 1)Km/v

)
(using Km ≥ v + 1)

(A-3)
=

m

m + 2
A

(
(m + 1)Km, v

)
Thus,

A
(
(m + 1)Km, v

)
> n

(
m + 1

2

)
m + 2

m
= n

(
m + 2

2

)

which implies [see Eq. (A-26)] that Km+1 ≤ Km. ❐

Proof of Eq. (A-32). We need to show that, for all sufficiently large m,

A(mK∞, v) > n

(
m + 1

2

)
(A-36)

We have

A(mK∞, v)
(A-3)
= vF

(
mK∞

v

)
(A-4)
>

m2K2
∞

2v
= n

(
m + 1

2

) {
m

m + 1
K2

∞
vn

}

which proves that Eq. (A-36) holds for (m/[m + 1])(K2
∞/vn) > 1, i.e.,

m >

(
K2

∞
vn

− 1
)−1

❐

50

Appendix B

Decoding when Erasures are Present

In this appendix, we briefly discuss the modifications necessary in the GS(m)-algorithm if erasures
are present in the garbled codeword.

Suppose the codeword suffers e erasures, which for notational convenience we assume are in positions
n − e + 1, · · · , n. Then the received word is (β1, · · · , βn−e, ∗, ∗, · · · , ∗). In this case, the GS(m) decoder
constructs a polynomial with a zero of multiplicity m at each of the n−e points (α1, β1), · · · , (αn−e, βn−e).
It is then easy to show that the list of y-roots of Q(x, y) will contain every codeword that agrees with the
transmitted codeword in at least Km(n − e, k) of the unerased positions. Hence, we have the following.

Theorem B-1. For an (n, k) RS code, the GS(m) decoder will correct any pattern of e erasures and
t errors, provided

e ≤ n − k

and

t ≤ tm(n − e, k)

Conventionally, of course,

e ≤ n − k

and

t ≤
⌊

(n − k − e)
2

⌋

Thus, for example, for the GS(∞)-decoder, the “achievable pairs” are

P∞(n, k)
(A-27)

=
{

(e, t) :
(n − e − t)2

n − e
> k − 1

}

versus the conventional

P0 =
{
(e, t) : n − e − 2t > k − 1

}
Sanity check:

(n − e − 2t) =
(n − e − t) + t

n − e

(
(n − e − t) − t

)
=

(n − e − t)2 − t2

n − e
≤ (n − e − t)2

n − e

51

The relative sizes of these regions is illustrated in Fig. B-1.

Example B-1. For the (32, 8) RS code over GF (32), if the codeword suffers e erasures, the following
table shows how many errors also can be corrected, if (1) conventional decoding; (2) a GS(3) decoder;
and (3) a GS(∞) decoder is used.

e : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
t0 : 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
t3 : 15 15 14 13 12 12 11 10 10 9 8 8 7 6 6 5 4 4 3 3 2 1 1 0 0

tGS : 17 16 15 14 13 13 12 11 11 10 9 8 8 7 6 6 5 5 4 3 2 2 1 1 0

e

Fig. B-1. Combined erasure, e , and error, t , correction,
conventional and GS (•).

n - k

(n - k) / 2

n - (v n)1/ 2

t

52

Appendix C

A GS-Type Conventional RS Decoding Algorithm

If Kötter’s interpolation algorithm is specialized to m = 1 and L = 1, the result is an algorithm that
can be used as an RS decoding algorithm in the conventional sense. (A similar observation was made in
[21].) In the following pseudocode, (β1, · · · , βn) is a noisy codeword from an (n, k) RS code consisting of
all codewords of the form

(
f(α1), · · · f(αn)

)
, where (α1, . . . , αn) is a list of n distinct elements of F , and

f(x) ∈ Fk−1[x]. This algorithm involves no syndrome calculation or error value/location evaluation.

/* An O(n2) GS-like RS Decoding Algorithm */

BEGIN (Given {(αi, βi)}n
i=1, (1, k − 1)-revlex order)

1. g0(x, y) := 1; δ0 = 0.

2. g1(x, y) := y; δ1 = k − 1.

