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Spectral Ringing Artifacts in Hyperspectral
Image Data Compression

M. Klimesh,1 A. Kiely,1 H. Xie,1 and N. Aranki2

When a three-dimensional wavelet decomposition is used for compression of
hyperspectral images, spectral ringing artifacts can arise, manifesting themselves
as systematic biases in some reconstructed spectral bands. More generally, sys-
tematic differences in signal level in different spectral bands can hurt compression
effectiveness of spatially low-pass subbands. The mechanism by which this occurs
is described in the context of ICER-3D, a hyperspectral imagery extension of the
ICER image compressor. Methods of mitigating or eliminating the detrimental ef-
fects of systematic band-dependent signal levels are proposed and discussed, and
results are presented.

I. Introduction

Hyperspectral images are three-dimensional (3-D) data sets, where two of the dimensions are spatial
and the third is spectral. A hyperspectral image can be regarded as a stack of individual images of
the same spatial scene, with each such image representing the scene viewed in a narrow portion of the
electromagnetic spectrum. These individual images are referred to as spectral bands. Hyperspectral
images typically consist of more than 200 spectral bands; the voluminous amount of data comprising
hyperspectral images makes them appealing candidates for data compression.

Straightforward extension of wavelet-based two-dimensional (2-D) image compression to hyperspectral
image compression based on a 3-D wavelet decomposition can result in inefficient coding of some subbands
and can lead to reconstructed spectral bands with systematic biases. In this article, we describe this
problem in detail and discuss some methods to resolve it.

The effects we describe are consequences of the fact that the wavelet transform doesn’t account for
systematic differences in signal level in different spectral bands. We remark that using a wavelet transform
for spectral decorrelation of hyperspectral data has other shortcomings as well. For example, the spectral
dependencies that exist are not limited to the small spectral neighborhood exploited by the wavelet
transform. However, the 3-D wavelet transform has practical advantages compared to other transforms:
it offers reasonably effective compression with modest computational and implementation complexity.
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Our analysis and results are presented with respect to the ICER-3D compressor, which was created as
an extension of the ICER image compressor to hyperspectral images. ICER is a wavelet-based, progressive
(embedded), 2-D image compressor; see [1] for a description. ICER is being used onboard the Mars
Exploration Rovers for compression of a large majority of the images returned [2]. ICER-3D inherits
much of its design from ICER, but uses a 3-D wavelet decomposition to provide decorrelation in the
spectral dimension as well as both spatial dimensions. Further development of ICER-3D is ongoing.

Other investigations of 3-D wavelet-based compression of hyperspectral imagery include [3–5].

The examples presented in this article use Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
data [6]. AVIRIS hyperspectral images have a width of 614 pixels and include 224 spectral bands covering
wavelengths from 370 nm to 2500 nm. For most of our examples, we use the first 512 line scene of the
calibrated 1997 Moffett Field radiance data set.3 In this article, we number bands, columns, rows, and
planes starting from 1 (rather than 0).

For all examples in this article, wavelet transforms are performed using the integer 2/6 discrete wavelet
transform (DWT) filter pair described in [7] (and referred to as “filter A” in [1,8]).

II. ICER Overview

We start with a brief overview of some relevant concepts from the basic (2-D) ICER.

In ICER, multiple stages of a 2-D wavelet transform are applied to the image. The first stage is
applied to the whole image, while subsequent stages are applied only to the (horizontally and vertically)
low-pass subband from the previous stage. This results in the pyramidal decomposition first suggested by
Mallat [9] and currently in common use. The resulting subbands include one small low-pass subband and
several subbands that are high-pass in at least one dimension. A three-level 2-D wavelet decomposition
of an image is shown in Fig. 1.

To limit the effect of data losses that can occur in transmission of data to Earth, ICER partitions im-
age data into a user-defined number of error-containment segments, which are compressed independently.
These segments are defined in the transform domain, and each segment approximately corresponds to

(a) (b)

Fig. 1.  Example of a three-level, 2-D wavelet decomposition:  (a) is the original image, 
spectral band 41 (wavelength 740 nm) from the Moffett Field scene, and (b) is the result 
of the wavelet decomposition.  In (b), in all subbands except the low-pass subband, 
absolute values are shown, contrast-enhanced by a factor of 3 relative to the low-pass 
subband.

