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Power Spectrum of Atmospheric Scintillation
for the Deep Space Network Goldstone

Ka-Band Downlink
C. Ho1 and A. Wheelon2

Dynamic signal fluctuations due to atmospheric scintillations may impair the
Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network
(DSN) receiving system. The ranges of frequency and power of the fast fluctuating
signals (time scale <1 min) are theoretically investigated using the spatial covari-
ance and turbulence theory. Scintillation power spectrum solutions are derived
for both a point receiver and a finite-aperture receiver. The aperture-smoothing
frequency (ωs), corner frequency (ωc), and damping rate are introduced to define
the shape of the spectrum for a finite-aperture antenna. The emphasis is put on
quantitatively describing the aperture-smoothing effects and graphically estimat-
ing the corner frequency for a large aperture receiver. Power spectral shapes are
analyzed parametrically in detail through both low- and high-frequency approxima-
tions. It is found that aperture-averaging effects become significant when the trans-
verse correlation length of the scintillation is smaller than the antenna radius. The
upper frequency or corner frequency for a finite-aperture receiver is controlled by
both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-
smoothing frequency, the spectrum rolls off at a much faster rate of exp

(
−ω2/ω2

s

)
,

rather than ω−(8/3), which is customary for a point receiver. However, a relatively
higher receiver noise level can mask the fast falling-off shape and make it hard to be
identified. We also predict that when the effective antenna radius ar ≤ 6 m, the cor-
ner frequency of its power spectrum becomes the same as that for a point receiver.
The aperture-smoothing effects are not obvious. We have applied these solutions to
the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power
spectrum shape for the receiving station. The maximum corner frequency for the
receiver (with ωs = 0.79ω0) is found to be 0.44 Hz (or 1.0ω0), while the fading rate
(or fading slope) is about 0.06 dB/s.
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I. Introduction

The Earth’s atmosphere and weather impose much larger degradation effects on a Ka-band (around
32-GHz) link than on other lower-frequency bands. On the one hand, the atmosphere can have higher
attenuations due to gaseous absorption (water vapor and oxygen), rain, and cloud attenuations with slow
fading (>min). On the other hand, the atmospheric turbulences and irregularities under the clear weather
condition also can cause fast amplitude fluctuations (<min) due to diffraction and scattering [1–3].

A higher data rate implies a new sensitivity to short-term amplitude (signal-to-noise ratio, SNR)
fluctuations. When the wavelength of Ka-band radio waves is comparable to the Fresnel length for
atmospheric paths, fast scintillation (0.1–10 Hz) and scattering become significant. Received signals
appear highly dynamic as to their amplitude and phase. These fast variations are quite different from
the slow variations of amplitude and phase caused by rain or cloud attenuations. Fast variations are
superimposed on top of slow fading, causing deep fading in a short time. Both fading frequency (duration)
and fading depth (intensity) can determine the fading slopes, which directly affect the times of loss-of-lock
and recovery and the short-term dynamics of the systems.

The time series of signal amplitude and frequency spectrum provide two different but equivalent
descriptions for the signal variability. The amplitude changes in a time domain can be transferred into a
frequency domain through the Fourier transform. The spectral analysis will clearly show the frequency
ranges of amplitude changes and the power distributions. Spectrum shapes and damping rates can be
significantly different between a finite-aperture antenna and a point antenna. The temporal spectrum of
amplitude scintillation depends on the frequency of microwave signals, wind speed, Fresnel length of the
path, and antenna aperture.

A study of the antenna aperture effect on power spectrum and frequency range is needed for the Deep
Space Network (DSN) large antenna downlink scenario, and it is the central topic of this article. Through
this study, we attempt to understand the following questions: How fast can amplitude fluctuations
be caused by atmospheric eddies? What are the frequency ranges of the power spectrum for these
fluctuations, and what is the upper frequency which directly affects the sample data rate for future
Ka-band experiment and telemetry operation? How does the antenna aperture affect the frequency range
of signal scintillation? What is the roll-off rate in the high-frequency part of the power spectrum? Is it
still the same for the −8/3 power law as for a point receiver or is it faster damping? These questions
have never been completely solved for a finite-aperture receiver because of their complexity.

In this study, we will first set up the relationship between the temporal covariance and the spatial
covariance by using Taylor’s hypothesis, which assumes frozen irregularities convected by a steady wind.
Then we will convolve the spatial covariance into the power spectrum using the Fourier transform, because
the spatial covariance is nothing other than the amplitude variance for scintillation intensity investigated
in our companion article in this issue [4]. The complete analytic solutions for the power spectrum
are applied to a point receiver first, and then to a receiver with a finite aperture by spatial averaging
over the entire antenna aperture. We will further introduce the aperture-smoothing frequency, corner
frequency, and damping rate to define the shape of the spectrum for a large aperture antenna. We will
perform a detailed analysis on the complicated spectrum by studying its low-frequency and high-frequency
approximation solutions and by comparing the spectrum of a finite-aperture antenna with one of a point
antenna. Finally, we apply these analytic solutions to the DSN Goldstone 34-m antenna to predict the
power spectrum and frequency range of the received signal. A comparison also is made with available
Ka-band experiments from small antennas. This study will guide us in modifying the models developed
from previous experiments for use on large antennas.
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II. Spatial Covariance and Power Spectrum