3. FOR i = 1 to n DO

4. FOR j = 0 to 1 DO

5. ∆j := gj(αi, βi) /* jth discrepancy */

6. J := {j : ∆j �= 0}
7. If J �= 0/

8. j∗ := argmin {gj : j ∈ J}
9. f := gj∗; ∆ := ∆j∗

10. FOR j ∈ J DO

11. IF (j �= J∗)
12. gj := ∆gj − ∆j f

13. ELSE IF (j = J∗)
14. gj := (x − αi)gj

15. δj := δj + 1 /* (1, k − 1)-deg increases by 1 */

16. Q(x, y) := minj{gj(x, y)} = P1(x)y − P0(x)

17. f(x) rem r(x) := P0(x) ÷ P1(x)

18. IF r(x) == 0 and deg f(x) ≤ k − 1

19. Print “transmitted codeword was f(x)”

20. ELSE

21. Print “uncorrectable error pattern”

END

53

Example C-1. Consider a (5,2) RS code over F = GF (5), which is conventionally capable of
correcting 1 error. Suppose we are given

i : 1 2 3 4 5
αi : 0 1 2 3 4
βi : 1 3 3 2 4

(Here D(2x + 1, β) = 1.) The following table shows how the algorithm proceeds.

i
(
αi, βi

)
g0(x, y) g1(x, y)

0 — 1 y

1 (0,1) x y + 4

2 (1,3) x2 + 4x y + 3x + 4

3 (2,3) 3y + 3x2 + x + 2 y(x + 3) + (3x2 + 3x + 2)

4 (3,2) y(3x + 1) + (3x3 + 2x2 + 4x + 4) y(x + 3) + (3x2 + 3x + 2)

5 (4,4) y(3x2 + 4x + 1) + (3x4 + x2 + 3x + 4) y(x + 3) + (3x2 + 3x + 2)

Hence, Q(x, y) = g1(x, y) = y(x + 3)− (2x2 + 2x + 3), f(x) = 2x + 1, r(x) = 0, so the decoder’s output is
2x + 1, which indeed produces a codeword that differs from the received word in only one position, viz.,
i = 3. (Interestingly, if g0(x, y) is taken instead, f(x) = 4x2 + 3x + 1 results, with D(f, β) = 2.)

Example C-2. Consider the same (5, 2) RS code over F = GF (5), but now we are given

i : 1 2 3 4 5
αi : 0 1 2 3 4
βi : 1 3 3 3 4

(Here D(2x + 1, β) = 2.) The following table shows how the algorithm proceeds.

i
(
αi, βi

)
g0(x, y) g1(x, y)

0 — 1 y

1 (0,1) x y + 4

2 (1,3) x2 + 4x y + 3x + 4

3 (2,3) 3y + 3x2 + x + 2 y(x + 3) + (3x2 + 3x + 2)

4 (3,3) y(3x + 1) + (3x3 + 2x2 + 4x + 4) xy + 2x

5 (4,4) y(x + 4) + (2x3 + 3x2 + 4x + 1) y(x2 + x) + (2x2 + 2x)

Hence, Q(x, y) = g0(x, y) = y(x + 4) − (3x3 + 2x2 + x + 4), f(x) = 3x2 + 1, r(x) = 0, so the decoder’s
output is “uncorrectable error pattern,” even though D(f, β) = 1. (Interestingly, if Q(x, y) is chosen to
be g1(x, y) instead, f(x) = 3, which has D(f, β) = 2, is output.)

54

A mathematical discussion of the algorithm’s behavior follows. We introduce the notation

∆0(n, k) =
⌈

n + k

2

⌉
− 1

∆1(n, k) =
⌊

n − k

2

⌋

and

K(f ;β) = |{i : f(αi) = βi}| (agreements)

D(f ;β) = |{i : f(αi) �= βi}| (disagreements)

Lemma C-1.

∆0(n, k) + ∆1(n, k) = n − 1 (C-1)

k − 1 ≤ ∆0(n, k) − ∆1(n, k) ≤ k (C-2)

Lemma C-2. y − f(x) divides Q(x, y) = P1(x)y − P0(x) if and only if P1(x) |P0(x), in which case
f(x) = P0(x)/P1(x).

Theorem C-1. This algorithm will return a polynomial Q(x, y) = yP1(x)−P0(x) with deg P0(x) ≤ ∆0

and deg P1(x) ≤ ∆1.

Proof. The polynomial Q(x, y) must satisfy the n constraints Q(αi, βi) = 0, for i = 1, · · · , n. Thus,
Q(x, y) will be a linear combination of the first n + 1 monomials from FL[x, y] in (1, k − 1)-revlex order.
By Eq. (C-1), there are ∆0 + ∆1 + 2 = n + 1 monomials in the sets

{
1, x, · · · , x∆0

}
and

{
y, xy, · · · , x∆1y

}
and these are the first n + 1 monomials from F [x, y(1)] in (1, k − 1)-revlex order, since x∆0+1 > x∆1y by
the left side of Eq. (C-2) and x∆1+1y > x∆0 by the right side of Eq. (C-2). ❐

Theorem C-2. The algorithm returns f(x) if and only if f(x) ∈ Fk−1[x] and D(f ;β) ≤ ∆1(n, k) =
	(n − k)/2
. If there is no such f(x), it prints “uncorrectable error pattern.”

