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Antenna Linear-Quadratic-Gaussian (LQG) Controllers:
Properties, Limits of Performance,

and Tuning Procedure
W. Gawronski1

Wind gusts are the main disturbances that depreciate tracking precision of
microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG)
controllers—as compared with the proportional-and-integral (PI) controllers—
significantly improve the tracking precision in wind disturbances. However, their
properties have not been satisfactorily understood; consequently, their tuning is a
trial-and-error process. A control engineer has two tools to tune an LQG controller:
the choice of coordinate system of the controller model and the selection of weights
of the LQG performance index. This article analyzes properties of an open- and
closed-loop antenna. It shows that the proper choice of coordinates of the open-
loop model simplifies the shaping of the closed-loop performance. The closed-loop
properties are influenced by the LQG weights. The article shows the impact of the
weights on the antenna closed-loop bandwidth, disturbance rejection properties,
and antenna acceleration. The bandwidth and the disturbance rejection charac-
terize the antenna performance, while the acceleration represents the performance
limit set by the antenna hardware (motors). The article presents the controller
tuning procedure, based on the coordinate selection and the weight properties. The
procedure rationally shapes the closed-loop performance, as an alternative to the
trial-and-error approach.

I. Problem Statement

The pointing and tracking requirements are increasingly stringent for new and existing antennas and
radiotelescopes. For example, communication at 32 GHz (Ka-band) for NASA’s Deep Space Network
(DSN) antennas requires pointing accuracy of 1 mdeg (rms) [1,2]; the Large Millimeter Telescope (LMT)
built at Cerro La Negra, Mexico, by the University of Massachusetts and Instituto Nacional de Astrofisica,
Optica y Electronica, requires pointing of 0.3 mdeg (see [3]). These requirements forced the implementa-
tion of the linear-quadratic-Gaussian (LQG) controllers. The control system of the 34-m DSN antenna
shown in Fig. 1 includes the LQG algorithm. It meets the Ka-band requirements and was used to track the
Cassini spacecraft on its journey to Saturn. This article presents principles of the LQG controller design,
allowing for shaping of the tracking and disturbance rejection properties of antennas or radiotelescopes.

1 Communications Ground Systems Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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Fig. 1.  The 34-m NASA/JPL DSN antenna at
Goldstone, California.

The tuning of LQG controllers used for antenna tracking purposes is a tricky process. The controller
addresses the antenna tracking requirements (such as minimization of antenna servo error in wind gusts
and fast response to commands) and the antenna limitations (such as acceleration limits and dependence
on motor size). The LQG closed-loop properties are defined through the LQG performance index, which
is shaped by parameters called LQG weights. The requirements, however, are not directly reflected in
the LQG weights. Thus, the relationship between LQG weights (controller design tools) and antenna
requirements needs to be established. This article answers this question indirectly. It explains the
properties of a simple (proportional-and-integral, PI) controller and a simple (rigid) antenna, and next, by
analogy, extends these properties—under certain conditions—to a real antenna with an LQG controller.
This connection leads to the development of a controller tuning method that addresses the antenna
tracking performance criteria.

The antenna controller tuning procedure introduced in this article is developed in three steps: the
adjustment of the open-loop model (through selection of the coordinate system and auxiliary components),
the analysis of a simple (rigid) antenna and simple (PI) controller (to derive basic properties of the closed-
loop system), and, finally, the extension of the properties of a simple system to the real (flexible) antenna
and a complex (LQG) controller.

II. Open-Loop Model

The antenna control system typically monitors two axes of motion, the azimuth and elevation axes.
Since motions in both axes are uncoupled, in the following only a single axis is analyzed.
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The antenna control system is shown in Fig. 2. It consists of the antenna open-loop system, position
controller, and rate and acceleration limiters. The controller output u represents the commanded rate,
and its derivative is the commanded acceleration, a.

In terms of hardware, an antenna open-loop system consists of the antenna structure, drives (motors,
gears, and amplifiers), and the rate-loop feedback. The antenna position (measured at the encoder) is
the output of the open-loop system. Antenna rate (as voltage or as a digital rate) is its input. The
antenna open-loop model, shown in Fig. 3, is obtained (from field tests and the system identification) in
the state-space form

ẋ = Ax + Bu + w

y = Cx


 (1)

where x is the state, w is the disturbance, y is the antenna position, and (A, B, C) is the state-space
triple.