The power spectrum is an important quantity in describing the variability of random fluctuating signals
for a Ka-band receiving system. Power spectrum, Wχ(ω), and temporal covariance, Bχ(τ), of amplitude
scintillations are a Fourier transform pair in the t ←→ ω domain [1–3] given by the following:

Wχ(ω) =
∫ ∞

−∞
〈χ(t)χ(t + τ)〉 eiωτdτ (Np)2/Hz (1)

Bχ(τ) =
1
2π

∫ ∞

−∞
Wχ(ω)e−iωτdω (Np)2 (2)

where temporal covariance is defined as Bχ(τ) = 〈χ(r, t)χ(r, t + τ)〉, and χ(r, t) is the temporal logarithmic
amplitude change. Taking Taylor’s frozen field assumption that all of the time changes in f(r, t) are
associated with a simple translation of a spatial field distribution with a constant horizontal wind with
velocity v⊥ (where we have assumed that wind velocity fluctuation is negligible), that is,

∆ρ = υυυ⊥τ

and

f(r, t + τ) = f(r − v⊥τ, t)

we thus have

〈χ (r, t) χ (r, t + τ)〉 = 〈χ (r, t)χ (r + υ⊥τ, t)〉 = 〈χ (r, t) χ (r′, t)〉 (3)

where

r′ = r + ∆∆∆ρρρ = r + υυυ⊥τ

Thus, the temporal covariance Bχ(τ) is equivalent to the spatial covariance Bχ(∆ρ). We will establish
the relationship between them as follows:

Bχ(τ) = 〈χ(r, t)χ(r, t + τ)〉 = Bχ(∆ρ) = 〈χ(r)χ(r + ∆ρ)〉 = Bχ(υ⊥τ) (4)

From the spatial covariance derived in Appendix B in [4], we have the following expression for a case
of weak scattering:

〈χ(r, t)χ(r, t + τ)〉 = 〈χ(r)χ(r + ∆ρ)〉

= 4π2k2

∫ H

0

dz sin2

(
zκ2

2k

) ∫ ∞

0

dκκΦn (κ) J0(κ∆ρ)

= 4π2k2

∫ H

0

dz sin2

(
zκ2

2k

) ∫ ∞

0

dκκΦn (κ) J0(κυ⊥τ)

= 4π2Hk2

∫ ∞

0

dκκΦn (κ)J0(κυ⊥τ)Fχ(κ) (5)

3



where k is the radio signal’s wave number, z is the turbulent layer length, κ is the turbulence spectrum
wave number, and Φn (κ) is the turbulence spectrum function. For a slab model of the turbulence profile,
we have

Fχ(κ) =
1
2

[
1 − sin(Hκ2/k)

Hκ2/k

]
(6)

The path integration is performed for a uniform atmosphere with thickness H.

Because the Bessel function J0(κυ⊥τ) is an even function, from Eqs. (1), (4), and (5) the power
spectrum can be written as

Wχ(ω) = 8π2Hk2

∫ ∞

0

dκκΦn (κ)Fχ(κ)
∫ ∞

0

J0(κυ⊥τ) cos(τω)dτ (7)

Using the result from the integration table,

∫ ∞

0

Jν(ax) cos(bx)dx =




cos[ν sin−1 (b/a)]/
√

a2 − b2 for 0 < b < a

−aν sin(νπ/2)
[
b +

√
b2 − a2

]−ν
/
√

b2 − a2 for 0 < a < b, ν > −1
(8)

for ν = 0, a = κυ⊥, and b = ω, we have

∫ ∞

0

J0(κv⊥τ) cos(τω)dτ =

{(
κ2υ2

⊥ − ω2
)−(1/2)

ω < κυ⊥ < ∞

0 0 < κυ⊥ < ω
(9)

so that after using υ to replace υ⊥ the power spectrum becomes

Wχ(ω) = 8π2Hk2

∫ ∞

ω/υ

dκκΦn (κ)
Fχ(κ)√

κ2υ2 − ω2
(10)

III. Power Spectrum for a Point Receiver

Using Eq. (10) and the Kolmogorov turbulent spectrum to describe the small eddies in the inertial
range,

Φn(κ, z) = 0.033C2
n(z)κ−(11/3), 0 < κ < ∞ (11)

(where C2
n is the refractive-index structure constant) gives the following for a point receiver:

Wχ(ω) = 1.303Hk2C2
n

∫ ∞

ω/υ

dκ

κ8/3
√

κ2υ2 − ω2

[
1 − sin(κ2H/k)

κ2H/k

]
(12)

The first integration can be performed as
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J1 =
∫ ∞

ω/υ

dκ

κ8/3
√

κ2υ2 − ω2
= 0.841

υ5/3

ω8/3
(13)

The second integration is found, after substituting u = (κυ/ω)2, to be

J2 =
∫ ∞

ω/υ

dκ

κ8/3
√

κ2υ2 − ω2

(
sin(κ2H/k)

κ2H/k

)

