
IPN Progress Report 42-161 May 15, 2005

Reduced Complexity Decoding of Coded
Pulse-Position Modulation Using

Partial Statistics
B. Moision1 and J. Hamkins1

We show the storage requirements for soft-in soft-out (SISO) decoding of pulse-
position modulation may be reduced by discarding a substantial subset of the slot
likelihoods while suffering neglibible loss in performance in a serially concatenated,
iteratively decoded scheme. We illustrate optimum processing of the remaining
subset under a choose the maximum rule and show that a simplified trellis may be
used for SISO decoding.

I. Introduction

The deep-space optical link operates efficiently at high peak-to-average power ratios [1,2], or low duty-
cycles, which may be achieved by modulating the data using M -ary pulse-position modulation (PPM),
in which log2 M bits choose the location of a single pulsed slot in an M -slot symbol. For average-power-
constrained links, efficient operation is typically achieved for large orders M . For example, the Mars Laser
Communications Demonstration, a deep-space optical link that will fly on the Mars Telecommunications
Orbiter in 2009, plans to use M ∈ {32, 64, 128}.2 To efficiently achieve low bit-error rates, the modulation
is concatenated with an error-correcting code. Near-capacity performance has been demonstrated for
coded PPM by including soft-PPM demodulation in iterative decoding [3,4].

In the iterative soft-decision decoding process, the likelihood each slot contains a pulse is computed by
the receiver and transmitted to the decoder, where it is stored for the duration of the iterative decoding
process. However, storing these likelihoods can be prohibitively expensive for the large orders and short
slot widths required by deep-space links. We show that the storage requirements can be reduced by
discarding a substantial subset of the likelihoods while suffering virtually no loss in performance. We
illustrate optimum processing of the remaining subset and show that a simplified trellis may be used for
iterative decoding.

Two channel models will be considered: a Gaussian model, which may be used to model the output of
an avalanche photodiode (APD) detector, and the Poisson model, which may be used to model photon-
counting devices, such as a photomultiplier tube (PMT). We choose these models to simplify presentation

1 Communications Architectures and Research Section.
2 MLCD Mars Lasercom Terminal To Ground Terminals Interface Control Document, MLCD ICD2 (internal document),
National Aeronautics and Space Administration, December 2004.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

and facilitate comparisons with known results. More accurate models exist for the APD and PMT, such
as the McIntyre–Conradi [5,6], Webb+Gaussian [7], and Gamma models [8]; however, the conclusions
drawn from the Gaussian and Poisson model carry over to the more complex models, and we anticipate
relative losses on the same order.

The article is organized as follows. In Section III, we derive channel likelihoods under a ‘choose the
maximum’ rule. In Section IV, we show the performance of iterative decoding with partial statistics. In
Section V, we quantify the complexity reduction and demonstrate that decoding may be accomplished
with a time-varying, reduced-complexity trellis.

II. Preliminaries

The coded modulation system considered in this article is illustrated in Fig. 1. User data are encoded
by the serial concatenation of outer code Co and inner code Ci through a bit interleaver

∏
. Throughout

we use U, X, A, C, Y to denote random variables and u, x, a, c, y their realizations. We use C,Y and c,y
to denote vectors of random variables and their realizations. We write c = (c1, · · · , cN), where each
ck = (ck,1, · · · , ck,M) is a vector. We also write I to denote a random set of indices and let I denote a
realization of I.

The user input is U = (U1, · · · ,UK), a K-vector of binary p-vectors, i.e., a pK-bit vector. U is
encoded by a rate-p/q outer code Co to produce X = (X1, · · · ,XK), a K-vector of binary q-vectors.
These qK bits are permuted using Π, yielding another qK-vector, A = (A1, · · · ,AK). We denote the
length of the bit interleaver by |Π| = qK. A is then encoded by the inner code Ci consisting of a rate-1
code whose outputs are mapped to an M -ary PPM constellation. That is, A is encoded by Ci to yield
C = (C1, · · · ,CN), where each Ck, 1 ≤ k ≤ N , is a binary M -vector with a single non-zero entry.

We refer to C as a codeword, to each Ck as a PPM symbol, and to each component of Ck =
(Ck,1, · · · , Ck,M) as a slot. If Ck,j = 1, we say slot j of the kth PPM symbol is a pulsed slot or sig-
nal slot, and we write Ck = c(j) to denote the binary M -vector corresponding to this jth PPM symbol; if
Ck,i = 0, it is a nonpulsed slot or noise slot. There are N = |Π|/ log2 M symbols, or NM = |Π|M/ log2 M
slots per codeword.

This article considers two rate-1 codes as part of the inner code: the identity, and a binary accumulator,
i.e., a 1/(1 + D) mapping. We refer to the inner code that is formed by the concatenation of a binary
accumulator and PPM mapping as accumulate-PPM (APPM). An APPM encoder can be described by
a 2-state, 2M -edge trellis, with each stage corresponding to one PPM symbol.