The antenna open-loop model is used in the LQG controller design (it is a part of the LQG estimator).
Thus, the accuracy of the model and its coordinate selection are the factors that influence the performance
of the LQG controller. The accuracy is solved by determining the model through field testing of the open-
loop antenna and system identification. The selection of coordinates is discussed in the following. The
state-space model—obtained from system identification—is transformed into the coordinates convenient
for the tuning of the antenna controller. The transformation consists of three stages:

(1) Transformation to modal coordinates

(2) Transformation to coordinates with the antenna position as the first state

(3) Augmenting the model with the integral of the position

In the first step, the state-space model (A, B, C) given by Eq. (1) is transformed into the model
(Am, Bm, Cm) in modal coordinates, with the modal state vector xm; for details see [4]. The modal
state-space representation is characterized by the block-diagonal state matrix, Am, and by the weakly
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Fig. 2.  Antenna control system.
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Fig. 3.  Antenna open-loop system.

coupled modal states, xT
m = [xT

1m, xT
2m, · · ·], where the ith component xim is the state of the ith mode,

xT
im = {xi1m xi2m }. The weak coupling allows each modal state to be adjusted independently, which

vastly simplifies the controller tuning process.

The modal model is transformed further in order to obtain the new state, xp, with the first state the
antenna position, while the remaining states are untouched (the antenna position is a controlled variable).
Thus, the new state after transformation is as follows:

xp =
{

y
xf

}
(2)

where y is the antenna position, and xf denotes the remaining (unchanged) states. The new state-space
representation, (Ap, Bp, Cp), is obtained using the following transformation:

xp = Pxm (3)

where, for n states, we have

P =
[

Cm1 Cm2

0n−1,1 In−1

]
(4)

(0n−1,1 is the zero vector (n− 1)× 1, and In−1 is the identity matrix of order n− 1.) The transformation
was derived by noting that y = Cmxm, and dividing Cm as follows: Cm = [Cm1 Cm2], where Cm1 is the
first component of Cm, and Cm2 represents the remaining components.

Next, the model is augmented with an integrator, as recommended in [5–7], to eliminate the steady-
state errors in constant-rate tracking and to improve the antenna disturbance rejection properties. Thus,
the integral of the position (denoted yi) is added to the state-space model as a new state, obtaining the
state xo:

xo =
{

yi

xp

}
=




yi

y
xf


 (5)

The new state yi satisfies the following equation:

ẏi = y = Cpxp (6)

and is added to the state-space representation, (Ap, Bp, Cp), obtaining a new representation, (Ao, Bo, Co):
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Ao =
[

0 Cp

0 Ap

]
; Bo =

[
0

Bp

]
; Co = [ 0 Cp ] (7)

The state xo as in Eq. (5) is the desired state vector of the antenna open-loop system, and Eq. (7) is the
preferred open-loop model of the antenna. The open-loop state consists of the integral of the position,
the position, and the flexible deformations in modal coordinates.

The open-loop system hardware and software are designed such that they approximately represent an
integrator, as shown in Fig. 4. The magnitude of the transfer function of a perfect integrator 1/s is shown
in Fig. 4 (dashed line) as a straight line sloping at −20 dB/dec. The magnitude of the transfer function
of the 34-m antenna obtained from field testing is shown in Fig. 4 (solid line) as a straight line sloping
at −20 dB/dec for low frequencies (up to 1 Hz); it shows flexible deformations (resonances) at higher
frequencies (structural and drive flexibility causes deformations that are not a part of integration).

III. PI Controller and a Rigid Antenna

The position controller of a rigid antenna is assumed to be a simple proportional-and integral (PI)
controller, as shown in Fig. 5.

In the closed-loop system shown in Fig. 2, K denotes the controller transfer function and G is the
antenna transfer function. A rigid antenna is a pure integrator; thus, for the PI controller and rigid
antenna, we have

K = kp +
ki

s
and G =

1
s

(8)

where kp is the proportional gain and ki is the integral gain. Also, in Fig. 2 r is a command, u is the
controller output (called rate command), a is the commanded acceleration (a derivative of the controller
input u), w is wind disturbance, y is the antenna angular position, and e = r − y is a servo error.
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Fig. 4.  Magnitudes of the transfer function of the open-loop
model of the 34-m antenna (solid line) and a rigid antenna
(dashed line).
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Fig. 5.  PI controller.