=
kυ11/3

2Hω14/3
Im

[∫ ∞

1

du

u17/6
√

u − 1
exp

(
i
ω2H

kυ2
u

)]
(14)

where Im denotes the imaginary part of the bracketed function. Using the solution of the second type of
Kummer function (confluent hypergeometric function), U(a, b, z), shown in the Appendix,

∫ ∞

1

e−zxxb−a−1(x − 1)a−1dx = e−zΓ(a)U(a, b, z) (15)

we have

J2 =
kυ11/3

2Hω14/3
Im

[
exp

(
i
ω2H

kυ2

)
Γ

(
1
2

)
U

(
1
2
,−4

3
, i

ω2H

kυ2

)]
(16)

We define the Fresnel frequency by the ratio of the cross-path wind velocity, υ, over the Fresnel length,
fL:

ω0 =
υ

fL
= υ

√
k

H
= v

√
=

2π

λH
(17)

The Fresnel frequency, ω0, is the most important parameter in governing the scintillation fluctuations,
because only the eddies with Fresnel length fL are efficient in generating amplitude scintillations. Thus,

J2 = 0.5
υ5/3

ω8/3

ω2
0

ω2
Im

[
exp

(
i
ω2H

kυ2

)
Γ

(
1
2

)
U

(
1
2
,−4

3
, i

ω2

ω2
0

)]
(18)

The final power spectrum for a plane wave is

Wχ(ω) = 1.096
HC2

nk2υ5/3

ω8/3

{
1 − 0.594 ω2

0

ω2
Im

[
exp

(
i
ω2

ω2
0

)
Γ

(
1
2

)
U

(
1
2
,−4

3
, i

ω2

ω2
0

)]}
(19)

For a high-frequency approximation (ω � ω0), we can ignore the Kummer function because of the term
(ω0/ω)2 and find that

W∞
χ (ω) = 1.096

HC2
nk2υ5/3

ω8/3
(Np)2/Hz for ω � ω0 (20)
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For a low-frequency approximation, we can assume ω = 0 in Eq. (12):

W 0
χ(ω) = 1.303Hk2C2

n

1
v

∫ ∞

ω/υ

dκ

κ11/3

[
1 − sin(κ2H/k)

κ2H/k

]
(21)

If we substitute ζ = κ2H/k, this becomes

W 0
χ(ω) = 0.6515

H7/3k2/3C2
n

υ

∫ ∞

0

dx

ζ7/3

(
1 − sin ζ

ζ

)
(22)

W 0
χ(ω) = 0.425

H7/3k2/3C2
n

υ
(Np)2/Hz for ω → 0 (23)

The power spectrum ratio between the high-frequency and zero-frequency limits is

Wχ(ω)
Wχ(0)

= 2.577
(ω0

ω

)8/3
{

1 − 0.594
ω2

0

ω2
Im

[
exp

(
i
ω2

ω2
0

)
Γ

(
1
2

)
U

(
1
2
,−4

3
, i

ω2

ω2
0

)]}
(24)

IV. Corner Frequency

The corner frequency is another important parameter for the power spectrum, because it determines
the shape of the spectrum of the amplitude scintillation. We define the corner frequency, ωc, as the
intersection between the asymptotes for high frequency and low frequency [3,5,6]. That is,

W∞
χ (ωc) = W 0

χ(ωc) at ω = ωc (25)

For a point receiver and a slab model of the turbulence strength profile, after removing the second term
in Eq. (24) when ω → ∞, we have

ωc = (2.577)3/8
ω0 = 1.426ω0 (26)

For a thin-layer model, W∞
χ (ω) is the same as that for a slab model, because the high-frequency approx-

imation removes the second term related to

Fχ(κ) =
1
2
[
1 − cos(Hκ2/k)

]

However, W 0
χ(ω) is different from that for a slab model. Through an integration process similar to

what we used to derive the amplitude variances for three turbulent models in [4], we have

W 0
χ(ω) = 0.992

H7/3k2/3C2
n

υ
(Np)2/Hz for ω → 0 (27)

Thus, we have
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ωc = 1.04 ω0 for a thin layer (28)

For an exponential model,

Fχ(κ) =
1
2

[ (
Hκ2/k

)2

1 + (Hκ2/k)2

]

For this model, W∞
χ (ω) also does not change, but its low-frequency spectrum is

W 0
χ(ω) = 1.182

H7/3k2/3C2
n

υ
(Np)2/Hz for ω − 0 (29)

Thus, the corner frequency is

ωc = 0.972 ω0 for an exponential profile (30)

The corner frequency for a finite-aperture antenna has a much complicated feature, which will be studied
in Section VI.

V. Power Spectrum for a Large Antenna

A. Spatial Covariance

From the study in [4], we know that there is an aperture-smoothing (or -averaging) effect on the ampli-
tude variance for a parabolic reflector. One would expect a similar effect for the spatial covariance. After
integrating over the entire antenna surface with an aperture effective radius of ar, a term [2J1(κar)/κar]2

is included. The aperture-averaged amplitude variance becomes

〈χ1χ2〉 = 4π2k2

∫ ∞

0

κdκ

∫ H

0

dzΦn(κ, z) sin2

(
zκ2

2k

) [
2J1(κar)

κar

]2

= 2π2k2

∫ ∞

0

κdκΦn(κ, z)
[
1 − sin(κ2H/k)

κ2H/k

] [
2J1(κar)

κar

]2

(31)

Actually, this averaging process on the antenna aperture is equivalent to a convolution of the spectral
fluctuations with a two-dimensional antenna surface [3,7].