3 The Moffett Field data set is available from the AVIRIS web site, http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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a rectangular region of the original image. Figure 2 illustrates this correspondence. Note that the
partitioning into segments is performed automatically based on the image dimensions and number of
segments requested; this operation has no relation to the concept of segmentation for distinguishing
objects or regions in an image. Segments are analogous to “precincts” in JPEG2000 [10].

Subbands that are high-pass in at least one dimension typically contain transform coefficients with
a distribution that is roughly symmetric, has zero mean, and has a single sharp peak at zero. An
approximately Laplacian distribution is prototypical.

In ICER, DWT coefficients are converted to sign-magnitude form and encoded one bit plane at a time
starting with the most significant magnitude bit plane. (A bit plane is formed by taking the ith most
significant magnitude bit of each coefficient of a subband, for some i.) When the first ‘1’ bit of a coefficient
is encoded, the sign bit is encoded immediately afterward. If encoding is stopped after completing some
number of bit planes, the resulting effective quantization is uniform except for a central deadzone. Bit-
plane encoding is known to be an effective method for progressive compression of values for which the
distribution has a sharp peak at zero; e.g., see [11]. A common non-progressive method is to quantize the
coefficients and encode them in one pass. Either of these methods can be very effective, especially when
combined with predictive coding and context modeling.

The low-pass subband resembles a low-resolution version of the original image and thus its DWT
coefficient distribution can vary significantly from image to image. In ICER, for each error-containment
segment of the low-pass subband a mean value is computed and subtracted (and encoded in the compressed
bitstream). The resulting coefficient distribution has zero mean, but in general does not have a sharp
peak near zero. The values are converted to sign-magnitude form and encoded one bit plane at a time
as in the other subbands. The strong correlation between adjacent coefficients is exploited via predictive
coding and context modeling. Other effective coding methods are possible.

III. Effect of Band-Dependent Signal Level Variations on 3-D Wavelet-Based
Compression

In the straightforward extension of ICER to 3-D hyperspectral data sets, multiple stages of a 3-D
wavelet transform are applied, with stages after the first applied only to the (spatially and spectrally)
low-pass subband from the previous stage. The resulting decomposition is a 3-D Mallat decomposition
(see Fig. 3); it is analogous to the 2-D Mallat decomposition of Fig. 1. Error-containment segments are

(a) (b)

Fig. 2.  The image of Fig. 1 divided into three error-containment segments, each tinted a 
different color:  (a) shows the regions with hard boundaries in the transform domain, 
while (b) shows the resulting regions with soft boundaries in the original image.
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Fig. 3.  The 3-D Mallat wavelet decomposition, illustrated here with three 
levels of decomposition.  The x, y, and l labels identify the horizontal, 
vertical, and spectral axes, respectively.

defined spatially (in the wavelet transform domain) so segments extend through all spectral bands. In
our baseline implementation, in each segment of the low-pass subband the mean value is computed and
subtracted.

In this section, for our examples we make use of the first level LLH (spatially low-pass, spectrally high-
pass) subband and the first level LHL (horizontally low-pass, vertically high-pass, spectrally low-pass)
subband.

A. Distributions of DWT Coefficients in Planes of Subbands

In any subband that is high-pass in at least one dimension, the mean value of the DWT coefficients will
tend to be close to zero (see the Appendix). However, in a subband that is high-pass in only one dimension,
individual planes that are orthogonal to the high-pass filter direction, such as xy planes (spatial planes)
of the first level LLH subband and xλ planes (horizontal–spectral planes) of the first level LHL subband,
do not necessarily have mean values that are close to zero. In both of these subbands, the overall mean
value is approximately zero, but in the LLH subband the individual xy planes have mean values that
are far from zero, while in the LHL subband the mean values of the individual xλ planes turn out to be
much closer to zero. Figure 4 illustrates this situation for the Moffett Field scene. The overall histogram
of the LLH subband as well as histograms of two individual spatial planes are shown in Fig. 5(a). Note
from Fig. 5(b) that the overall histogram for the LHL subband is well-behaved. Comparing Fig. 5(a) and
Fig. 6, we see that the LLH subband has a much narrower distribution (and consequently a higher peak)
after subtracting the mean value from each spatial plane.