A. Closed-Loop Transfer Functions

In order to explain the impact of the command r and disturbances w on the antenna position y and
the commanded acceleration a, we analyze the following transfer functions: Try, from the command to
the encoder; Twy, from the disturbance to the encoder; Tra, from the command to the acceleration; and
Twa, from the disturbance to the acceleration. From the block diagram in Fig. 2, we obtain

Try =
GK

1 + GK
and Twy =

G

1 + GK
(9)

Tra =
sK

1 + KG
and Twa =

−sKG

1 + KG
(10)

and by introducing Eq. (8) to Eqs. (9) and (10), we get

Try =
kps + ki

s2 + kps + ki
and Twy =

s

s2 + kps + ki
(11)

Tra =
(kps + ki)s2

s2 + kps + ki
and Twa =

−(kps + ki)s
s2 + kps + ki

(12)

B. The Proportional Gain Analysis

The controller tuning starts with the selection of the proportional gain; thus, we assume ki = 0 in the
above transfer functions [see Eqs. (11) and (12)], obtaining

Try =
1

1
kp

s + 1
and Twy =

1
kp

1
kp

s + 1
(13)
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Tra =
s2

1
kp

s + 1
and Twa =

−s
1
kp

s + 1
(14)

The magnitudes of the above transfer function are shown in Fig. 6. We see from this figure that the
increase of the proportional gain

(1) Increases the bandwidth of the transfer function Try (from the command to the antenna
position); see Fig. 6(a)

(2) Improves the disturbance rejection properties of the antenna by lowering the magnitude
of the disturbance rejection transfer function Twy; see Fig. 6(b)

(3) Increases the impact of the command on the antenna acceleration (increases the magnitude
and the bandwidth of the acceleration transfer function Tra); see Fig. 6(c)

(4) Increases the impact of disturbances on the antenna acceleration (increases the magnitude
and the bandwidth of the acceleration transfer function Twa); see Fig. 6(d)

The first two transfer functions show the improvement of the antenna performance with the increase
of the proportional gain. However, the last two show a potential problem: antenna acceleration increases
at high frequencies, due both to command and to disturbances. The increased acceleration indicates that
the antenna can hit the acceleration limit and enter a nonlinear regime; consequently, its performance will
deteriorate, leading even to instability. Thus, the proportional gain increase is limited by the acceleration
limits imposed at the antenna drives.
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Fig. 6.  Magnitudes of the transfer functions of the proportional controller, ki = 0:  (a) Try , from the
command to the encoder, (b) Twy , from the disturbance to the encoder, (c) Tra , from the command
to the acceleration, and (d) Twa , from the disturbance to the acceleration.
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C. The Integral Gain Analysis

Before we analyze the impact of the integral gain on antenna dynamics, we introduce two critical
values: the critical integral gain and the critical frequency.

1. Critical Integral Gain. It is well known that large integral gain causes low-frequency oscillations
of the closed-loop system. Consider the poles s1 and s2 of the closed-loop system, Eqs. (11) and (12),
i.e., the roots of the polynomial s2 + kps + ki:

s1,2 = 0.5
(
−kp ±

√
k2

p − 4ki

)
(15)

The system is non-oscillatory if poles are real, which happens when kp > 2
√

ki or when

ki ≤ 0.25 k2
p (16)

Thus,

kic = 0.25k2
p (17)

is the upper limit of the integral gain, called the critical integral gain.

2. Critical Frequency. For the critical integral gain, the denominator of the transfer functions
shown in Eqs. (11) and (12) is as follows: s2 + kps + 0.25k2

p = (s + 0.5kp)2. At frequency

ωo = 0.5kp =
√

ki (18)

the slope of the transfer function drops by −40 dB/dec. This is the critical frequency of the closed-loop
system that determines the antenna bandwidth. In the following, the frequencies significantly smaller
than ωo are called low frequencies; frequencies significantly larger than ωo are called high frequencies;
and frequencies in the neighborhood of ωo are called medium frequencies.

The following analysis shows how the transfer functions depend on the integral gain by considering
low, medium, and high frequencies in Eqs. (11) and (12). Note first that for medium frequencies the
variations of all four transfer functions are minimal (see Fig. 7) since the integral gain is smaller than the
critical integral gain. For low and high frequencies, the transfer functions behave as follows:

(1) The transfer function Try does not depend on ki, since for low frequencies Try
∼= 1 and for

high frequencies Tra
∼= kp/s, as shown in Fig. 7(a).

