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Increasing Tracking Bandwidth for Deep-Space
Optical Communications Using

Linear Accelerometers
S. Lee,1 G. G. Ortiz,1 W. Liu,1 and V. Garkanian1

In deep-space optical communications, acquisition, tracking, and pointing are
all challenging because of the stringent—on the order of submicroradian—pointing
requirement. To achieve this level of pointing accuracy, one must maintain high-
bandwidth tracking control. Feasible tracking sources (beacons) include uplink laser
beams and celestial objects such as the Earth, Moon, and stars. However, these
tracking sources do not all provide the kilohertz tracking rate needed for pointing in
deep space. One approach to enable a high tracking rate is to augment the tracking
loop with inertial sensors to estimate high-frequency beacon movements. In this
article, we discuss the use of linear accelerometers, mounted in a configuration
to measure angular displacement, to achieve high-bandwidth tracking with dim
beacon sources. The advantages of linear accelerometers (or angular accelerometers)
are their low cost, high bandwidth, and small size compared with other inertial
sensors such as gyros. Simulation and experimental results show good agreement.
A tracking bandwidth increase of 11 times is demonstrated.

I. Introduction

High-data-rate, narrow-beam optical communication imposes the challenge of pointing a downlink
beam to a fraction of the beam divergence, typically submicroradian in jitter and bias. This, in turn, re-
quires a reference optical source, a beacon that can be used as a reference for closed-loop tracking/pointing
control. In the past, acquisition, tracking, and pointing (ATP) system design required a beacon-tracking
rate of several kilohertz to maintain the link properly. The required tracking rate depends on the platform
vibration amplitude and frequency contents. A typical tracking source has been a laser beacon, especially
for short-range optical communications such as intersatellite optical links [7].

However, the kilohertz beacon-tracking rate is not readily available in most deep-space applications
due to the long range that limits beacon energy collected at the spacecraft telescope. This is true
even for Earth-image-based tracking and star tracking [2]. The challenge is to achieve high-rate beacon
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tracking, even with low-rate beacon centroid measurements, that is, to estimate accurately the relative
beacon position movements between the measured beacon centroids. In the past, similar problems were
addressed with the use of inertial sensors: spacecraft attitude control using star trackers and gyros [4], and
(in the case of the Hubble telescope) pointing using star trackers and various inertial sensors [8]. Although
these applications are slightly different, the underlying principle is identical. Since the downlink target
is moving very slowly in inertial space, all high-frequency motions come from the spacecraft. The high-
frequency movements of the beacon relative to the target can be deduced from the measurements of the
source (platform) vibrations that cause movements of the reference beacon (either laser beacon or celestial
objects) on a charge-coupled device (CCD) array. If the error between the true and the estimated beacon
positions is smaller than the error budget, a fast tracking rate can be maintained. Implementation of this
concept requires accurate high-bandwidth inertial sensors. Among the possible inertial sensors are angular
rate sensors, angle displacement sensors, gyros, and angular and linear accelerometers. Because of the low
cost of linear accelerometers, as well as their accuracy over high bandwidth, small size, and availability,
we chose to investigate their implementation in our research. This choice requires double integration for
the position estimation from acceleration measurements. Furthermore, linear accelerometers are not as
sensitive to low-frequency vibration as are gyros, a feature that limits their usage in the case of very
low beacon intensity. However, previous use of linear accelerometers suggests their promise in a range
of ATP applications. Linear accelerometers have been used successfully, for example, in the line-of-sight
stabilization of a gimbaled imaging sensor suite [3] and in measuring the rotational and translational
acceleration of a rigid body [1]. For deep-space optical communications, we sought to demonstrate that
linear accelerometers could be used for beam pointing and control as well as for line-of-sight stabilization
and for measuring the movement of a single body. For the double integration of accelerations to estimate
displacements, some problems and solutions for zero-mean displacement signals have been addressed [5,6].