For the spatial covariance, there is an additional term, J0(κρ), due to the inter-receiver correlation
ρ = υ⊥τ , as shown in Eq. (5). This is also sometimes called the Hankel transform with a weighted
function of J0(κρ)[2J1(κar)/κa]2:

Bχ(ρ, ar) = 2π2k2

∫ ∞

0

κdκΦn(κ, z)
[
1 − sin(κ2H/k)

κ2H/k

]
J0(κρ)

[
2J1(κar)

κar

]2

(32)

For the sake of simplification, we have used a slab profile model for the calculation here. Using the Fourier
transform relations shown in Eqs. (1) and (10), the aperture-averaged power spectrum for a finite-aperture
antenna becomes
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Wχ(ω, ar) = 4π2Hk2

∫ ∞

ω/υ

dκκΦn (κ)
1√

κ2υ2
⊥ − ω2

[
1 − sin(κ2H/k)

κ2H/k

] [
2J1(κar)

κar

]2

(33)

B. Airy Functions and Aperture Smoothing

The term [2J1(κar)/κar]2 in Eq. (33) is called the Airy function. It acts as a lowpass filter to remove
all frequency components higher than the aperture-smoothing frequency that will be defined later. In
order to solve the above integral, we approximate the Airy function by a Gaussian pattern [3]:

[
2J1(κar)/κar

]2 ≈ exp
(
−b2κ2a2

r

)
For a best fit, we use b = 0.4832 as shown in Fig. 1. Thus, the Gaussian term plays an antenna cutoff
role with a turbulence wave number cutoff κc = 1/bar.

Inserting this approximation into Eq. (33), the integral becomes

Wχ(ω, ar) = 4π2Hk2

∫ ∞

ω/υ

dκκΦn (κ)
1√

κ2υ2
⊥ − ω2

[
1 − sin(κ2H/k)

κ2H/k

]
exp(−b2κ2a2

r) (34)

Here we need to define a new frequency called the aperture-smoothing frequency, ωs = υ/bar, which is
defined as wind speed over the entire antenna aperture. The frequency is related to the Fresnel frequency
by ωs = ω0/γ, where

γ = bar

√
k/H ∝ ar

fL

which is a ratio between the antenna radius and the largest size of the Fresnel zone. The ratio of ωs/ω0

as a function of actual antenna radius is shown in Fig. 2, where we have assumed a 55 percent antenna
radius efficiency. That is, ar = 55% × the actual antenna radius. For a DSN 34-m-diameter receiver (the
radius = 17 m), we have ωs/ω0 = 0.79, as shown in Fig. 2. The aperture-smoothing effects will depend
primarily upon this ratio. We can see that an antenna with a finite aperture imposes a high wave-number
cutoff on the spectrum of the refractivity fluctuations (similar to a lowpass filter). Averaging effects
become significant when the transverse correlation length of the scintillation is smaller than the antenna
radius. Incident wave-front fluctuations are averaged out by a large aperture. Thus, the wave fluctuations
appear uncorrelated with this type of receiver.

Using substitutions of t = κ2υ2
⊥/ω2−1 and sin(κ2H/k) = Im

[
exp(iκ2H/k)

]
, definitions of ω0 and ωs,

and applying the Kolmogorov spectrum, we have

Wχ(ω, ar) = 0.6515Hk2C2
nυ5/3ω−(8/3)




∫ ∞

0

(t + 1)−(11/6)t−(1/2) exp
(
−ω2

ω2
s

t

)
exp

(
−ω2

ω2
s

)
dt

−
(ω0

ω

)2

Im




∫
0

∞
(t + 1)−(17/6)t−(1/2) exp

(
−ω2

ω2
s

t − ω2

ω2
s

)

exp
(

i
ω2

ω2
0

t + i
ω2

ω2
0

)
dt







(35)
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Using another solution of the Kummer function (the confluent hypergeometric function) described in
the Appendix,

∫ ∞

0

xa−1(1 + x)b−a−1e−zxdx = Γ(a)U(a, b, z) (36)

the power spectrum solution for a finite-aperture receiver becomes

Wχ(ω, ar) = 0.6515Hk2C2
nυ5/3ω−(8/3)




[
Γ

(
1
2

)
U

(
1
2
,−1

3
,
ω2

ω2
s

)
exp

(
−ω2

ω2
s

)]

−
(ω0

ω

)2

Im




Γ
(

1
2

)
U

(
1
2
,−4

3
,
ω2

ω2
s

− i
ω2

ω2
0

)

exp
(

i
ω2

ω2
0

− ω2

ω2
s

)






(37)

C. Low- and High-Frequency Approximations

We will study two cases: ω = 0 (low-frequency approximation) and ω = ∞ (high-frequency approx-
imation) for ar �= 0 (a finite-aperture antenna). In the previous section, we studied both cases for a
point receiver when ar = 0. Here we will study the case when ar �= 0 (including a DSN large-diameter
antenna).