The kth transmitted coded PPM symbol, binary M -vector Ck = (Ck,1, · · · , Ck,M), is received as a
noisy version Yk = (Yk,1, · · · , Yk,M). We assume the Yk,i are conditionally independent given Ck. We let
Fn(y) and Fs(y) denote the conditional cumulative distribution functions of Y in noise and signal slots,
respectively, evaluated at y, and let fn(y) and fs(y) denote the probability density (or mass) functions.
That is, Fn(y) = Prob(Y ≤ y|C = 0). We also define Fn(y−) = Fn(y)−Prob(Y = y|C = 0) = Prob(Y <
y|C = 0), and define Fs(y−) similarly.

Fig. 1. The constrained storage channel model.

U

Outer Encoder

Co C i

Inner Encoder

Optical
Channel

Select
Partial

Statistics

Interleaver

X
P f

A C Y {(Yk, I, I)}

2

III. Partial Statistics

To realize the gains of iterative decoding algorithms nominally requires computation of a likelihood of
the form

pYk|Ck

(
yk|c(j)

)
= fY |C(yk,j |1)

M∏
i=1,i �=j

fY |C(yk,i|0) =
fY |C(yk,j |1)
fY |C(yk,j |0)

M∏
i=1

fY |C(yk,i|0) = K
fY |C(yk,j |1)
fY |C(yk,j |0)

(1)

where K does not depend on j. Thus, for each symbol the M slot-likelihood ratios are sufficient for
computing the required conditional likelihoods. However, high data rates, large values of M , and large
interleavers can make likelihood storage and processing prohibitively expensive. The set of channel
likelihoods corresponding to one codeword requires fM |Π|/ log2(M) bits, where f is the number of bits
used to represent fixed or floating-point values, typically 4–8. For example, with M = 64, f = 6, |Π| =
16384, the storage per codeword is 131 kilobytes. Multiple codewords may need to be stored concurrently
to accommodate delays in iterative decoding and any parallelization of the decoding algorithm. For
comparison, the storage required for each codeword of a hard-decision (n, k) Reed–Solomon decoder,
which requires only the location of the slot with the maximum count per symbol, or n log2 M bits, would
be approximately 47 bytes per codeword, using the convention n = M−1 = 63. However, a Reed–Solomon
decoder with these parameters requires 2–3 dB additional signal power [4].

To reduce the complexity of iterative decoding, in this section we describe a method to discard the
majority of the channel likelihoods and to effectively operate the decoder using only the remainder.
For example, in Section IV we illustrate an example of the case described above, where the storage
required for one codeword of likelihoods may be reduced from 131 kilobytes to 38 kilobytes, and the
number of operations to execute the forward–backward algorithm on the inner code, which comprises the
majority of operations for iterative decoding, may be reduced by 29 percent, with negligible degradation
in performance.

A. The Channel-Likelihood Selector Function, φ

Suppose P of the M elements of each PPM symbol Yk, as well as their indices I, are made available
to the receiver. As illustrated in Fig. 1, φ denotes the rule for choosing the P samples, φ : yk → (yk,I , I),
I ⊂ {1, · · · , M}, |I| = P , where (yk,I , I) = {(yk,j , j)|j ∈ I} is the vector of retained samples and indices.
For example, if φ is the rule ‘choose the largest,’ P = 2, and yk = (0.9, 0.2, 0.8, 0.3, 0.1, 0.2, 0.0, 0.1), then
φ(yk) = {(0.9, 1), (0.8, 3)}, i.e., the largest two values of yk are saved, along with their positions in yk.
The mapping φ reduces the dimensionality of the received information. By allowing I to be a function of
the observation yk, we will see that the reduction may be implemented with negligible performance loss.

Considering the decision rule as part of the channel, the optimal rule φ∗ is the one that maximizes the
channel capacity, i.e., the one that yields the most information about the codewords,

φ∗ def= argmax
φ,pC

I
(
C; φ(Y)

)
(2)

where I
(
C; φ(Y)

)
is the mutual information between C and φ(Y), and pC is the distribution on C. The

optimization of the decision rule φ is not addressed in this article. We assume φ is fixed and address
methods of utilizing the available information to estimate the transmitted data.

The conditional likelihoods

pφ(Yk)|Ck
(φ(yk)|ck) = pYk,I |Ck,I (yk,I |ck,I)pI|Ck,Yk,I (I|ck,yk,I) (3)

3

are a sufficient statistic for the maximum a posteriori estimation of C given φ(Y), and will serve as inputs
to an iterative decoding algorithm. The term pYk,I |Ck,I is the likelihood that would result if the input
were mapped to a P -dimensional constellation, and the term pI|Ck,Yk,I is an adjustment to reflect the
likelihood of the subset selection I.

Choosing the maximum element is the maximum-likelihood symbol decision rule for several channels
of interest [9]. As a heuristic extension, we let φ choose the P largest elements of yk.