The widely varying mean values of spatial planes of the first level LLH subband are easily explained.
The explanation applies to any subband that is spatially low-pass. The underlying cause is systematic
differences in the signal level in different spectral bands. To a (very rough) first approximation, the
spectra at individual spatial points are all similar (Fig. 7) due to effects such as atmospheric absorption
in some regions of the spectrum and illumination from the same source (sunlight). Therefore, applying
a wavelet decomposition in the spectral dimension results in similar transformed spectra (Fig. 8). In
some spatial planes of the subband, the systematic content of the transformed spectra swamps the spatial
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Fig. 4.  Means of (a) the individual xy planes in
the first level LLH subband and (b) the individual
x λ planes in the first level LHL subband. For both
cases, the dataset is the Moffett Field scene.

variation that arises from the scene content; in other words, the magnitude of the mean value of some
planes is relatively large compared to the variation of DWT coefficient values in the plane. High-pass
filtering in either spatial direction effectively removes this systematic variation, so it is only an issue in
spatially low-pass subbands.

The planes corresponding to spatial rows and columns of a hyperspectral image generally should not
exhibit significant systematic differences in the signal level; thus, no analogous issues should arise with
wavelet transforms in the spatial dimensions.

For a similar reason, an analogous effect generally does not arise in wavelet-based compression of 2-D
images. However, it is instructive to consider the case of a 2-D image that has systematic variations in
pixel intensities that depend on the row index or column index. Such variations do not occur in most types
of images, but they are exhibited in a spatial–spectral plane of a hyperspectral image. An example of such
a spatial–spectral plane is given in Fig. 9. Figure 10 shows the result of a 2-D wavelet decomposition of
this spatial–spectral plane. Note that the systematic signal level differences in the spectral bands produce
bright lines in the spatial (vertical) dimension in the spatially low-pass, spectrally high-pass subbands;
these lines correspond to columns of these subbands that have mean values that are not close to zero.

We remark that, although in this case there are also significant lines in the spectral dimension of the
spatially high-pass, spectrally low-pass subbands, the analogous phenomenon in the 3-D case is much
weaker: in the 2-D case, these lines can be produced by a prominent spatial feature at a single location,
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Fig. 5.  Histograms of DWT coefficient values in 
subbands from the Moffett Field scene:  (a) the first 
level LLH subband and two individual spatial 
planes of this subband and (b) the first level LHL 
subband.
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Fig. 6.  Histogram of DWT coefficient values in the 
first level LLH subband from the Moffett Field scene 
after subtracting the mean value from each spatial 
plane.
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Fig. 7.  Examples of individual spectra, labeled 
(i)–(iii), and the overall mean spectrum, from the 
Moffett Field scene.
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Fig. 8.  The high-pass portion of a single 1-D 
wavelet decomposition of the individual spectra 
shown in Fig. 7, and of the mean spectrum for the 
whole scene.
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but in the 3-D case it would take a prominent feature in a whole row of spatial locations to create a
similar effect in an entire xλ plane of an LHL subband. Thus, in a sense, there is more asymmetry among
the dimensions in 3-D hyperspectral images than Fig. 10 suggests.

B. Challenges in Compressing Spatially Low-Pass Subbands

The bit-plane coding schemes used by ICER and other progressive compressors are best suited for
DWT coefficient distributions that have mean zero and a single sharp peak at zero. It is implicitly as-
sumed that the more significant magnitude bits are likely to be zero, and that after the most significant
‘1’ bit, the values of less significant bits are difficult to predict. These assumptions are appropriate for
such distributions. Furthermore, sign-magnitude bit-plane coding schemes effectively produce quantiza-
tion with a reconstruction point at zero, so even when few bit planes are encoded, the resulting coarse
quantization can result in relatively low distortion since many values that are already very close to zero
are quantized to zero.