Having defined in this introduction the tracking and pointing problem to be addressed, we describe in
the following how we estimated angular position using the triangular configuration of three accelerome-
ters. Appendix A supplements this discussion by presenting the trapezoidal method of measuring linear
displacements by means of a double integration of linear accelerations. For purposes of double integration,
we needed to estimate initial platform linear velocity and to correct any potential acceleration bias due
to misalignment of the accelerometers. For both operations, we used the least-squares method (described
in Appendix B). We chose the least-squares approach primarily for ease of implementation, since we had
not yet developed noise models for the platform. In the body of the article, we continue by describing the
angular position estimation algorithm (APEA) that we devised, illustrated with a block diagram show-
ing the major signal flows. In Appendix C, we provide an analysis of position estimation error. In the
article proper, we continue by describing the baseline accelerometer configuration used for simulations.
We then present the angular position estimates and corresponding errors resulting from both the ideal
and measured accelerations. Finally, we summarize and discuss the performance of the APEA.

II. Beacon Position Estimation

The key issue in high-bandwidth tracking is the availability of beacon centroids at high rate. Given
the limited beacon intensity in deep space (thus, small number of beacon centroids available) and the fact
that the beacon movements are caused by spacecraft vibration, it is essential to be able to estimate the
beacon centroids (or movements) at times when the beacon centroids are not available. In this section,
we give the three-accelerometer configuration for the two angular position estimations and describe the
algorithm used. Detailed treatments of the trapezoidal method for the linear displacement estimation,
initial velocity/acceleration bias estimation, and random error analysis are given in the appendices.

A. Triangular Configuration of Three Linear Accelerometers

A pair of accelerometers (A1 and A2 in Fig. 1) can be used to estimate the angular displacement
(or position with initial angular position) of the two-accelerometer body. The angle, θ, can be estimated
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Fig. 1.  A linear accelerometer arranged
to estimate angular displacement.
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from the individual readings of accelerometers, A1 and A2, after converting the accelerations into linear
displacements, d1 and d2, with the small angle assumption:

θ =
d1 − d2

l
(1)

Since the separation, l, is a known measurable constant, θ is determined with the precision of the ac-
celerometers. Linear displacement estimation from the acceleration measurements using the trapezoidal
method is described in detail in Appendix A.

Angular displacements on two axis (α, β) can be obtained using three accelerometers, as shown in
Fig. 2. Let α (horizontal) and β (vertical) be the angular displacements of the x–z plane around the
z-axis and the y–z plane around the y-axis, respectively. A1, A2, and A3 represent three accelerometers,
and d1, d2, and d3 represent the corresponding estimated linear displacements. Then, the two angular
displacements due to the three linear displacements are

α =
d1 − d2

l1

β =

d1 + d2

2
− d3

l2




(2)

where l1 is the separation between A1 and A2, and l2 is the separation between A3 and the middle point
of the line connecting A1 and A2.

Angles at the Nth sample time can be represented, using Eq. (2) and Eq. (C-1) from Appendix C, as

[αN βN ] = B
{
C[D1D2D3]

}T (3)

where
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B =
∣∣∣∣ 1/l1 −1/l1 0

0.5/l2 0.5/l2 −1/l2

∣∣∣∣
C =

[
1, (N − 1)∆t, 1/3∆t2,∆t2/6

]
, N = 2

C =
[
1, (N − 1)∆t, (0.5N − 2/3)∆t2, (N − 2)∆t2, · · · , (N − i)∆t2, · · · ,∆t2,∆t2/6

]
,

N > 2

∆t = sampling interval

Di = [di1vi1ai1ai2, · · · , aiN ]T

di1 = initial position of diN

vi1 = initial velocity of diN

diN = displacement estimation at the Nth sample time from ai
′s

ai1 ai2, · · · , aiN = accelerometer outputs from accelerometer Ai, i = 1, 2, 3

A 1, d 1

A 2, d 2

A 3, d 3

z

y

x

α

β

Fig. 2.  Triangular configuration of three accelerometers.