For a continuous-output channel, we have

pI|Ck,Yk,I (I|c(j),yk,I) = Prob(maxYk,Ī ≤ ψ|Ck = c(j), Ψ = ψ)

where Ψ = minYk,I , i.e., the minimum of the components of the vector Yk,I , and Ī = {1, · · · , M}/I.
Then

Prob(maxYk,Ī ≤ ψ|Ck = c(j)) =
{

Fn(ψ)M−P , j ∈ I
Fn(ψ)M−P−1Fs(ψ), j /∈ I

= Fn(ψ)M−P−1Fs(ψ) ×
{

g(ψ), j ∈ I
1, j /∈ I (4)

where

g(ψ) def=
Fn(ψ)
Fs(ψ)

For a discrete-output channel, ties for the P largest elements may occur with positive probability. As
shown in Appendix A, this results in the modified probability

pI|Ck,Yk,I (I|c(j),yk,I) =
M−P∑
t=0

1(
v+t

t

)(
M − P

t

)
Fn(ψ−)M−P−t−1Fs(ψ−)fn(ψ)t (5)

×

g(ψ−), j ∈ I

M − P − t

M − P
+

t

M − P
g(ψ−)L(ψ), j /∈ I

(6)

where v = |{yk,i = ψ|i ∈ I}|, the number of slots that tie the minimum. As an approximation, Eq. (4)
may be used in place of Eq. (6), which has the effect of neglecting the probability of multiple slots of a
symbol tying for the P th largest value.

B. Poisson Channel

The output of a photon-counting detector, e.g., a photomultiplier tube, may be modeled as a Poisson
process, with mean nb in a noise slot and ns + nb in a signal slot,

4

pY |C(k|1) =
(ns + nb)ke−(ns+nb)

k!

pY |C(k|0) =
nk

b e−nb

k!

In the special case nb = 0, the PPM channel reduces to an M -ary erasure channel with

pCk|Yk

(
c(j)|yk

)
=

{ 1, yk,j > 0
1/M, yk = 0
0, yk,i > 0, i �= j

pYk|Ck

(
yk|c(j)

)
= MpYk

(yk)pCk|Yk

(
c(j)|yk

)

Factoring out pYk
, which is not a function of c(j), the likelihoods depend only on whether photons are

observed—not on their number. Hence we may always take P = 1 in zero background, where it is
sufficient to store the location (or absence) of observed photons. In the remainder, we address the case
nb > 0.

For nb > 0, a soft-decision demodulator would nominally compute and store likelihoods

pYk|Ck

(
yk|c(j)

)
=

(
M∏
i=1

pY |C(yk,i|0)

)
e−ns

(
1 +

ns

nb

)yk,j

for each c(j). With partial statistics, we have

pYk,I |Ck,I (yk,I |ck,I) =
∏
i∈I

pY |C(yk,i|0) ×

1, j /∈ I

e−ns

(
1 +

ns

nb

)yk,j

, j ∈ I

pφ(Yk)|Ck
(φ(yk)|c(j)) =

M−P∑
t=0

Kt ×

M − P − t

M − P
+

t

M − P
g(ψ−)L(ψ), j /∈ I

e−nsg(ψ−)
(

1 +
ns

nb

)yk,j

, j ∈ I

g(ψ) =

∑ψ
k=0

nk
b

k!

e−ns
∑ψ

k=0

(nb + ns)k

k!

(7)

where Kt denotes a constant relative to c(j). If we ignore the possibility of ties, we may use Eq. (4) to
obtain an approximation for Eq. (7):

5

pφ(Yk)|Ck

(
φ(yk)|c(j)

)
≈ K ×

1, j /∈ I

e−nsg(ψ)
(

1 +
ns

nb

)yk,j

, j ∈ I
(8)

A second approximation is arrived at by artificially forming a full statistics observation by assigning the
missing observables Yk,I a stand-in value equal to the mean of the noise slot. In this way, Eq. (1) becomes

pφ(Yk)|Ck

(
φ(yk)|c(j)

)
≈ K ×

1, j /∈ I
(

1 +
ns

nb

)yk,j−nb

, j ∈ I
(9)

C. Gaussian Channel

The output of an APD may be modeled as Gaussian when the number of signal photons incident on
the detector is large [7], yielding, after normalization,

pY |C(y|1) =
1√

2πσ2
exp

(−(y − 1)2

2σ2

)

pY |C(y|0) =
1√

2πσ2
exp

(−y2

2σ2

)

On observation of yk, a soft-decision demodulator nominally computes the likelihoods

pYk|Ck

(
yk|c(j)

)
=

1
(2πσ2)M/2

exp

(
−1
2σ2

M∑
i=1

y2
k,i

)
exp

(
2yk,j − 1

2σ2

)

With partial statistics we have

pYk,I |Ck,I (yk,I |ck,I) =
1

(2πσ2)P/2
exp

(
−1
2σ2

∑
i∈I

y2
k,i

)
×

1, j /∈ I

exp
(

2yk,j − 1
2σ2

)
, j ∈ I

pφ(Yk)|Ck

(
φ(yk)|c(j)

)
= K ×

1, j /∈ I

g(ψ) exp
(

2yk,j − 1
2σ2

)
, j ∈ I

g(ψ) =
erfc

(−ψ

σ
√

2

)

erfc
(−(ψ − 1)

σ
√

2

)

(10)

where

6

erfc(t) def=
2√
π

∫ ∞

t

e−y2
dy

and K is constant relative to c(j).

Computing likelihoods via Eq. (10) requires a table lookup or computation in order to determine g(ψ).
This may be eliminated by replacing g(ψ) with an estimate independent of ψ. For example, we may
replace g(ψ) in Eq. (10) by its mean, E

(
g(Ψ)

)
:

pφ(Yk)|Ck

(
φ(yk)|c(j)

)
≈ K ×

1, j /∈ I

E
(
g(ψ)

)
exp

(
2yk,j − 1

2σ2

)
, j ∈ I

(11)

Using this simplified likelihood requires pre-computation of E
(
g(Ψ)

)
. The distribution of Ψ for a PPM

channel is derived in Appendix B.