We assert that, in the 3-D wavelet decomposition of a hyperspectral image, many spatial planes of
spatially low-pass subbands have DWT coefficient distributions that are not well matched to ICER’s
bit-plane coding scheme. As a result, the compression effectiveness suffers. In particular, for planes with
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Fig. 9.  Planes of the Moffett Field scene:  (a) spectral band 41 and        
(b) column 123.  Column 123 is the spatial–spectral plane consisting of 
column 123 from each spectral band.  The arrows above the images 
indicate where they intersect.  The labels (i)–(iii) identify the individual 
spectra used in Figs. 7 and 8.
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Fig. 10.  The spatial–spectral plane of Fig. 9 and its two level 
2-D wavelet decomposition.  In all subbands except the low-
pass subband, absolute values are shown, contrast-
enhanced by a factor of 8 relative to the low-pass subband.

distributions that have a peak away from zero, the most significant ‘1’ bits occur earlier, and subsequent
(refinement) bits are somewhat predictable because they often describe coefficient values near the peak.
The bit-plane coding model does not adequately capture either of these effects. As a result, many bits
are spent early for encoding spatially low-pass, spectrally high-pass subbands; this encoding is not as
effective as it could be, hurting rate-distortion performance, especially at low bit rates. In addition,
coarse quantization can result in relatively large distortion and a bias in the plane if there does not
happen to be a reconstruction point near the peak value. Any bias in these planes can become a bias in
several consecutive spectral bands in the reconstructed hyperspectral image. We give examples illustrating
such biases in Section V. These effects would occur not only with ICER’s bit-plane coding scheme, but
also with the schemes used by the Embedded Zerotree Wavelet (EZW) algorithm [12], Set Partitioning
in Hierarchical Trees (SPIHT) [13], Embedded Block Coding with Optimized Truncation (EBCOT) [14],
and JPEG2000 [10].
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The biases described above can be considered to be a manifestation of a phenomenon we call spectral
ringing. This term comes from the term “ringing,” which describes the more familiar 2-D image com-
pression phenomenon in which an edge in an image produces spurious oscillations adjacent and parallel
to the edges in the reconstructed image due to quantization effects. In hyperspectral data, the individual
spectral bands play the role of edges and the resulting ringing occurs in the spectral dimension. We note
that any spectral transform that does not take into account the systematic variations in the relative signal
levels of the spectral bands would produce transform coefficient planes with systematic large-magnitude
means, creating the possibility for analogous spectral compression artifacts.

Finally, we point out that the individual spatial planes of spatially low-pass subbands retain much
of the qualitative appearance that is present in the original spectral bands. This contrasts with spatial
planes of other subbands. Representative examples of spatial planes from the first level LHL and LLH
subbands are shown in Fig. 11. The structure present in the spatial planes of spatially low-pass subbands
suggests that exploiting the remaining correlation is important for effective compression.

IV. Handling Band-Dependent Signal Level Variations

In the preceding section, we saw that systematic variations in signal levels of different spectral bands
can cause widely varying mean values in spatial planes of spatially low-pass subbands. We saw that this
can have detrimental effects on image compression. We now describe two methods of mitigating these
effects. Compression results illustrating the benefits of these methods are presented in Section V.

The two methods are as follows:

(1) Mean Subtraction. The basic idea of this method is simply to subtract the mean values
from spatial planes of spatially low-pass subbands prior to encoding, thus compensating
for the fact that such spatial planes often have mean values that are far from zero. The
resulting data (e.g., see Fig. 6) are better suited for compression by methods that are
effective for subbands of 2-D images.