l 1

l 2

B. Algorithm Description

Figure 3 shows all the major signal flows, from three accelerometer measurements, two angle reference
inputs (beacon centroids), and the final outputs of the two angular position estimates of the APEA.
Additional inputs are reference signals in terms of beacon centroids (x-axis, y-axis). The linear displace-
ment estimator produces three displacement estimates corresponding to the three accelerometer outputs.
Combined with the three initial positions derived from the beacon centroids, three position estimates
(p1, p2, p3) are obtained. These are, in turn, inputs to the initial velocity and acceleration bias estimator.
The details of the initial velocity and acceleration bias estimation using the least-squares method are
described in Appendix B. The estimated initial velocity and acceleration bias are fedback to the linear
displacement estimator to improve the next position estimations. The final angular position estimations

4



Convert to 3
Corresponding
Positions (m)

Initial
Velocity
Guess (m/s)
(i.e., 0 m/s)

Accelerometer Samples (V): A B C

Linear Displacement
Estimator

Initial
Positions (m)

Estimated
Positions (m)

Beacon
Position
(pixels)

x , y

x’

y’

Conversion
to Pixel
Units

p 1

p 2

p 3

p 3p 2p 1

Initial Velocity/
Acceleration Bias
Estimator

Estimated Initial Velocity
Acceleration Bias

(m/s2)

Dimensions of Setup,
pixel-to-m Conversion

Estimated
Beacon
Position
(pixels)

Fig. 3.  APEA block diagram showing major signal flows.

are obtained from the estimated three linear positions, after performing the linear displacement-to-angle
conversion [Eq. (2)]. The rate of celestial reference inputs to the APEA determines the reference reset
period, N . For example, if N = 2, every second beacon position output is an estimation while the other
is the true beacon position. If N = 5, every 5th output is the true beacon position. For this experiment,
we did not do any smoothing over multiple beacon samples due to the noise of the accelerometers.

III. Simulation Results

The three-accelerometer configuration of the experimental setup that was used for the simulation is
shown in Fig. 4. Sinusoidal signals of 1, 10, and 100 Hz for vibration were used with an assumption of
zero measurement noise. The only error sources are the algorithm errors of the APEA. Figures 5 and 6
show the displacement estimation results. As shown, the error increases with both the frequency of the
vibration signal and the reference reset period.

IV. Experimental Results

For the experiment, three accelerometers were mounted around the optical communications terminal,
and the entire setup was placed on the vibration table (Fig. 7). The experimental procedure is as follows.
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(1) Generate the angular spacecraft vibration signal to command the piezo-actuator. In
this experiment, the laboratory-measured Cassini spacecraft vibration [linear accelera-
tion power spectral density (PSD)] was used to derive the angular vibration signal for a
more realistic frequency content of the expected deep-space vibration signal. The am-
plitude of the vibration signal is inversely proportional to the length of the interface
plate of the optical communications terminal. For this experiment, 15 cm was used. The
transformation of linear acceleration into rotational displacements was done following
the procedure in [9].

(2) Command the piezo-actuator to shake the platform vibration table with derived PSD.

(3) Measure the angular motion (reference vibration signal or beacon centroids) using the
optical communications terminal.

(4) Run the angular position estimation algorithm with various reference reset periods.

(5) Compute the angular position estimation error.

The derived vibration signal was sampled with a CCD at a 625-Hz rate. The experiment was done for
reference reset periods of 2, 3, 5, 7, 9, and 11. The beacon position estimation results are given in Fig. 8.
As was indicated in the simulation results, the error is proportional to the frequencies of the vibration
signals. The error also grows for larger reference reset periods (Fig. 9).