IV. Iterative Decoding Performance

Figures 2 and 3 illustrate the bit- and word-error rates for a coded system with M = 64 on the Poisson
channel with nb = 1. Approximations (8) and (9) are used with variable number of statistics P . The
outer code is the 4-state, rate-3/5, dfree = 4 convolutional code from [10], and the inner code is APPM.
The interleaver is a 16410-bit spread interleaver, and iterations are stopped when the bit estimates from
decoding the outer code form a codeword of the outer code. The error floor observed is due to this
stopping rule. It may be removed by using another rule, e.g., [3]. We observe less than 0.05-dB loss
relative to using full statistics with either approximation and P ≥ 8.

Figures 4 and 5 illustrate bit-error rates for M = 16 and M = 256 on the Gaussian channel. Equa-
tion (10) is used for channel likelihoods. The outer code is the rate-1/2, 4-state code with generator
matrix G(D) =

[
1 (1 + D2)/(1 + D + D2)

]
. The inner code is APPM in each case. The interleaver is a

4096-bit randomly generated interleaver. Decoding uses fixed 8 iterations. We observe less than 0.05-dB
loss relative to using full statistics with P ≥ 8 in both cases.

Figure 6 illustrates results using Eqs. (10) and (11). The outer code in Fig. 6 is the rate-1/2, 4-state
code with generator matrix G(D) =

[
1 (1 + D2)/(1 + D + D2)

]
. The inner code is M = 256 PPM. The

simulations use 8 iterations and a 4096-bit spread interleaver. We see negligible degradation using the
approximate likelihood.

The ratio P/M at which we see negligible loss decreases with M . Hence, the utility of using partial
statistics increases with M . We conjecture that the ratio P/M required for a fixed loss is also decreasing
with the noise variance (in the limiting cases with nb = 0 on the Poisson channel or σ2 = 0 on the
Gaussian channel, we may take P = 1).

V. Complexity

In Section III, we illustrated that a small fraction of the statistics may be used in iterative decoding
while suffering a small performance degradation. In this section, we quantify the storage and complexity
gains from using partial statistics.

On observation of yk, the P largest elements of yk are found and their corresponding likelihoods
computed and stored. The largest P elements may be found by scanning each one of the M observations

7

-12.5 -12.0 -11.5 -11.0 -10.5
10-8

10-7

10-6

10-5

B
E

R

10-4

10-3

10-2

10-1

100

ns /M, dB

Capacity
P = M = 64
P = 16, Eq. (8)
P = 8, Eq. (8)
P = 4, Eq. (8)
P = 2, Eq. (8)
P = 16, Eq. (9)
P = 8, Eq. (9)
P = 4, Eq. (9)
P = 2, Eq. (9)

Fig. 2. Bit-error rate, Poisson channel, partial statistics using Eq. (8)
(solid) or Eq. (9) (dashed), nb = 1, M = 64 APPM, P Œ {2, 4, 8, 16, 64}.

 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5
10-4

10-3

10-2

10-1

100

ns /M, dB

F
E

R

P = M = 64
P = 16, Eq. (8)
P = 8, Eq. (8)
P = 4, Eq. (8)
P = 2, Eq. (8)
P = 16, Eq. (9)
P = 8, Eq. (9)
P = 4, Eq. (9)
P = 2, Eq. (9)

Fig. 3. Word-error rate, poisson channel, partial statistics using Eq. (8)
(solid) or Eq. (9) (dashed), nb = 1, M = 64 APPM, P Œ {2, 4, 8, 16, 64}.

8

Fig. 4. Bit-error rate, Gaussian channel, M = 16 APPM, P Œ {1, 2, 4, 8, 16}.

0.0 0.5 1.0-1.0 -0.5 1.5 2.0 2.5 3.0 3.5
10-6

10-5

10-4

10-3

10-2

10-1

100

(Eb /N0)/dB

B
IT

-E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

Capacity
P = 1
P = 2
P = 4
P = 8
P = M = 16

Fig. 5. Bit-error rate, Gaussian channel, M = 256 APPM, P Œ {1, 2, 4, 8, 256}.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-6

-1.5 -1.0 -0.5

10-5

10-4

10-3

10-2

10-1

100

(Eb /N0)/dB

B
IT

-E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

Capacity
P = 1
P = 2
P = 4
P = 8
P = M = 256

9

Fig. 6. Comparison of partial statistics using Eq. (10) (solid) or
Eq. (11) (dashed) in Eq. (9), M = 256 APPM, P Œ {1, 2, 4, 8, 16}.

-1.0 0.0 1.0 2.0 3.0 4.0
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb /N0, (dB)

B
E

R

Capacity

P = 1

P = 2

P = 4

P = 8

P = 16

P = M = 256

and either discarding it or adding it to a heap of the largest elements observed thus far. With a heap size
limited to P , this takes O(M log P) time using standard techniques [11]. Each likelihood computation
requires one exponentiation and, in the Gaussian case, one multiplication. Only P likelihoods need be
computed for partial statistics.