When ω −→ ∞, the power spectrum in the second term of Eq. (37) in brackets becomes so small that
it can be neglected, due to the factor (ω0/ω)2. Thus, for the high-frequency approximation, we have

W∞
χ (ω, ar) = 0.6515Hk2C2

nυ5/3ω−(8/3)

[
Γ

(
1
2

)
U

(
1
2
,−1

3
,
ω2

ω2
s

)
exp

(
−ω2

ω2
s

)]

=1.1548Hk2C2
nυ5/3ω−(8/3)

(ωs

ω

)
exp

(
−ω2

ω2
s

)
(38)

because Γ(1/2) =
√

π, and U
[
(1/2),−(1/3), (ω2/ω2

s)
]

= ωs/ω, when ω −→ ∞.

Thus, the normalized ratio of the power spectrum for a finite-aperture receiver relative to that for a
point receiver in Eq. (20) is given by

W∞
χ (ω, ar)

W∞
χ (ω, 0)

= 1.053
(ωs

ω

)
exp

(
−ω2

ω2
s

)
(39)

This ratio shows that above the aperture-smoothing frequency, ωs, the spectrum is rolling off but no
longer at a rate of ω−(8/3), which characterizes a point receiver in Eq. (20). Instead, it damps at a much
faster rate of exp(−ω2/ω2

s). The power spectral density for W∞
χ (ω, ωs) (as a case for ω −→ ∞) is plotted

in Fig. 3 for a case of ωs = 0.79ω0 (corresponding to a 34-m-diameter antenna). As a comparison, we
also plot it in Fig. 4 for a case of ωs = 1.0ω0, corresponding to an actual 26-m-diameter antenna.

The normalized power spectra are plotted in Figs. 5 and 6 for both antenna radii. We can see that
the Fourier components with frequencies greater than ωs are damped at a rate of exp(−ω2/ω2

s) due to
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a case of ωs = 0.79ω 0 (for a DSN 34-m-diameter antenna).
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aperture-smoothing effects. This is much faster than the rate of f−(8/3) for a point antenna. All spectral
power values are reduced relative to a point receiver. The smoothing effects become more significant
when ωs becomes smaller, that is, a larger antenna ar, and a larger ratio γ, or a smaller velocity υ.

When ω −→ 0, for a low-frequency approximation we have

W 0
χ(ω) = 1.303Hk2C2

nυ−1

∫ ∞

ω/υ

dκ

κ11/3

[
1 − sin(κ2H/k)

κ2H/k

]
exp(−b2κ2a2

r) (40)

After a substitution of t = κ2H/k, we have

W 0
χ(ω) = 0.6515H7/3k2/3C2

nυ−1

∫ ∞

0




t−(7/3) exp
(
−ω2

s

ω2
0

t

)

−Im

[
t−(10/3) exp

(
−ω2

s

ω2
0

t + it

)]



dt (41)

Using the standard integral result,

∫ ∞

0

ta−1 exp(−βt)dt = Γ(a)β−a (42)

we have

W 0
χ(ω, ar) = 0.6515H7/3k2/3C2

nυ−1

{
Γ

(
−4

3

) (
ω2

s

ω2
0

)4/3

− Im

[
Γ

(
−7

3

) (
ω2

s

ω2
0

− i

)7/3
]}

(43)

Normalizing by a point receiver spectrum, Eq. (23), we have

W 0
χ(ω, ar)

W 0
χ(ω, 0)

= 1.533

{
Γ

(
−4

3

) (
ω2

s

ω2
0

)4/3

− Im

[
Γ

(
−7

3

) (
ω2

s

ω2
0

− i

)7/3
]}

(44)

which is a function of only ωs and ω0. We have plotted this ratio in Fig. 2 as a function of actual antenna
radius. When the radius is 17 m, the ratio is 0.43.

In Fig. 3, we have plotted absolute power spectral density (in dB2/Hz) calculated from power spectrum
equations for a case of ωs = 0.79ω0, corresponding to an actual 17-m aperture radius. There are two
spectral lines plotted for a point receiver (ar = 0). One is the high-frequency approximation, W∞

χ (ω, 0),
from Eq. (20), which is falling off at a rate of −(8/3) on a loglog plot. Another one is the low-frequency
approximation, W 0

χ(ω, 0), from Eq. (23), a straight horizontal line, which is independent of ω with a
constant value of about 0.004 dB2/Hz. Power spectral lines for a finite-aperture also are plotted. While the
straight horizontal line marked with W 0

χ(ω, ar) at about 0.002 dB2/Hz is its low-frequency approximation
from Eq. (38), the line marked with −ω2/ω2

s is its high-frequency approximation, W∞
χ (ω, ar), from

Eq. (38). In addition, a straight line as an asymptote from Eq. (37) also is drawn, with a mark of ω → ∞.
We can see that apparent differences in the high-frequency spectra between a point and a finite-aperture
receiver are that the latter has a much faster damping rate than does the former, and it filters out more
fluctuated power.
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We also have made a similar plot in Fig. 4 for the ωs = 1.0ω0 case, corresponding to a 13-m-aperture
radius. Compared with Fig. 3, we can see that W∞

χ (ω, ar) shifts to the higher frequency, but with a
smaller damping rate because of the larger ωs. W 0

χ(ω, ar) goes to 0.0012 dB2/Hz as ωs increases. The
point receiver spectral solutions are still the same because they are independent of ωs.