Proof. (Only if.) Suppose that the algorithm returns f(x), i.e., f(x) ∈ Fk−1[x] and y − f(x) divides
Q(x, y). By Lemma C-2, y − f(x) divides Q(x, y) = P1(x)y − P0(x) if and only if f(x) = P0(x)/P1(x).
This algorithm, as a special case of Kötter’s algorithm, guarantees that

55

Q(αi, βi) = P1(αi)βi − P0(αi) = 0 for i = 1, · · · , n

Thus, if P1(αi) �= 0, we have

βi =
P0(αi)
P1(αi)

= f(αi) (C-3)

But since deg P1(x) ≤ ∆1, there can be at most ∆1 exceptions to Eq. (C-3), i.e., D(f ;β) ≤ ∆1 =
	(n − k)/2
.

(If.) Suppose f(x) ∈ Fk−1[x] and D(f ;β) ≤ 	(n − k)/2
. By Theorem C-1 and Eq. (C-2),

deg1,k−1 Q(x, y) ≤ max
(
∆1 + (k − 1),∆0

)
≤ ∆0

It follows from Theorem 7 that, if the score of f(x) exceeds ∆0, then y − f(x) divides Q(x, y). But in
this case, the score of f(x) is

S1(f) = K(f ;β) = n − D(f ;β)

so that y − f(x) divides Q(x, y) provided D(f ;β) ≤ n − ∆0 − 1. But

n − ∆0 − 1 = n −
⌈

(n + k)
2

⌉
=

⌊
(n − k)

2

⌋

❐

56

Appendix D

The Average Size of the List

Technically, the GS decoding algorithm is a “list” decoder, i.e., the decoder’s output is a list of
candidate codewords. In this appendix, we will show that, for the GS decoder, the list is unlikely to
contain more than one codeword. (The only previous work on this topic we are aware of is [19], which
presents an upper bound on the probability of having more than one codeword on the list. However, the
expression obtained is difficult to evaluate and appears to provide little insight.)

We have seen that the GS(m) decoding algorithm returns a list that is guaranteed to include all
codewords within distance tm of the received word. Let us denote by L the number of such codewords;
L is a random variable that depends on the channel noise. We have seen that in the worst case L cannot
exceed Lm, defined in Eqs. (42) and (45) and closely bounded above by

Lm <

(
m +

1
2

) √
n

k − 1

But what about the average number of codewords on the list? If the number of channel errors is tm
or less, the causal codeword will certainly be on the list. Let us take the presence of the causal codeword
for granted and consider the average number of noncausal codewords on the list. To do this, we need to
explore the combinatorics of RS codes a bit.

Thus, let C be an (n, k) RS code over GF (q), with redundancy r = n − k and minimum distance
d = n− k + 1. Let C∗ be the set of nonzero codewords, and let E be an arbitrary vector of length n over
GF (q). We make the following definitions:

f(E, t) = |{C ∈ C∗ : |E − C| ≤ t}| (D-1)

D(u, t) =
∑

|E|=u

f(E, t) (D-2)

The interpretation is this. If (0, · · · , 0) is the transmitted codeword, and E is received, f(E, t) represents
the number of nonzero codewords with distance t or less from E. If f(E, t) = m, we say that E is m-tuply
falsely decodable. By linearity, if C is the transmitted codeword, and E is the error pattern, f(E, t) is
also the number of noncausal codewords at distance ≤t from the received word R = C +E. Thus, D(u, t)
is the total number of falsely decodable words of weight u, where an m-tuply falsely decodable word is
counted m times.

Theorem D-1. Consider a bounded distance decoder with decoding radius t. If |E| = u, then the
average number of noncausal codewords (averaged over all error patterns of weight u) in the decoding
sphere is given by

L(u, t) =
D(u, t)(

n
u

)
(q − 1)u

(D-3)

If P (u, t) denotes the probability that there exists at least one noncausal codeword within distance t of the
received word R,

57

P (u, t) ≤ L(u, t) for all u and t (D-4)

P (u, t) = L(u, t) if 2t ≤ r (D-5)

Proof. If E is the error pattern, then the number of noncausal codewords at distance t or less from R
is, by definition, f(E, t). Since there are

(
n
u

)
(q − 1)u error patterns of weight u, the average of f(E, t)

over all error patterns of weight u is

∑
E:|E|=u f(E, t)(

n
u

)
(q − 1)u

=
D(u, t)(

n
u

)
(q − 1)u

which proves Eq. (D-3). To prove Eqs. (D-4) and (D-5), we note that if X is a random variable assuming
nonnegative integer values, and pi = Pr{X = i}, then