This yields a trade-off in sorting cost versus likelihood computation. A full assessment of this trade-off
depends on the implementation of the algorithm and the platform. For example, if additions, multipli-
cations, and exponentiations all require similar computation time, sorting costs will likely dominate. If
exponentiations cost much more than multiplications, which cost more than additions, than likelihood
computation will likely dominate. However, in either case, the net cost of decoding will be dominated
by the implementation of the forward–backward algorithm, not the likelihood sorting and computation.
The major gain of partial statistics lies in the reduced storage requirements.

Table 1 lists the storage required per received coded PPM symbol with full and partial statistics.
Recall f denotes the number of bits used to represent likelihoods. In addition to storing the likelihoods,
we must save the addresses of the P largest values, for which we assess a cost of P log2 M bits.

Table 1. Channel-likelihood storage
requirements.

Storage, bits
Statistic
method

Address Likelihood

Full — Mf

Partial P log2 M Pf

10

Accessing the values may proceed as follows. Let edgeptr be a pointer to the list of the indices
of the P saved likelihoods, likelihoodptr a pointer to the corresponding likelihoods, and default
= K, where K is defined in Eq. (8) or Eq. (10). Assume likelihoods for the kth trellis stage are accessed
sequentially. The likelihood of the eth coded PPM symbol, pci, may be accessed by the following C code:

if (e==*edgeptr){
 pci = *likelihoodptr;
 edgeptr ++;
 likelihoodptr ++;
} else
 pci = default;
},

which we assume takes negligible additional time compared to that required to access likelihoods with
full statistics.

The storage ratio for full versus partial likelihoods is

storage for P likelihoods
storage for M likelihoods

=
P

M

(
1 +

log2 M

f

)

illustrated in Fig. 7 for f = 6. Let f = 6 and consider the pairs (M, P) illustrated in Figs. 2, 4, and 5 for
which we observe negligible performance loss. For M = 256, P = 8, partial statistics require 0.06 times
the storage as full. For M = 64, P = 8, partial statistics require 0.25 times the storage as full. For
M = 16, P = 8, partial statistics require 0.83 times the storage as full. These points are plotted in Fig. 7.

Fig. 7. Ratio of storage required for partial APPM trellis
relative to full trellis.

2 3 4 5 6 7 8 9 10 11 12
10-2

10-1

100

R
A

T
IO

 O
F

 S
T

O
R

A
G

E
 R

E
Q

U
IR

E
M

E
N

T
S

Log2 M

P/M = 1/4
P/M = 1/8
P/M = 1/16
P/M = 1/32
P/M = 1/64
P/M = 1/128

11

A. Forward–Backward Algorithm, Full Statistics

In order to assess decoding complexity, we first describe an implementation of the forward–backward
algorithm when all available statistics are used. Several more extensive discussions of the algorithm and
its use in iterative decoding may be found in the literature, e.g., [12,13].

For either the inner or outer code, we formally describe the trellis by its set of states V, and its set
of directed, labeled edges E . Each edge e ∈ E has an initial state i(e), a terminal state t(e), an input
label a(e), and an output label c(e). Consider the inner code. Encoding proceeds by following a path
through the graph and reading off the output edge labels as follows. Let sk−1 be the state at time k − 1,
and e the unique edge with i(e) = sk−1 and a(e) = ak. Then ek = e, ck = c(e), and sk = t(e). We use
the notation ai:j

def= (ai,ai+1, · · · ,aj) to denote a subsequence. For the outer code, the input is u and the
output is x, but in all other respects the trellis concept and notation are the same.

The symbol sequence y = (y1, · · · ,yN), a noisy version of c, is observed. Given the observation y, and
an a priori estimate of Ak,i via pAk,i

(·), we desire to compute maximum-likelihood estimates, or extrinsic
information,

pY|Ak,i
(y|a) =

1
pAk,i

(a)
pAk,i,Y(a,y)

=
1

pAk,i
(a)

∑
e∈E:a(e)i=a

pEk,Y(e,y) (12)

which we will compute by determining

λk(e) def= pEk,Y(e,y) (13)

for each edge in the trellis. To this end, let

αk(s) def= pSk,Y1:k(s,y1:k)

βk(s) def= pYk+1:N |Sk
(yk+1:N |s)

γk(e) def= pEk,Yk|Sk−1(e,yk|s) (14)

= pAk

(
a(e)

)
pYk|Ck

(
yk|c(e)

)
(15)

and factor Eq. (13) as

λk(e) = αk−1

(
i(e)

)
γk(e)βk

(
t(e)

)
(16)

The following recursive equations are used to compute the α’s and β’s:

12

αk(s) =
∑

e:t(e)=s

αk−1

(
i(e)

)
γk(e) (17)

βk(s) =
∑

e:i(e)=s

βk+1

(
t(e)

)
γk+1(e) (18)

Table 2 lists the computation and storage complexity per trellis stage to execute one iteration of the
forward–backward algorithm. We count each addition and multiplication as a single operation, and assess
no storage cost for the pY|Ak,i

, to isolate the complexity of the forward–backward algorithm. Note that
the product αk−1

(
i(e)

)
γk(e) may be computed once for use in Eqs. (16) and (17). We assume the entire

codeword of βk’s is computed and stored; the αk’s are computed and immediately discarded at each stage
after being used to compute the λk. Hence, we assess no storage requirements for the αk’s, as only one
stage is ever stored. Similarly, we assess no storage cost for pAk

and λk, since these may be used once
computed. Since ak is a binary vector, we must form products for the input edge labels—(log2 M)-ary
products in our case. We assume these are formed by taking one (log2 M)-ary product and finding the
product that differs in one location via a multiplication and division.