In Figs. 5 and 6, the normalized power spectra are plotted for both types of receivers (ar = 0 and
ar �= 0). While Fig. 5 shows a case of ωs = 0.79ω0, Fig. 6 is for ωs = 1.0ω0. For a point receiver
spectrum (ar = 0), we have normalized a high-frequency approximation by its low-frequency solution,
Wχ(ω)/Wχ(0), as shown in Eq. (24). The straight line has a −8/3 slope in a loglog scale.

For a finite-aperture receiver, we first normalize the high-frequency solution by a high-frequency so-
lution for a point receiver, W∞

χ (ω, ar)/W∞
χ (ω, 0), that is, normalized by its antenna aperture, as shown

in Eq. (39). This ratio defines the aperture-smoothing effects. Then we normalize the high-frequency
solution by its low-frequency version: W∞

χ (ω, ar)/W 0
χ(ω, ar). As we will see in the next section, this

cross-normalization ratio will define the corner frequency. We see that both normalized ratios decrease
rapidly with increasing frequency at a rate of exp(−ω2/ω2

s) when ω > ωs. Lastly, we normalize the
low-frequency finite-aperture solution by a low-frequency point receiver solution, W 0

χ(ω, ar)/W 0
χ(ω, 0),

as shown in Eq. (44). This is always less than unity, because the power spectrum for a finite-aperture
receiver is always less than that for a point receiver. In Fig. 5 this ratio is 0.43, and in Fig. 6 this ratio
is 0.33, because W 0

χ(ω, ar) decreases with increasing ωs, while W 0
χ(ω, 0) does not. We also have plotted

a line with ratio = 1.0 in both figures for reference. The four plots in Figs. 3 through 6 will define the
shapes of the power spectra for a finite-aperture receiver, because the more important corner frequencies
can be determined from these plots, as we will see in the next section.

VI. Corner Frequency for a Finite-Aperture Antenna

To calculate the corner frequency for a finite-aperture antenna, we need to calculate the ratio between
power spectra given in Eqs. (38) and (43) [3,6]:

W∞
χ (ω, ar)

W 0
χ(ω, ar)

= 1.773
(ω0

ω

)8/3 (ωs

ω

)
exp

(
−ω2

ω2
s

)

×
{

Γ
(
−4

3

) (
ω2

s

ω2
0

)4/3

− Im

[
Γ

(
−7

3

) (
ω2

s

ω2
0

− i

)7/3
]}−1

(45)

We can solve for the corner frequency by setting W∞
χ (ω, ar) = W 0

χ(ω, ar). The corner frequency cannot
be solved analytically from Eq. (45). However, we can find these values from the graphic intersections
shown in Figs. 3 through 6.

As we know, the corner frequency is defined as the intersection between the high-frequency asymptote
and low-frequency asymptote. We can see that in Fig. 3, which shows the absolute value of the power
spectrum, this intersection value for a point receiver is ωc = 1.43 ω0, while ωc = 1.0 ω0 for a finite-aperture
receiver with a 17-m actual antenna radius. In Fig. 4, the corner frequency for a point receiver does not
change, but for a receiver with a 13-m actual antenna radius, the corner frequency increases to 1.15 ω0.

In Figs. 5 and 6 (normalized power spectrum), the corner frequencies are values intersected with a
line of the ratio = 1, as shown in Eq. (24) for a point receiver and Eq. (45) for a finite-aperture receiver.
We have shown this horizontal line in both figures. We can see that in Fig. 5 (17-m-radius antenna
case) Wχ(ω)/Wχ(0) intersects the line at ωc = 1.43ω0 as expected, while W∞

χ (ω, ar)/W 0
χ(ω, ar) has a

cross-value with the line at ωc = 1.0ω0. These results are exactly the same as those we obtained from
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Fig. 3. Figure 6 also shows the same solution as that in Fig. 4 for a case of ωs = 1.0ω0. The corner
frequency is 1.15ω0 for a receiver with a 13-m actual aperture radius, increasing as the curve shifts to the
higher frequency. We have marked out all corner frequencies (ωc) in the four figures using dots. Thus, we
can see that from two types of graphics (normalized and unnormalized power spectra), we have obtained
the same graphic solutions for the corner frequency.

Using the above method, we have found all graphic solutions of the corner frequency ωc for various ωs.
We have plotted a normalized corner frequency ωc/ω0 as a function of ωs/ω0 in Fig. 7. A straight line is
used to fit these corner frequency values marked by the crosses. It is seen that ωc almost linearly increases
with increasing ωs (decreasing antenna size) for a finite-aperture receiver. Three horizontal lines show the
corner frequency values respective to three types of turbulence models for a point receiver. When we also
apply a slab turbulence model to a finite-aperture antenna, its corner frequency value should not exceed
the value 1.43 ω0 from a point receiver, even though Eq. (45) can have a larger solution than 1.43 ω0.
Due to the aperture-smoothing effects, the spectrum for a finite-aperture receiver cannot have frequency
components higher than those for a point receiver. Thus, we have used a dashed line to show the part
of ωc with values greater than 1.43 ω0 in Fig. 7, which corresponds to 1.35 ω0 for ωs and a 6-m-radius
antenna. Vertical dashed lines give the cases of two types of ωs values applied for this study (0.79ω0 and
1.0ω0).