(2) Modified Decomposition. Under this method, the subband decomposition is changed
from the 3-D Mallat decomposition so that in stages of decomposition after the first,
not only is the low-pass subband further decomposed, but spatially low-pass, spectrally
high-pass subbands are also further decomposed spatially. An illustration of this subband
decomposition is provided in Fig. 12; it should be compared to the Mallat decomposition
shown in Fig. 3. The decomposition can be alternatively described as follows: first, a 2-D
Mallat decomposition with the desired number of levels is performed (spatially) on every
spectral band. Then, a single level of spectral decomposition is applied across the first
level spatial subbands; a two-level 1-D Mallat decomposition is applied spectrally across
the second level spatial subbands; and so on.

These two methods can be combined: we can perform the modified decomposition and then subtract
the mean values from spatial planes of the spatially low-pass subbands.

In the context of ICER-3D, the mean subtraction method is implemented as follows. After the 3-D
wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane
of each error-containment segment of each spatially low-pass subband. The resulting data are converted
to sign-magnitude form and compressed as in the baseline ICER-3D. The mean values are encoded in the
compressed bitstream and added back to the data at the appropriate decompression step. The overhead
incurred by encoding the mean values is only a few bits per spectral band per segment, which is negligible
because of the huge size of hyperspectral data sets.
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Fig. 11.  Spatial planes of (a) the first level LLH and (b) the first level LHL subbands from 
the Moffett Field scene.  Absolute values of DWT coefficients are shown.  In both cases 
plane 89 (of 112) is shown.
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Fig. 12.  The 3-D wavelet decomposition scheme used by the modified 
decomposi t ion  method,  i l lus t ra ted  here  wi th  three  leve ls  o f  
decomposition.

Note that it is important to subtract the means after all stages of subband decomposition; otherwise,
if two adjacent error-containment segments have significantly different means, a sharp edge would appear
after subtracting the means, artificially increasing high-frequency signal content in further stages of spatial
decomposition.

The mean subtraction method is easy to implement. However, when used with the Mallat decomposi-
tion it has some tendency to produce visible segment boundaries in some reconstructed spectral bands at
low bit rates (see Fig. 16 in Section V). When adjacent segments in a spatial plane of a spatially low-pass
subband have different mean values, the subtraction of means causes the compressor to effectively use
different quantizers, which can make the boundary between the segments conspicuous. Segment bound-
aries are generally not visible when mean values are subtracted only for the low-pass subband, as is the
case for the baseline ICER-3D.
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The modified decomposition is motivated by the observation that in a 3-D wavelet decomposition, the
spatially low-pass, spectrally high-pass subbands have spatial planes that look qualitatively similar to
spatial planes in the low-pass subband, as demonstrated in Fig. 11. This suggests that compression effec-
tiveness improves with additional decompositions of the spatially low-pass, spectrally high-pass spatial
planes, as it does with additional decompositions of the low-pass subband in a 2-D Mallat decomposition.

As we’ll see in Section V, the mean subtraction and modified decomposition methods provide similar
improvements in rate-distortion performance, but the latter appears to have a slight advantage in the
subjective appearance of individual reconstructed bands. This is explained as follows. Because the
spatially low-pass subbands are relatively small under the modified decomposition, they can be encoded
to high fidelity with relatively few bits (and reasonable coding schemes will give these subbands high
priority). As a result, low-pass data in the individual spectral bands will tend to be reproduced with
high fidelity. Thus, the mean values of small regions of the reconstructed spectral bands will tend to be
close to the corresponding values in the original image (where the size of the “small regions” increases
with the number of levels of wavelet decomposition). The net result is that, even at fairly low bit rates,
no noticeable bias will be present in small regions of the individual reconstructed spectral bands.

We note that, when the two methods are combined under ICER-3D, the fact that spatially low-pass
subbands are represented with high fidelity means that segment boundaries will not be readily visible.
Furthermore, whatever segment boundaries might be visible in the low-pass versions of the individual
spectral bands will tend to be washed out by the blurring effect of several levels of the inverse wavelet
transform.