Pr{X > 0} =
∑
i≥1

pi ≤
∑
i≥1

ipi = E(X)

with equality iff Pr{X ≥ 2} = 0. If X represents the number of noncausal codewords within distance t
of R, the above inequality is equivalent to Eq. (D-4). To prove Eq. (D-5), we note that, if 2t ≤ r, it is
impossible for a sphere of radius t to contain two or more codewords, i.e., Pr{X ≥ 2} = 0. ❐

Theorem D-1 tells that, to compute the average number of noncausal codewords within distance t
of R, it is enough to know the numbers D(u, t). Fortunately, several previous authors have considered
these numbers.15 Of course we know from prehistory that

D(u, t) = 0 if u + t ≤ r = d − 1 (D-6)

Less trivially, in 1978 Berlekamp and Ramsey [3] proved that

L(u, t) =
1

(q − 1)u−1

(
n − u

t

)
if u + t = r + 1 = d (D-7)

In 1986, McEliece and Swanson [17] proved that for all (u, t),

L(u, t) ≤ L1(u, t) :=
1

(q − 1)r

t∑
s=d−u

(q − 1)s

{
s∑

w=d−u

(
n − u

w

)(
u

s − w

)}
(D-8)

≤ L2(u, t) :=
1

(q − 1)r

t∑
s=d−u

(q − 1)s

(
n

s

)
(D-9)

15 The articles [3], [17], and [5] predate GS and ostensibly apply only to the “conventional” case t ≤ r/2. However, a close
inspection of the proofs shows that the formulas for D(u, t) are valid even if t > r/2, provided the definition of D(u, t) is
modified to include multiple erroneous decodings.

58

≤ L0(t) :=
1

(q − 1)r

t∑
s=0

(q − 1)s

(
n

s

)
(D-10)

Finally, in 1989 Cheung [5] gave an exact closed-from expression for D(u, t) that is suitable for nu-
merical calculations but is too complex to reproduce here. However, numerical experimentation with
Cheung’s formula indicates that the maximum value of L(u, t), for u ≥ r + 1 − t, is just a hair’s breadth
larger than

L(t) =
(q − 1)r

qr
L0(t) =

1
qr

t∑
s=0

(
n

s

)
(q − 1)s (D-11)

which is the average number of codewords in a randomly selected Hamming sphere of radius t.

Example D-1. (Cf. Example 4). Let (n, k) = (31, 15) with q = 32. Then t0 = 8 and tGS = 10. If
we take m = 3, tm = 9, and use Cheung’s formula [5] to find the exact values of L(u), and Eqs. (D-8)
and (D-9), to get the more easily computed upper bounds L1(u, t) and L2(u, t), we obtain the following
table. (By way of comparison, L(9) = 0.000446534, which is indeed just a hair’s breadth smaller than
the maximum value of L(u, 9), viz., L(15, 9) = 0.000446693.)

u L(u, 9) L1(u, 9) L2(u, 9) L0(9)

≤7 0 0 0 0.000742107

8 0.000029702 0.000029702 0.000732758 0.000742107

9 0.000110353 0.000123059 0.000742007 0.000742107

10 0.000223257 0.000276441 0.000742106 0.000742107

11 0.000328446 0.000447558 0.000742107 0.000742107

12 0.000398966 0.000589304 0.000742107 0.000742107

13 0.000433257 0.000679193 0.000742107 0.000742107

14 0.000444652 0.000722651 0.000742107 0.000742107

15 0.000446693 0.000738051 0.000742107 0.000742107

16 0.000446618 0.000741676 0.000742107 0.000742107

17 0.000446524 0.000742107 0.000742107 0.000742107

↓ ↓ ↓ ↓
0.000446534 0.000742107 0.000742107 0.000742107

If we assume the decoder declares “success” if the list contains exactly one codeword, and failure otherwise,
then

Pr{decoder failure|≤ 7 errors} = 0

Pr{decoder failure|8 errors} = 0.000029702

Pr{decoder failure|9 errors} = 0.000110353

Pr{decoder failure|≥ 10 errors} = 1

59

whereas a (conventional t = 8) decoder for this code would have

Pr{decoder failure|≤ 7 errors} = 0

Pr{decoder failure|8 errors} = 0

Pr{decoder failure|9 errors} = 1

Pr{decoder failure|≥ 10 errors} = 1

In view of these numbers, it is indeed fair to say that the GS(3) decoding algorithm can correct 9 errors.

60