ACCELEROMETER

19.050 cm

4.852 cm

CENTER (EQUAL DISTANCE TO EACH ACCELEROMETER)

10.688 cm

10.795 cm

PIVOT

 A 1

ACCELEROMETER

 A 2

ACCELEROMETER  A 3

26.336 cm

Fig. 4.  Dimensions of the separations between three accelerometers, mounted on the
optical communications terminal shown in Fig. 7 for the experimental setup.
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Fig. 5.  Simulation results for the reference period of 5:  (a) 1-Hz
sine wave, (b) 10-Hz sine wave, and (c) 100-Hz sine wave.  The esti-
mation error increases with the frequencies of the vibration signals.
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Fig. 6.  Angular position estimation error as a function of reference reset periods for
sinusoidal signals of 1, 10, and 100 Hz.  The error is proportional to both the reference
reset period and frequencies of the underlying vibration signals.

Fig. 7.  The experimental setup. Three accelerometers were mounted around the
optical communications terminal, and the entire terminal was placed on the
vibration table.  The piezo-actuator underneath was commanded to shake the
vibration table with the generated vibration signal.
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Fig. 8.  Experimental results for reference periods of (a) 2, (b) 5, and
(c) 9.  As was shown in the simulation results, the larger error is
noticeable for larger reset periods.
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Fig. 9.  Comparison of the experimental result  with the simulation result.  The
measured vibration on the CCD of the optical communications terminal was
used for the simulation with an assumption of zero noise in the acceleration
data.  Overall estimation (rms) errors match between the two results; however,
the reason why the experimental result is better than the simulation after a ref-
erence reset period of 5 requires further analysis.
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V. Discussion

Overall, the simulation and experimental results matched closely. The better results of the simulation
than those of the experiment after the reference reset period of 5 are somewhat unexpected and need
further analysis to explain. The amplitude of the vibration signal shown in Fig. 8 is about ±10 pixels
(or 36.1 µrad). The resulting angular position error is about 1 pixel (or 3.61 µrad) for the reference reset
period of 11 (Fig. 9). Since the estimation error is directly proportional to the amplitude of the vibration
signal, the desired submicroradian pointing is achievable for the deep-space optical communications if the
spacecraft vibration can be suppressed below a certain threshold. The threshold depends on the amplitude
and frequency contents of the specific spacecraft vibration. For our experiment, about one-third of the
given vibration amplitude, or ±12 µrad, would give microradian-level error in angular position estimation
for the reference reset period of 11, as an example. This would increase beacon tracking bandwidth by
11 times. Therefore, tracking bandwidth of 1 kHz can be achieved with a beacon tracking rate of 91 Hz.
In terms of platform vibration in deep space, the question whether the vibration signal used for our
experiment represents the deep-space spacecraft needs to be answered in the future since there are no
measured deep-space data currently available to compare. Given the fact that the used angular vibration
signal is similar to that of the OLYMPUS spacecraft (a large Earth-orbiting satellite with solar arrays,
launched in 1994), we believe that lower vibration is achievable for the deep-space spacecraft with much
improved vibration-isolation technologies.

VI. Summary

We have presented an angular position estimation algorithm with error analysis, simulation, and
experimental results. The concept of using linear accelerometers to increase the tracking bandwidth can
be applied for deep-space optical communications tracking and pointing with a trade-off for the additional
error in the beacon position estimations. Our simulation and experimental results showed good agreement
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in the beacon position estimations with the various reference reset periods. The results also showed that
the estimation error is proportional to both the reference reset period and the frequencies of the vibration
signals.
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Appendix A

Linear Displacement Estimation—Double
Integration Using the Trapezoidal

Method

We assume that the spacecraft experiences the continuous acceleration represented as an acceleration
function (a(t)). The a(t) is sampled at a fixed rate, producing the samples denoted as aN for its Nth
sample, taken at time TN . The acceleration sample is assumed to require no integration time. The
corresponding estimates for velocity and position are denoted by vN and pN , respectively.