(2) The transfer function Twy is inverse proportional to ki for low frequencies, since Twy
∼= s/ki,

and for high frequencies, it does not depend on ki since Twy
∼= 1/s, as shown in Fig. 7(b).

(3) The transfer function Tra does not depend on ki, since for low frequencies Tra
∼= s2, and

for high frequencies Tra
∼= kps, as shown in Fig. 7(c).

(4) The transfer function Twa does not depend on ki, since for low frequencies Twa
∼= −s, and

for high frequencies Twa
∼= −kp, as shown in Fig. 7(d).

The above analysis showed that the integral gain impacts the disturbance rejection transfer function Twy

only, and that the impact is at low frequencies.
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Fig. 7.  Magnitudes of the transfer functions of the PI controller, kp = 16:
(a) Try , (b) Twy , (c) Tra , and (d) Twa .
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D. PI Controller Tuning Procedure

The PI controller tuning procedure involves

(1) Tuning the proportional gain. Increase the gain until the antenna hits the acceleration
limits at typical commands and at expected disturbances.

(2) Tuning the integral gain. Increase the gain until oscillations or undershoot appear. It
should be smaller than the critical integral gain.

The proportional gain shapes the bandwidth of the transfer function Try. The larger the gain, the wider
is the bandwidth. For a rigid antenna, the limit for the proportional gain is set by the antenna acceleration
limits, since the increase of proportional gain increases antenna acceleration caused by commands and
disturbances; see Figs. 6(c) and 6(d).

The integral gain shapes the disturbance transfer function at low frequencies. It is increased to obtain
better disturbance rejection properties, but there is a limit to the increase: the integral gain should be
smaller than the critical integral gain, i.e., should satisfy Condition (16), to prevent antenna oscillations.

IV. LQG Controller and a Flexible Antenna

Next, the LQG controller and flexible antenna are investigated. The closed-loop system has the same
structure as in Fig. 2, except that the controller has the structure shown in Fig. 8 and the antenna model
is a flexible structure model obtained from the system identification.
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A. LQG Controller Description

The controller gains are obtained by minimizing the performance index J :

J2 = E

(∫ ∞

0

(
xT

o Qxo + uT
o Ruo

)
dt

)
(19)

In the above definition, Q is a positive semidefinite weight matrix and R is a positive scalar. We assume
R = 1 since the case R �= 1 is equivalent to R = 1 with the scaled weight matrix Q/R. The minimum
of J is obtained for the feedback

uo = −Kcx̂o (20)

with the gain Kc obtained as

Kc = BT
r Sc (21)
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and Sc is the solution of the controller algebraic Riccati equation

AT
o Sc + ScAo − ScBoB

T
o Sc + Q = 0 (22)

We see that the controller gain Kc depends solely on the weight matrix Q (Ao and Bo are fixed).

Similarly to the actual state x [see Eq. (5)], the estimated state consists of three components: estimated
integral of the position ŷi, estimated position ŷ, and estimated flexible mode state x̂f :

x̂o =




ŷi

ŷ
x̂f


 (23)

Correspondingly, the controller gain is divided into the proportional gain kp, integral gain ki, and flexible
mode gain Kf , i.e.,

Kc = [ ki kp Kf ] (24)

Introducing Eqs. (23) and (24) to Eq. (20), one obtains

uo = −kiei − kpe − Kf x̂f (25)

In the above equation, the antenna estimated position ŷ was replaced with the antenna servo error
e = r − y, and the integral of the position was replaced with the integral of the servo error ei = ∫ e dt in
order to turn a stabilizing controller into the tracking controller.

The missing part of the controller is the estimated state x̂o in Eq. (20). It is obtained from the
estimator (which is a computer model of the antenna) as follows:

˙̂xo = Aox̂o + Bouo + Ke(y − Cox̂o) (26)

with the estimator gain given by

Ke = SeC
T
o (27)

and where Se is the solution of the estimator algebraic Riccati equation

AoSe + SeA
T
o − SeC

T
o CoSe + V = 0 (28)

For antenna controller tuning purposes, we assume V = Q to obtain the balanced gains of the controller
and the estimator; see [4].
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B. LQG Weights in Modal Coordinates

In modal coordinates, the LQG weight matrix in Eq. (19) is selected as a diagonal matrix (due to the
independence of states in modal coordinates), i.e.,

Q = diag(qi, qp, qf ) (29)

where qi is the integral weight, qp is the proportional weight, and qf is a vector of flexible mode weights.
It is convenient to present the LQG weights in vector form as the LQG weight vector q:

q =




qi

qp

qf


 (30)

The weight vector q corresponds to the state vector xr in Eq. (5), and the flexible mode weights are
divided into weights of each mode:

qf =




qf1m

qf2m

...