Other researchers have also devised hyperspectral image compression schemes that use 3-D wavelet
decompositions that are modifications to the Mallat decomposition. For example, in [3,4] the wavelet
decomposition used is equivalent to a 2-D Mallat decomposition in the spatial domain followed by a
1-D Mallat decomposition in the spectral dimension. The resulting overall decomposition has further
decomposed subbands compared to our modified decomposition with the same number of stages. Because
all of the transform steps of our modified decomposition are included in the decomposition of [3,4], the
latter enables a similar advantage in compression effectiveness. Alternatives to the Mallat 3-D wavelet
decompositions have also been used for compression of 3-D medical data sets (e.g., [15]) and video coding
(e.g., [16,17]). In video coding, the number of samples in the temporal dimension has generally been very
small.

Finally, we outline an approach to encoding spatially low-pass subbands that is an alternative to the
mean subtraction method. As we have observed above, spatial planes of spatially low-pass subbands look
rather image-like, and the distributions of DWT coefficients in such spatial planes often do not have zero
means and single sharp peaks. Rather than adjusting the effective quantizers by subtracting mean values,
one could alter the way these subbands are encoded so as to be based on (possibly progressive) uniform
quantization that does not depend on subband content. One method of doing this is bit-plane coding of
the subbands without mean subtraction or conversion to sign-magnitude form. For effective compression
under this method, one would want to use predictive coding and context modeling modules that can
effectively exploit the image-like appearance of the spatial planes of these subbands. This modification
could be applied to either the standard Mallat decomposition or the modified decomposition.

Since all error-containment segments in a subband would be using the same quantizer under this
alternative encoding approach (so long as they are all compressed to the same fidelity), it eliminates
any possible boundary artifacts between segments. However, this coding approach might not encode
the affected (i.e., spatially low-pass) subbands as effectively. In particular, under the mean subtraction
method a sharp peak in the DWT coefficient distribution would tend to be exploited by quantization that
includes a reconstruction point at the peak value, but under uniform quantization, having a reconstruction
point near the peak values would be less likely, and as a result there could be higher distortion and a
systematic bias in some spectral bands of the reconstructed image.
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V. Results

The methods described in Section IV provide a noticeable improvement in rate-distortion performance
compared to the baseline approach, especially at moderate to low bit rates (roughly 1 bit/pixel/band
and below). In Fig. 13, we compare the rate-distortion performance of these methods to the baseline
approach for the Moffett Field scene and for a 512-line radiance data scene of Arizaro, Argentina, taken
on February 7, 2001.4 The points shown on the curves were produced by encoding all subband bit planes
that have significance exceeding a given value. It is seen that mean subtraction, modified decomposition,
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Fig. 13.  Rate-distortion performance of the methods described in 
Section IV and baseline ICER-3D for (a) the Moffett Field scene 
using 5 stages of wavelet decomposition and a single error-
containment segment and (b) the Arizaro scene using 3 stages of 
wavelet decompostion and 4 error-containment segments.

4 AVIRIS flight number f010207t01p02 r06.
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and the combination of the two provide very similar rate-distortion performance, and, for example, give
roughly a 10 percent improvement in rate compared to the baseline method at 1 bit/pixel/band. When the
number of wavelet decompositions is small, the rate-distortion performance of the modified decomposition
alone is slightly worse than that of mean subtraction alone or the combination of the two methods.

Overall, the use of either method from Section IV with ICER-3D provides a moderate subjective
image quality improvement consistent with the improvement in mean squared error (MSE) distortion.
In some cases, however, the improvement is more dramatic, especially with regard to reduction of bias
in reconstructed spectral bands when compressed at low bit rates. This is illustrated in the false-color
images of Figs. 14 through 16. These images were produced by mapping band 176 to red, 81 to green,
and 33 to blue. Bands 176 and 81 were chosen because their reconstructions exhibit a noticeable bias
when using the baseline ICER-3D. This bias appears as an apparent overall color change in the false-color
images. To a lesser degree, regional biases can be seen under the mean subtraction method.

As the discussion in Section IV suggests, error-containment segment boundaries are sometimes visible
when mean subtraction is used alone. This is illustrated in the reconstruction of Fig. 16, where some
segment boundaries near the top of the image are noticeable under mean subtraction but not under the
other methods.

