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Decision-Directed Slot Synchronization for
Pulse-Position-Modulated

Optical Signals
M. Srinivasan,1 V. Vilnrotter,1 and C. Lee1

In this article, we describe a slot-synchronization algorithm for optical signals
transmitted using pulse-position modulation (PPM). This algorithm utilizes PPM
symbol decisions in order to generate a slot-timing error signal without the use
of guard time around the transmitted laser pulse or synchronization symbols. We
derive expressions for the open-loop characteristic curve of the error signal and the
closed-loop tracking-error variance of this slot synchronizer for an ideal Poisson
photon-counting channel. Simulation results for acquisition as well as tracking
under a variety of conditions are presented. Finally, the impact on synchronization
performance of implementing the transmitted PPM signal through a repetition code
is discussed.

I. Introduction

Pulse-position modulation (PPM) has been baselined as the signaling format of choice for deep-space
direct-detection optical communications. With this modulation, m bits of information are transmitted
via a laser pulse positioned in one of M = 2m time slots of equal duration, Ts, forming a PPM symbol
of duration MTs. In direct-detection communication systems, the number of photons must be estimated
over each slot to form slot observables that are used to make PPM symbol decisions. In order to accurately
form the slot observables, however, synchronization between the received PPM slot boundaries and the
receiver slot clock must be established and maintained.

In [1], a delay-tracking loop for PPM was analyzed that relied upon a small guard time around the
transmitted pulse in order to generate an error signal proportional to the slot-clock delay error. If
inclusion of guard time is not an option, some type of decision mechanism must be utilized in order to
derive an appropriate error signal. The Mars Laser Communication Demonstration (MLCD) supports
slot synchronization through the inclusion of periodic embedded synchronization symbols serving as a
pilot signal from which to derive timing information. However, these symbols must be acquired prior to
tracking, and their inclusion reduces data throughput. In [2], a synchronizer is described in which slot
statistics are tested against a threshold to determine if they should be admitted into the tracking loop.
One disadvantage of this approach, however, is that the optimal threshold value depends upon knowledge
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of the slot statistic parameters. Under changing signal and background conditions, these parameters must
be estimated and used to modify the threshold level. Here, we present a slot-synchronizing loop in which
the maximum-likelihood PPM symbol decision is used to provide the decision-directed operation allowing
an appropriate error signal to be generated. Analysis and simulation results are shown that demonstrate
the tracking performance of this algorithm in a photon-counting channel.

II. Decision-Directed Slot Synchronizer

In Fig. 1, we show a transmitted PPM symbol stream with M = 4, peak signal intensity λs, and
background intensity λb, with a slot-timing error of ∆. Our objective is to formulate a tracking loop
that will detect the presence of the signal pulses and correct the timing error. Figure 2 shows a block
diagram of the decision-directed slot synchronizer that we propose. A PPM signal, delayed by the timing
error ∆ > 0, is passed to the top branch that outputs the integrated slot values and selects the slot
corresponding to the maximum value over an arbitrarily defined “pseudo-symbol.” In the lower branch,
the signal is further delayed by one symbol duration and passed to the error detector, which multiplies it
by a “chopping function”—a square wave at the slot frequency—and integrates over time Ts in each slot.
The signal is then gated by the slot selector from the upper branch in order to create the timing error
signal, which is filtered and then passed to the numerically controlled oscillator (NCO), which outputs
the slot clock. Note that symbol synchronization need not be assumed for this algorithm to work. If the
initial pseudo-symbol interval contains two signal pulses, there will simply be two main contenders for
the maximum slot to be picked by the slot selector, only one of which can be picked to contribute to the
error detector. On the other hand, if the pseudo-symbol interval contains no signal pulse, a noise slot
will be picked as the maximum, effectively increasing the symbol-error rate (SER) in the PPM decision
process. For the discussion in this article, we assume that the pseudo-symbol interval is the same as the
true PPM symbol interval, based on the following argument.