VII. Application to the DSN Goldstone Receiver

We will use the following parameters for the power spectrum calculation for the Deep Space Network
(DSN) Goldstone site [6,8]: λ = 0.01 (m) for 32-GHz (Ka-band); H = 8.0×103 (m); ar = 34/2×55%(m);
and υ = 10 (m/s) for the wind speed.

Here we have assumed that the DSN 34-m-diameter antenna has a 55 percent efficient radius rela-
tive to its physical radius at Ka-band. These parameters have been used for the calculations in deter-
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Fig. 7.  Normalized corner frequency ω c /ω 0 as a function of the

ratio of ω s /ω 0.  Corner frequency values (crosses), which can

be fitted linearly, increase with increasing ω s .  When ω s / ω 0 >
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mining ω0, ωs, and ωc in previous sections. Thus, for a 34-m antenna we have the following: Fresnel
frequency, ω0 = υ

√
λH/2π = 2.8 rad/s, f0 = 0.44 Hz; aperture-smoothing frequency, ωs = υ/bar =

2.2 rad/s, fs = 0.35 Hz, and ωs = 0.79 ω0; and corner frequency for a finite-aperture antenna, ωc =
1.0 ω0 = 2.8 rad/s, fc = 0.44 Hz.

If we define the fading rate (or fading slope) as rf = χrms · fc, where χrms is the maximum rms of the
amplitude variance (or amplitude fluctuation in decibels) calculated in [4], we have the maximum fading
rate as rf = 0.13 dB × 0.44 Hz ≈ 0.06 dB/s.

For a 26-m-diameter receiver, we have ωs = 1.0ω0 = 2.8 rad/s, fs = 0.44 Hz (from Fig. 2), and
ωc = 1.15ω0 = 3.2 rad/s, fc = 0.51 Hz. For a 70-m-diameter receiver, we have ωs = 0.38ω0 = 1.06 rad/s
(from Fig. 2) and ωc = 0.57ω0 = 1.6 rad/s, fc = 0.25 Hz.

Based on the corner frequency and graphics of power spectrum solutions we obtained from the previous
section, we can define the shape of the power spectrum of atmospheric scintillations for the DSN Goldstone
34-m receiver. We have drawn an expected spectrum for fast amplitude fluctuations in Fig. 8. Normalized
power spectra versus normalized frequency are shown for both a point receiver and a finite-aperture
receiver. Above their corner frequencies (ωc = 1.43 ω0 for a point receiver, and ωc = 1.0 ω0 for a 34-m-
diameter receiver, respectively), the power damps at a rate of f−(8/3) for a point receiver, while it rolls off
at a rate of f−(ω/ωs)2 for a finite receiver. It should be pointed out that whether or not there is an obvious
fast falling shape of the power spectrum for a finite-aperture receiver also depends much on the receiver’s
noise level. When the receiver has a relatively high noise floor as the DSN receiver has (as shown by a
line in Fig. 8), the actual differences between the power spectra of a point receiver and a finite-aperture
receiver are so small because the noise floor is very close to the scintillation peak power. The falling rates
are not easily distinguished. However, we believe that the difference will become significant when the
noise level is reduced.
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Fig. 8.  A drawing shows the expected power spectrum shapes
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receiver’s noise level is also drawn, which is so close to the peak
scintillation power that the aperture smoothing effect is hard to
identify.
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VIII. Comparison with Experimental Studies

We can compare the above theoretical results with previous Ka-band experimental studies. The
Advanced Communications Technology Satellite (ACTS) provided the first high time resolution (20 sam-
ples/s) measurements [9]. Figure 9 shows a power spectrum measured from ACTS [10]. The ACTS
measurements were made at Norman, Oklahoma, on August 9, 1996, using a 1.2-m-diameter antenna,
which can be regarded as a point receiver. The observation site has an elevation angle of 49.1 deg. The
ACTS sent beacon signals at two frequencies: 20 GHz and 27 GHz. We can see the power at high
frequencies falling off at a rate slower than the −8/3 power law.

Figure 10 is an example from the study of Cox et al. [11] showing antenna aperture-smoothing effects.
Power spectra from Comstar beacon signals (28.56 GHz) were measured at Crawford Hill, New Jersey
(an elevation angle of 41.5 deg), August 1–3, 1979, using a 7-m-diameter antenna. We can see that the
power at high frequency falls off at a faster rate than the −8/3 power law for a point receiver. It is
found that its damping rate is consistent with theoretical expectation for the aperture-averaging effects
[3]. Furthermore, from our results as shown in Fig. 7, we predict that only when effective antenna radius
ar ≥ 6 m (that is, ωs/ω0 ≤ 1.35) can we start to see obvious aperture-smoothing effects due to the
increase in the corner frequency. When ar ≤ 6 m, its corner frequency should not be any different from
that for a point receiver.