Table 2. Computational complexity per trellis stage.

Computation Operations Storage, bits

pAk

(
a(e)

)
log2 M + 2M —

Eq. (15) γk(e) |E| f |E|
Eq. (18) βk(s) 2|E| − |V| f |V|
Eq. (17) αk(s) 2|E| − |V| —

Eq. (16) λk(e) |E| —

Eq. (12) pY|Ak,i
(y|a) |E| log2 M —

B. Forward–Backward Algorithm, Partial Trellis

Each iteration, the forward–backward algorithm with partial statistics begins by computing the mod-
ified form of Eq. (15),

γk(e) = pAk

(
a(e)

)
pφ(Yk)|Ck

(
φ(yk)|c(e)

)
for each edge in the trellis, which changes each iteration as pAk

(·) is updated by the outer code. However,
with partial statistics, for each k there are only P + 1 distinct values of pφ(Yk)|Ck

(
φ(yk)|c(e)

)
. One

can take advantage of this and use a reduced-complexity time-varying trellis with |V| states and at most
|V|(P + |V|) edges. We’ll show this may be used to reduce the number of operations in executing the
algorithm, albeit at the cost of addressing a time-varying trellis.

Let Jk(r, s, ξ) be the collection of parallel edges with channel likelihood ξ,

Jk(r, s, ξ) def=
{
e|i(e) = r, t(e) = s, pφ(Yk)|Ck

(
φ(yk)|c(e)

)
= ξ

}
Form a partial trellis by replacing the edges in Jk(r, s, ξ) with a single edge g(r, s, ξ) with initial state r
and terminal state s. Let E ′

k be the collection of modified edges. The kth stage of the partial trellis has

13

state set V and edge set E ′
k. For clarity, we will use g to denote edges in E ′

k and e to denote edges in E .
We write e ∈ g(r, s, ξ) or e ∈ g as shorthand for e ∈ Jk(r, s, ξ).

With P statistics, the partial trellis will have |E ′| ≤ |V|(P + |V|). Each g ∈ E ′
k is traversed if ak ∈⋃

e∈g a(e); hence we define

pAk

(
a(g)

) def= pGk|Sk−1

(
g|i(g)

)

=
∑
e∈g

pAk

(
a(e)

)
(19)

and for g(r, s, ξ) put, analogous to Eq. (14),

γk(g) def= pGk,Yk|Sk−1(g,yk|r)ξ

= pAk

(
a(g)

)
ξ

We proceed to compute λk(e) for each edge in the partial trellis. Note that the α’s and β’s are the same
whether computed on the partial or full trellis (using partial statistics in both cases) and that for e ∈ g,

γk(e) = γk(g)
pAk

(
a(e)

)
pAk

(
a(g)

)

hence,

λk(e) = λk(g)
pAk

(
a(e)

)
pAk

(
a(g)

) (20)

Hence, after computing the λ’s on the partial trellis, we may compute the bit likelihoods pY|Ak,i
as

pY|Ak,i
(y|0) =

1
pAk,i

(0)

∑
e:e∈E,ak,i(e)=0

λk(e)

=
1

pAk,i
(0)

∑
g∈E′

k

λk(g)
pAk

(
a(g)

) ∑
e∈g,ak,i(e)=0

pAk

(
a(e)

)
(21)

There are at most |V|2 edges in E ′
k with |Jk| > 1. Hence, Eq. (21) requires no more than |E| log2 M +

|V|2 + |V|2 log2 M operations (for each e ∈ E either λk(e) = λk(g) or it belongs to one of the |V|2 sums
corresponding to a g with |Jk| > 1). Table 3 lists the computation and storage complexity to execute
one iteration of the forward–backward algorithm on the partial trellis. The pAk

(
a(e)

)
and pAk

(
a(g)

)
are used at the start of the algorithm in Eqs. (19) and (15), and at the end in Eq. (21). Hence, we
may trade off operations for storage. Here we assume the pAk

(
a(e)

)
are recomputed but the pAk

(
a(g)

)
are not, doubling the operational cost for pAk

(
a(e)

)
and assessing no storage cost. In our motivating

example, the code is APPM, so that |V| = 2 and |E| = 2M . Figures 7 and 8 illustrate the storage and

14

operational requirements per APPM trellis stage for the partial trellis relative to the full trellis for various
ratios P/M .

Three points (M, P) are plotted: (256, 8), (64, 8), (16, 4). They correspond to performance results
illustrated in this article where we have observed negligible performance degradation. For M = 256,
P = 8, f = 6, the partial trellis operates with 31 percent fewer operations and 95 percent less storage.
For M = 64, P = 8, f = 6, the partial trellis operates with 29 percent fewer operations and 80 percent
less storage. For M = 16, P = 8, f = 6, the partial trellis operates with 18 percent fewer operations and
47 percent less storage.