 (31)

with each mode weight qT
fim = { qfi qfi } corresponding to the two-state mode.

For the antenna model in modal coordinates, the modal states are weakly coupled. They also are
almost independent of the antenna position and integral of the position. Thus, the corresponding weights
act independently on each flexible mode, and almost independently on position and on the integral of the
position states. This adds to the flexibility of the controller tuning.

C. Resemblance of LQG and PI Controllers

Notice that for the rigid antenna the increase of the proportional gain improves antenna bandwidth
and the disturbance rejection properties. However, an increase of proportional gain, when applied to a
flexible antenna, is drastically limited: even a moderate gain can excite structural vibrations and cause
instability; see [2]. However, the LQG controller consists of (besides the PI part) the flexible mode part
(see Fig. 8), and the flexible mode controller is able to restrain antenna vibrations. In this way, the
increased proportional gain does not excite vibrations and does not cause instability: a flexible antenna
behaves approximately as a rigid one. Therefore, the controller tuning approach used for a rigid antenna
with PI controller also can be used (with certain limitations) for tuning the LQG controller of a flexible
antenna. The limitations are formulated as follows: the flexible mode gains should not be excessive;
they should be large enough to assure vibration suppression, but not larger. Such a controller is called a
low-authority LQG controller; see [4].

The following example shows the similarity between the rigid antenna with PI controller and the
flexible antenna with LQG controller. Consider the 34-m antenna open-loop model with the transfer
function from the rate input to the position output, shown in Fig. 4 (solid line). At lower frequencies,
the transfer function is identical with the transfer function of an integrator, and at higher frequencies it
shows flexible mode resonances. To this antenna we apply an LQG controller as follows. First, we select
the weights of three LQG controllers such that their integral gain is zero and their proportional gains
are 1, 4, and 16, respectively. For these cases, the plots of the magnitudes of the transfer functions Try,
Twy, Tra, and Twa are shown in Fig. 9. Comparing Fig. 9 and Fig. 6, we see similarities between the

12



10−2 100 102

FREQUENCY, Hz

10−2 100 102

FREQUENCY, Hz

10−2

100

102

104

10−2

10−1

100

101

10−1

100

101

102

10−2

10−1

100

101

10−3

(a)

(c) (d)

Fig. 9.  Magnitudes of the transfer functions of the LQG controller, ki = 0:
(a) Try , (b) Twy , (c) Tra , and (d) Twa .
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rigid antenna with PI controller and the flexible antenna with LQG controller. Namely, the plots of Try

show the expanding bandwidth with the increase of the proportional gain. The plots of Twy show the
decreasing antenna response to disturbances with the increase of the proportional gain. The plots of Tra

and Twa show increased acceleration response at high frequencies.

Next, we select the weights of the LQG controller to obtain a fixed proportional gain, kp = 16, and to
obtain the integral gains 1, 4, and 16, respectively. Note from Eq. (17) that the critical integral gain is 64
in this case. The plots of magnitudes of the transfer functions Try, Twy, Tra, and Twa for the above three
cases are shown in Fig. 10. Comparing Fig. 10 and Fig. 7, we see similarities between the rigid antenna
with PI controller and the flexible antenna with LQG controller. The integral gain significantly impacts
only the disturbance rejection properties (Twy), and there is no significant impact on the closed-loop
bandwidth (see the Try plot) and on the system acceleration (see the plots of Tra and Twa).