IX. Summary

The power spectrum of fast-fluctuated signals can provide important information about variability in
frequency range and power intensity. Using these parameters, we can determine the fading rate, which
has a direct impact on Ka-band downlink availability for a very sensitive DSN receiving system. Through
this study, we find that the temporal spectrum of amplitude scintillation is dependent on the frequency
of microwave signals (or wavelength), wind speed, Fresnel length of the turbulent eddy zone, and antenna
aperture. The Fresnel length, fL, of eddies is the most efficient scale length in generating the ampli-
tude scintillations. Aperture-averaging effects become significant when the transverse correlation length
of the scintillation is smaller than the antenna radius. A finite aperture acts as a lowpass filter to filter out
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Fig. 9.  A comparison with experimental measurements from
ACTS at Oklahoma.  The power spectrum generated from a
1.2-m receiver fits very well to a power law of −8/3 for a point
receiver [10].
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all frequency components higher than the aperture-smoothing frequency. The power spectrum solution
for a point receiver is expanded for a finite-aperture receiver through a two-dimensional antenna surface
convolution. The Airy function as a key term in the spectral expression is approximated by a Gaussian
pattern that imposes a high wave-number cutoff on the atmospheric turbulence spectrum. The aperture-
smoothing frequency, ωs, is fully studied as a function of antenna radius, while the corner frequency, ωc,
is solved through a detailed graphical analysis.

We find that, for frequencies that lie above the aperture-smoothing frequency ωs, the spectrum rolls
off at a much faster rate of exp(−ω2/ω2

s), instead of a rate of ω−(8/3), as for a point receiver. The spectral
density rolling off appears to be indicative of aperture smoothing at high-frequency Fourier components.
We like to emphasize that the smoothing factor for the high-frequency approximation depends only on
the ratio of wind speed to effective antenna size. We further note that whether or not aperture-smoothing
effects are clearly seen in the power spectrum also depends on the receiver’s noise floor.

An important frequency, the corner frequency, which is the turning (or break) point from low frequency
to high frequency in the power spectrum, is defined for the spectral analysis. We have applied these
solutions to the scenario of a DSN Goldstone 34-m antenna and predicted power spectrum shape for the
receiving station. When the aperture-smoothing frequency is 0.79f0 (or 0.35 Hz), where f0 = 0.44 Hz,
the maximum corner frequency for the receiver is 0.44 Hz (or 1.0 f0). The corner frequency increases with
decreasing antenna size. When ar ≤ 6 m (actual radius = 11 m for a 55 percent efficiency), ωc = 1.43ω0,
a corner frequency for a point receiver has been reached. Its corner frequency will not increase any more.
The corresponding fading rate (or fading slope) is 0.06 dB/s for a 0.13-dB amplitude fluctuation (rms).
These values may be reduced when the wind speed and the turbulent layer thickness are changed.
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Now we understand that the upper frequency (the corner frequency) of amplitude scintillations for a
point receiver and a slab model is 1.43ω0, controlled only by the Fresnel frequency (the wind speed over
the Fresnel length of turbulent eddies). The upper frequency for a finite-aperture receiver is controlled
by both the Fresnel frequency and aperture-smoothing frequency. The larger aperture always suppresses
the high-frequency components, with the result that the corner frequency is lower than that for a point
receiver. For example, for a 70-m-diameter receiver, the upper frequency (corner frequency) in the
spectrum is reduced to 0.25 Hz. These results can be used for DSN telecommunications system design,
Ka-band experimental sample-rate selection, and extrapolation of the Ka-band fading models developed
from ACTS experiments for use in a large-aperture receiving station.

The frequency ranges of the power spectrum also depend on what types of atmospheric turbulence layer
models we chose. In this study, we have used a slab model of atmospheric turbulences and the Kolmogorov
turbulence spectrum for a finite-aperture receiver. In actual measurements, the corner frequency is hard
to determine accurately from the individual power spectrum, due to the noise. Some authors have tried
to use the spectral measurements on the smoothing effects as a remote sensing tool to deduce the wind
speed and atmospheric turbulence structures [6]. Because Ka-band signal scintillation is greatly affected
by the atmospheric condition, by using both Fresnel and corner frequencies the turbulence layer structure
or the wind velocity can be inferred.
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Appendix

Kummer Functions

The Kummer function, or confluent hypergeometric function, is generated when an integral has the
following format:

∫ ∞

1

e−zxxb−a−1(x − 1)a−1dx = e−zΓ(a)U(a, b, z)

where the gamma function Γ(a) is defined as

Γ(n) =
∫ ∞

0

xn−1e−xdx

and

Γ(n + 1) = nΓ(n) = n!

The second type of Kummer function is denoted by U(a, b, z) and is defined as

U(a, b, z) =
π

sin(bπ)

(
M(a, b, z)

Γ(1 + a − b)Γ(b)
− z1−b M(1 + a − b, 2 − b, z)

Γ(a)Γ(2 − b)

)

where M(a, b, z) is the first function of the Kummer function and is defined as

M(a, b, z) = 1 +
a

b
z +

a(a + 1)
b(b + 1)

z2

2!
+ · · · + an

bn

zn

n!
+ · · ·

Here

a0 = 1

and

an = a(a + 1)(a + 2) · · · (a + n − 1)

with a similar expression for bn.
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