Table 3. Computation cost per partial trellis stage.

Computation Operations Storage, bits

pAk

(
a(e)

)
2(log2 M + 2M) —

Eq. (19) pAk

(
a(g)

)
|V|(M − P) f |V|2

Eq. (15) γk(g) |E ′| f |E ′|
Eq. (18) βk(s) 2|E ′| − |V| f |V|
Eq. (17) αk(s) 2|E ′| − |V| —

Eq. (13) λk(g) |E ′| —

Eq. (21) pAk,i|Y |E| log2 M + (1 + log2 M)|V|2 —

Fig. 8. Ratio of operations required for partial APPM
trellis relative to full trellis.

2 3 4 5 6 7 8 9 10 11 12

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
A

T
IO

 O
F

 O
P

E
R

A
T

IO
N

S

Log2 M

P/M = 1/4
P/M = 1/8
P/M = 1/16
P/M = 1/32
P/M = 1 /64
P/M = 1/128

15

An exact trade-off will depend on implementation details beyond the scope of this article, but we expect
the complexity reduction due to the reduced number of edges will be on the same order. However, the
reduced number of computations may be outweighed by the complexity of implementing a time-varying
trellis.

VI. Conclusions

For coded modulation schemes that use a high PPM order and iterative demodulation, the storage
required for the channel likelihoods and the complexity of decoding PPM may be a bottleneck in imple-
menting iterative decoding. We have shown that a small subset of the channel likelihoods may be used
with negligible degradation, by setting the remainder of the likelihoods to an appropriate constant. In
addition, a reduced-complexity trellis may be used for the forward–backward algorithm. The reduced
trellis requires fewer operations and storage, but must be time-varying.

The problem of generating soft information with partial statistics may be thought of as estimating the
distances from the coded sequences to the received sequence when only P of the M coordinates of each
yk are known. We’ve observed that the loss relative to having knowledge of all coordinates may be kept
negligibly small provided the coordinates may be chosen as a function of the observations.

References

[1] R. G. Lipes, “Pulse-Position-Modulation Coding as Near-Optimum Utilization
of Photon Counting Channel with Bandwidth and Power Constraints,” The Deep
Space Network Progress Report 42-56, January and February 1980, Jet Propul-
sion Laboratory, Pasadena, California, pp. 108–113, April 15, 1980.
http://tmo.jpl.nasa.gov/tmo/progress report2/42-56/56N.PDF

[2] A. D. Wyner, “Capacity and Error Exponent for the Direct Detection Pho-
ton Channel–Part I,” IEEE Transactions on Information Theory, vol. 34, no. 6,
pp. 1449–1461, November 1988.

[3] B. Moision and J. Hamkins, “Coded Modulation for the Deep-Space Optical
Channel: Serially Concatenated Pulse-Position Modulation,” The Interplanetary
Network Progress Report, vol. 42-161, Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, pp. 1–25, May 15, 2005.
http://ipnpr.jpl.nasa.gov/progress report/42-161/161T.pdf

[4] B. Moision and J. Hamkins, “Deep-Space Optical Communications Downlink
Budget: Modulation and Coding,” The Interplanetary Network Progress Re-
port 42-154, April–June 2003, Jet Propulsion Laboratory, Pasadena, California,
pp. 1–28, August 15, 2003.
http://ipnpr.jpl.nasa.gov/tmo/progress report/42-154/154K.pdf

[5] R. J. McIntyre, “The Distribution of Gains in Uniformly Multiplying Avalanche
Photodiodes: Theory,” IEEE Transactions on Electron Devices, vol. ED–19,
no. 6, pp. 703–713, June 1972.

[6] J. Conradi, “The Distribution of Gains in Uniformly Multiplying Avalanche Pho-
todiodes: Experimental,” IEEE Transactions on Electron. Devices, vol. ED–19,
no. 6, pp. 713–718, June 1972.

16

[7] S. Dolinar, D. Divsalar, J. Hamkins, and F. Pollara, “Capacity of Pulse-Position
Modulation (PPM) on Gaussian and Webb Channels,” The Telecommunications
and Mission Operations Progress Report 42-142, April–June 2000, Jet Propulsion
Laboratory, Pasadena, California, pp. 1–31, August 15, 2000.
http://tmo.jpl.nasa.gov/tmo/progress report/42-142/142H.pdf

[8] H. H. Tan, “A Statistical Model of the Photomultiplier Gain Process with Ap-
plications to Optical Pulse Detection,” The Telecommunications and Data Ac-
quisition Progress Report 42-68, January and February 1982, Jet Propulsion
Laboratory, Pasadena, California, pp. 55–67, April 15, 1982.
http://tmo.jpl.nasa.gov/tmo/progress report/42-68/68H.PDF

[9] V. Vilnrotter, M. Simon, and M. Srinivasan, “Maximum Likelihood Detection
of PPM Signals Governed by Arbitrary Point-Process Plus Additive Gaussian
Noise,” IEE Electronics Letters, vol. 35, no. 14, pp. 1132–1133, July 1999.