Let aN (t) represent continuous acceleration between sampled accelerations aN and aN+1, where t =
0 corresponds to the sampling time TN . Since there is no further information available between the
two samples, we assume the intermediate acceleration value varies linearly. We introduce the linear
interpolation function aN (t) with a sampling interval of [0, ∆t] defined by

aN (t) =
(aN+1 − aN )t

∆t
+ aN (A-1)

Note that, for t = ∆t,

aN (∆t) = aN+1 (A-2)

Let’s consider only two sample points, aN and aN+1. The integration of aN (t) from 0 to t gives the
corresponding velocity, vN (t):

vN (t) =
(aN+1 − aN )t2

2∆t
+ aN t + vN , vN initial velocity at t = 0 (A-3)

For t = ∆t,

vN (t = ∆t) = vN+1 =
(aN+1 + aN )∆t

2
+ vN (A-4)

which is the area below the straight line connecting the two points aN and aN+1 in Fig. A-1. Notice
that the error exists in the velocity estimate due to the difference between the true area and our estimate
because of our assumption on linearly varying acceleration. This velocity error propagates through
position estimates.

Similarly, for the position estimate, integrating Eq. (A-3) gives

pN (t) =
(aN+1 − aN )t3

6∆t
+ aN

t2

2
+ vN t + pN , pN position at t = 0 (A-5)

For t = ∆t,
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pN (t = ∆t) = pN+1 = (aN+1 − aN )
∆t2

6
+ aN

∆t2

2
+ vN∆t + pN

= aN+1
∆t2

6
+ aN

∆t2

3
+ vN∆t + pN (A-6)

The procedure in Eq. (A-6) is summarized in Fig. A-2.

∆t
a (t )

a N −1 a N a N + 1 a N + 2

Fig. A-1.  A sampling of continuous acceleration
a (t ).
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Fig. A-2.  The position estimation procedure from acceleration measurements. The multipliers (c 1 to  c 4) are

c 1 = ∆t , c 2 = ∆t 2 / 3, c 3 = ∆t 2 / 6, and c 4 = ∆t / 2.
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Appendix B

Initial Velocity and Acceleration Bias Estimation
Using the Least-Squares Method

As was shown in Eq. (A-6), initial velocity needs to be estimated for accurate displacement estimation.
Also, acceleration bias needs to be estimated and corrected due to the possibility of any misalignment of
accelerometers with respect to a reference direction.

Let

v0 = initial velocity

ab = acceleration bias

Bn = beacon measurements

Pn = estimated displacement from acceleration, an for n = 1, 1+M, 1+2M, · · · (M = intervals
for evaluation)

Since Pn is a function of sampling time, tn, and acceleration, an, the displacement estimation error, En,
can be written as

En = Pn +
ab(n∆t)2

2
+ v0n∆t − Bn (B-1)

where ∆t is the sampling interval. Let the error function to be minimized be

S =
∑

n

E2
n, for n = M, 2M, · · · (B-2)

Minimizing by

dS

dab
= 0

dS

dv0
= 0




(B-3)

gives

∑
n

(
abn

4 ∆t2

2
+ v0n

3∆t

)
=

∑
n

(Bn − Pn)n2 (B-4)

∑
n

(
abn

3 ∆t2

2
+ v0n

2∆t

)
=

∑
n

(Bn − Pn)n (B-5)

where n = M, 2M, · · ·.
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From Eqs. (B-4) and (B-5),

ab =

[ ∑
(Bn − Pn)n2

∑
n3∆t∑

(Bn − Pn)n
∑

n2∆t

]
[ ∑

n4∆t2/2
∑

n3∆t∑
n3∆t2/2

∑
n2∆t

] (B-6)

v0 =

[ ∑
n4∆t2/2

∑
(Bn − Pn)n2∑

n3∆t2/2
∑

(Bn − Pn)n

]
[ ∑

n4∆t2/2
∑

n3∆t∑
n3∆t2/2

∑
n2∆t

] (B-7)

The implementation of Eqs. (B-6) and (B-7) requires minimum intervals of two for two variables, ab and
v0. Figure B-1 illustrates an example for the two-interval case.

Fig. B-1.  An example of the two-interval case for acceleration bias and initial velocity estimation.

Guess v 0 Use v 0 until t = 2M ∆t Estimate v 0

t = 0 t = M ∆t t = 2M ∆t t = 3M ∆t ...