In Figs. 14 through 16, reconstructions using the modified decomposition combined with mean sub-
traction are not shown because they are visually indistinguishable from those produced by the modified
decomposition without mean subtraction.

ORIGINAL

MODIFIED DECOMPOSITION MEAN SUBTRACTION

BASELINE

Fig. 14.  Reconstructed false-color images of the Moffett Field scene using the baseline 
ICER-3D, and ICER-3D with mean subtraction and modified decomposition.  In all three 
cases, the entire hyperspectral scene was compressed to 0.1 bits/pixel/band using             
5 stages of wavelet decomposition and a single error-containment segment.
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Fig. 15.  Detail region from the reconstructed false-color images of Fig. 14.

VI. Conclusion
When using 3-D wavelet transforms for hyperspectral image compression, systematic variations in

signal level of different spectral bands can cause widely varying mean values in spatial planes of spatially
low-pass subbands. Failing to account for this phenomenon can have detrimental effects on image com-
pression, including reduced effectiveness in compressing spatially low-pass subband data, and biases in
some reconstructed spectral bands.

These effects can be mitigated by subtracting the mean value from each spatial plane of each spa-
tially low-pass subband, or by modifying the wavelet decomposition to perform extra stages of spatial
decomposition in spatially low-pass subbands, or by a combination of these approaches. We presented
examples illustrating that these methods offer similar improvements in rate-distortion performance. Both
approaches reduce biases in reconstructed spectral bands and provide an improvement in subjective recon-
structed image quality. The modified decomposition has the advantage that it does not have a tendency
to produce visible boundaries between error-containment segments.
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ORIGINAL

MODIFIED DECOMPOSITION MEAN SUBTRACTION

BASELINE

Fig. 16.  Reconstructed false-color images of the Moffett Field scene using the baseline 
ICER-3D, and ICER-3D with mean subtraction and modified decomposition.  In all three 
cases, the entire hyperspectral scene was compressed to 0.0625 bits/pixel/band using        
5 stages of wavelet decomposition and 16 error-containment segments.
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Appendix

Mean Value of High-Pass DWT Coefficients

In this Appendix, we provide some justification for the usual assumption that a subband that is high-
pass in at least one direction will have a mean DWT coefficient value that is close to zero. We do this by
deriving an approximate expression for the mean high-pass coefficient value of a single decomposition in
the one-dimensional case.

Consider a length N signal x1, · · · , xN . For convenience we assume N is even. For a fairly general
linear DWT, a high-pass coefficient hn can be computed as hn =

∑
i cix2n+i, where the sum is over the

indices of the wavelet filter coefficients ci. Here we have assumed that the number of filter coefficients
is small, and n is in the range 1, · · · , N/2 but not so near the edge of that range that boundary effects
matter. Because these are high-pass values, the sum of the filter coefficients ci should be zero.

To get a reasonably simple approximate expression for the mean high-pass coefficient value h̄, we make
the approximation that each xj makes the same contribution to h̄. Specifically,

h̄ =
2
N

N/2∑
n=1

hn ≈ 2
N

∑
n

∑
i

cix2n+i

where the last pair of sums is over those n and i for which 2n+ i is in the range 1, · · · , N . Separating the
odd and even indices of x gives

h̄ ≈ 2
N

( ∑
j odd

xj

∑
i odd

ci +
∑

j even

xj

∑
i even

ci

)

= x̄odd

∑
i odd

ci + x̄even

∑
i even

ci

= x̄odd

∑
i

ci + (x̄even − x̄odd)
∑

i even

ci

= (x̄even − x̄odd)
∑

i even

ci

where x̄even and x̄odd denote the mean even- and odd-indexed signal values, respectively, and we have
used the fact that the ci sum to zero.

In most situations, we would expect x̄even and x̄odd to be about equal due to the effect of averaging
many samples, which implies that h̄ is close to zero. This in turn implies that a subband that is high-pass
in at least one direction will have a mean DWT coefficient value that is close to zero.
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