Finally, we analyze the impact of flexible mode weights on antenna dynamics. Figure 11 presents
the magnitudes of the transfer functions Try, Twy, Tra, and Twa for fixed proportional-and-integral gains
(kp = 9.5 and ki = 6.3) and for small flexible mode weights (blue lines) and large flexible mode weights
(green lines). The plots show that the excessive flexible mode weights reduce the closed-loop bandwidth,
Fig. 11(a), and deteriorate the disturbance rejection properties, Fig. 11(b).
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Fig. 10.  Magnitudes of the transfer functions of the LQG controller, kp = 16:
(a) Try , (b) Twy , (c) Tra , and (d) Twa .
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D. Properties of the LQG weights

The above comparison shows that the LQG weights have an impact on a flexible antenna’s performance
similar to that of PI gains on a rigid antenna’s performance, assuming the proper choice of coordinate
system. The following list summarizes the properties of the LQG weights:

(1) The increase of the flexible mode weights causes antenna vibration suppression. A single
mode weight impacts only states corresponding to that particular mode (the flexible mode
coordinates are weekly coupled).

(2) The increase of the proportional weight increases the closed-loop bandwidth and improves
the disturbance rejection properties.

(3) The increase of the integral weight improves the disturbance rejection properties but does
not impact the bandwidth.

The position and integral of the position weights are coupled, but they are easily manageable since the
coupling involves two variables only.
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Fig. 11.  Magnitudes of the transfer functions of the LQG controller for kp = 9.5 and ki = 6.3 for
small flexible weights and large flexible weights, overdamped modes:  (a) Try , (b) Twy , (c) Tra , and
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E. Limits of the LQG Weights

The increases of the proportional, integral, and flexible mode gains have their limits, namely,

(1) The increase of flexible mode weights should not be excessive. Large weights lead to
overdamped dynamics and deteriorate overall antenna performance (reduced bandwidth,
depreciated disturbance rejection properties).

(2) The position weight is restricted by the antenna acceleration limit; large position weight
causes excessive acceleration of the antenna that hits the acceleration limit and leads to
nonlinear dynamics and deterioration of performance.

(3) The integral weight should not exceed the critical integral gain in order to prevent low-
frequency oscillations (these oscillations are lower than the antenna fundamental fre-
quency).

F. LQG Controller Tuning Procedure

Based on the above analysis, the following sequence for LQG controller tuning is recommended:
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(1) Tuning the flexible mode weights. Apply small weights of the integral of the position
and the position (which results in small PI gains), and also apply small flexible mode
weights. Check the closed-loop transfer function for the appearance of flexible mode res-
onances. If they are excessive, increase the corresponding flexible mode weights. Do not
apply unnecessarily large weights, since overdamped modes impact the antenna tracking
performance.

(2) Tuning the proportional weight. Increase the position weight; the proportional gain in-
creases accordingly. The increase of the position gain causes the expansion of the closed-
loop bandwidth. Increase the weight until bandwidth reaches the antenna fundamental
frequency.

(3) Tuning the integral weight. Increase the integral of the position weight, causing increase
of the integral gain. The weight should increase until oscillations appear. The integral
gain should satisfy Condition (16).

(4) Correct the flexible mode weights. Check the flexible mode dynamics. If resonances resur-
face after tuning the proportional and integral parts, increase the corresponding flexible
mode weights.

V. LQG Controller Tuning Tool

The procedure described above led to the development of the LQG controller tuning tool as a
MATLAB RO graphical user interface (GUI), shown in Fig. 12. The tool allows us to simulate antenna
responses to step commands, disturbance steps, and wind gust disturbances. It also allows for manipu-
lation of the LQG gains and observation of their impact on antenna performance. The performance is
displayed in two windows: the upper-left window shows antenna responses to the command step and to
the disturbance step; the upper-right window shows magnitudes of the command transfer function and
disturbance transfer function. The numerical values of settling time [s], overshoot [%], steady-state error
in the rate offset [mdeg], bandwidth [Hz], rms servo error in wind gusts [mdeg], and maximal value of the
antenna response to unit step disturbance [deg] are displayed in the lower right box.

The LQG controller weights are adjusted using slides, which include a proportional weight slide, an
integral weight slide, and flexible mode weight slides (marked at the tool as frequency weights). Thus,
a user can manipulate the antenna performance by moving the weight slides and observing the antenna
performance in the windows and in the right box. The tuning process is illustrated in [8].

VI. Conclusions

The article shows how to select the coordinates of the controller for simple tuning of the PI and LQG
controllers. Also, it shows how the controller gains of the PI controller and the controller weights of the
LQG controller impact the antenna closed-loop performance. Finally, it shows the limits of the LQG
weights. These features make it possible to improve antenna performance in wind disturbances.
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Fig. 12. The GUI of the antenna LQG controller tuning tool.
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