New v 0 at t = 2M ∆t v 0 = v 0 + Σ ai ∆t
 2M

i =1
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Appendix C

Error Analysis

In this appendix, random error caused by the noise in the acceleration measurements is investigated.
The measurement noise includes accelerometer electronic noise, quantization (analog-to-digital) noise,
amplifier noise, radiation noise, etc.

In order to express the relationship between random error and position estimation error, Eq. (A-6)
needs to be rewritten in terms of acceleration with initial values of velocity and position. From Eq. (A-6),

p1, v1 = initial values of position and velocity

p2 = a2
∆t2

6
+ a1

∆t2

3
+ v1∆t + p1

p3 = a3
∆t2

6
+ a2

∆t2

3
+ v2∆t + p2

= a3
∆t2

6
+ a2

∆t2

3
+ a2

∆t2

6
+ a1

∆t2

3
+ (a2 + a1)

∆t2

2
+ 2v1∆t + p1

p4 = a4
∆t2

6
+ a3

∆t2

3
+ v3∆t + p3

= a4
∆t2

6
+ a3

∆t2

3
+ a3

∆t2

6
+ a2

∆t2

3
+ (a3 + a2)

∆t2

2

+ a2
∆t2

6
+ a1

∆t2

3
+ (a2 + a1)

∆t2

2
+ (a2 + a1)

∆t2

2
+ 3v1∆t + p1

...

pN = ∆t2
(a2 + · · · + aN )

6
+ ∆t2

(a1 + · · · + aN−1)
3

+ (N − 1)v1∆t + p1

+ (N − 2)a1
∆t2

2
+ (2N − 5)a2

∆t2

2
+ (2N − 7)a3

∆t2

2

+ (2N − 9)a4
∆t2
2

+ · · ·

=
N−1∑
i=2

(N − i)ai∆t2 +
(

N

2
− 2

3

)
a1∆t2 + aN

∆t2

6
+ (N − 1)v1∆t + p1




(C-1)

where N is the number of acceleration measurements and ∆t is the sampling period such that N = T/∆t
for the total integration time of T .
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As shown in Eq. (C-1), the knowledge of initial velocity, v1, plays an important role in estimating the
position. The equation indicates that the position estimation error is proportional to the error in initial
velocity and the integration period. Since the accelerometer does not provide initial velocity information,
the initial velocity must be obtained either from direct measurements using lower bandwidth rate sensors
such as gyros or from estimations using optical measurements of the beacon data. The effect of any
error in initial velocity estimation will become larger as the integration period increases. The same is
true for any acceleration bias present in acceleration measurements, which alters velocity. In this article,
we have assumed that there is no accelerometer bias and that the initial velocity is known. Estimation
of acceleration bias and initial velocity will be addressed in a future article, along with implementation
progress.

The position estimation error (variance) can be expressed as a function of the random error (1 sigma
value) in acceleration, σa, assuming the ai’s are independent, identically distributed (i.i.d.) random
variables:

σ2
pN = (∆t2)2

N−1∑
i=2

(N − i)2σ2
a + (∆t2)2

(
N

2
− 2

3

)2

σ2
a + σ2

a

(∆t2)2

62

The standard deviation of position estimation using N samples of acceleration measurements then be-
comes

σpN = ∆t2σa

(
N−1∑
i=2

(N − i)2 +
(

N

2
− 2

3

)2

+
1
36

)1/2

(C-2)

An angular position estimation error can be derived from Eq. (C-1) assuming the two linear position
estimates, d1 and d2, are i.i.d. random variables with an rms error of σpN in Eq. (C-2):

σ2
θ =

Var(d1) + Var(d2)
l2

=
2σ2

pN

l2
(C-3a)

or

σθ =
√

2σpN

l
(C-3b)

Equations (C-2) and (C-3) imply that the random error is proportional to the acceleration measurement’s
noise and the integration period, N . However, it is inversely proportional to sampling rate (1/∆t) and
the separation between the accelerometers.

17