[10] D. G. Daut, J. W. Modestino, and L. D. Wismer, “New Short Constraint Length
Convolutional Code Constructions for Selected Rational Rates,” IEEE Transac-
tions on Information Theory, vol. IT-28, no. 5, pp. 794–800, September 1982.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd. edition, New York: Cambridge University Press, 1992.

[12] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A Soft-Input Soft-
Output Maximum a Posteriori (MAP) Module to Decode Parallel and Serial
Concatenated Codes,” The Telecommunications and Data Acquisition Progress
Report 42-127, July–September 1996, Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, pp. 1–20, November 15, 1996.
http://tmo.jpl.nasa.gov/tmo/progress report/42-127/127H.pdf

[13] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Transactions on Information
Theory, vol. 20, pp. 284–287, March 1974.

17

Appendix A

The Probability of Index Selection on the
Discrete-Output Channel

Given ck was transmitted, and a subset yk,I of the received vector is received, the probability that
subset I corresponds to the selected index set under a ‘choose the maximum’ rule is computed here. We
define

Ψ def= min
i∈I

Yk,i

V
def= |{Yk,i = ψ : i ∈ I}|

T
def= |{Yk,i = ψ : i �∈ I}

We have

pI|Ck,Yk,I (I|c(j),yk,I) = Prob(I = I, |Ck = c(j), Ψ = ψ, V = v) (A-1)

= Prob(I = I, maxYk,Ī ≤ ψ|Ck = c(j), Ψ = ψ, V = v) (A-2)

=
M−P∑
t=0

Prob(I = I, maxYk,Ī ≤ ψ, T = t|Ck = c(j), Ψ = ψ, V = v) (A-3)

In Eq. (A-1), we used the fact that yk,I affects the probability only insofar as it defines Ψ and V ; in
Eq. (A-2), we included an event that is necessarily satisfied if I is selected; and in Eq. (A-3), we sum the
joint probability over all possibilities of T .

When j ∈ I, each term of Eq. (A-3) denotes the conditional probability that exactly t noise slots
take on value ψ, that the other M − P − t are strictly lower, and that index set I is chosen, given that
the signal and nonsignal slot positions are known, that the smallest slot in I takes on value ψ, and that
v slots in I have value ψ. The probability of the correct index set under these conditions is 1/

(
v+t

t

)
, and

so we may rewrite Eq. (A-3) as

pI|Ck,Yk,I (I|c(j),yk,I) =
M−P∑
t=0

1(
v+t

t

)(
M − P

t

)
Fn(ψ−)M−P−tfn(ψ)t (A-4)

When j �∈ I, we consider the events yk,j < ψ and yk,j = ψ separately, to obtain

pI|Ck,Yk,I (I|c(j),yk,I) =
M−P∑
t=0

[
Prob(I, maxYk,Ī ≤ ψ, T = t, yk,j < ψ|Ck = c(j), Ψ = ψ, V = v)

18

+Prob(I, maxYk,Ī ≤ ψ, T = t, yk,j = ψ|Ck = c(j), Ψ = ψ, V = v)
]

=
M−P∑
t=0

1(
v+t

t

) [(
M − P − 1

t

)
Fn(ψ−)M−P−t−1Fs(ψ−)fn(ψ)t

+ I{t≥1}

(
M − P − 1

t − 1

)
Fn(ψ−)M−P−tfs(ψ)fn(ψ)t−1

]

=
M−P∑
t=0

1(
v+t

t

)(
M − P

t

)
Fn(ψ−)M−P−t−1Fs(ψ−)fn(ψ)t

×
(

M − P − t

M − P
+

t

M − P
g(ψ−)L(ψ)

)
(A-5)

where L(ψ) def= fs(ψ)/fn(ψ), and we have used the relation

(
M − P

t

)
=

M − P

M − P − t
·
(

M − P − 1
t

)
=

M − P

t
·
(

M − P − 1
t − 1

)

Putting Eqs. (A-4) and (A-5) together, we obtain

pI|Ck,Yk,I

(
I|c(j),yk,I

)
=

M−P∑
t=0

1(
v+t

t

)(
M − P

t

)
Fn(ψ−)M−P−t−1Fs(ψ−)fn(ψ)t (A-6)

×

g(ψ−), j ∈ I

M − P − t

M − P
+

t

M − P
g(ψ−)L(ψ), j /∈ I

(A-7)

As a check, note that the t = 0 term of Eq. (A-7) reduces to an analogue of Eq. (4).

19

Appendix B

Distribution of Ψ = min{Yj |j ∈ I}

Let Ψ be the P th largest element of the set Y = {N1, N2, · · · , NM−1, S}, where the Ni are independent
and identically distributed (IID) with density pN (n) and distribution FN (n), and S, the signal slot, has
density pS(s) and distribution FS(s). We desire the density of Ψ. The distribution is

FΨ(ψ) = Prob[P th largest element of Y ≤ ψ]

=
P−1∑
i=0

Prob[exactly i elements of Y are greater than ψ]

=
P−1∑
i=0

(
M − 1
i − 1

)
FN (ψ)M−i

(
1 − FN (ψ)

)i−1(1 − FS(ψ)
)

+
(

M − 1
i

)
FN (ψ)M−i−1

(
1 − FN (ψ)

)i
FS(ψ) (B-1)

The density follows directly by differentiating Eq. (B-1).

20