Fig. 1.  PPM.
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Fig. 2.  Block diagram of a slot-synchronization loop for conventional PPM.
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If we assume that the beginning boundary of the PPM pseudo-symbol is uniformly distributed within
the boundary of a true PPM symbol, then the probability of having a single laser pulse, two laser pulses, or
no laser pulse whatsoever within the pseudo-symbol can be computed by first determining the conditional
probabilities given each starting offset (measured in slots), and then averaging over the uniform offset
distribution. If we denote the symbol offset by ∆sym, then the probability of having a single laser pulse
within the pseudo-symbol is given by

P (1 pulse) =
M−1∑
i=0

P (∆sym = i)P (1 pulse|∆sym = i)

=
1
M

M−1∑
i=0

[(
1 − i

M

)2

+
(

i

M

)2
]

=
2M2 + 1

3M2
(1)

The probabilities of having either zero or two signal pulses within the pseudo-symbol are equal and given
by

P (0 pulse) = P (2 pulses) =
M−1∑
i=0

P (∆sym = i)P (2 pulses|∆sym = i)

=
1
M

M−1∑
i=0

(
1 − i

M

)
i

M

=
M2 − 1
6M2

(2)

Equations (1) and (2) show that the probability of having just one pulse is on average roughly four times
that of having either zero pulse or two pulses in the absence of symbol synchronization. Therefore, it
is reasonable to assume that PPM pseudo-symbols can be approximated by the true PPM symbols for
purposes of pulse-detection analysis.

The output of the error detector in the ith slot is the difference between the first and second half of
the slot, or

ei(∆) =
∫ (i+1)Ts

(i+1/2)Ts

y(t)dt −
∫ (i+1/2)Ts

iTs

y(t)dt (3)

where y(t) is the delayed received signal (note that for ease of exposition we assume analog signals). If
the actual signal pulse is transmitted in the kth slot of a PPM symbol, then the expected value of the
error signal is

E
[
ei(∆)

]
=

{
λs∆, if i = k
−λs∆, if i = k + 1
0, otherwise

=

{
nsδ, if i = k
−nsδ, if i = k + 1
0, otherwise

(4)
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where ns = λsTs is the mean number of signal photons per signal slot, and δ = ∆/Ts is the fractional
timing error. The contribution to the error signal from background has been canceled out. For simplicity
we have ignored possible signal contributions from the last slot of the previous PPM symbol. Note that
in the absence of the slot selector of Fig. 2, Eq. (4) would be averaged over all i slots, resulting in total
cancellation of the error signal; slot decisions, therefore, are necessary to generate a useful error signal.

The decision-directed loop allows only the error signal contribution from the maximum value slot in a
PPM symbol, or ei∗(δ), to be fed to the loop filter, where the index i∗ corresponding to the maximum-
valued slot in a PPM symbol is i∗ = arg max

i

∫ (i+1)Ts

iTs
y(t)dt. Assuming that δ > 0, the unconditional

expectation of the error signal over a PPM symbol whose signal occurs in the kth slot is, from Eq. (4),

E
[
e(δ)

]
= E

[
ek(δ)

]
P (i∗ = k|δ) + E

[
ek+1(δ)

]
P (i∗ = k + 1|δ) +

M−1∑
i=0

i�=k,k+1

E
[
ei(δ)

]
P (i∗ = i|δ)

= nsδ
[
P (C|δ) − P (E1|δ)

]
(5)

where P (C|δ) = P (i∗ = k|δ) is the probability that the signal slot is maximum, and P (E1|δ) = P (i∗ =
k + 1|δ) is the probability that the slot following the signal slot (also containing some signal energy if
δ > 0) is maximum. If δ < 0, P (E1|δ) = P (i∗ = k − 1|δ). The probabilities in Eq. (5) may be derived
from the Poisson PPM symbol-error probability [2] and are given by

P (C|δ) =
e−Mnb−ns

M

+
∞∑

n=1

p
(
n;nb + ns(1 − δ)

)
p (n;nb + nsδ)

M−2∑
l=0

1
l + 2

(
M − 2

l

)
p (n;nb)

l


n−1∑

j=0

p (j;nb)




M−l−2

+
∞∑

n=1

p
(
n;nb + ns(1 − δ)

) (
n−1∑
i=0

p (i;nb + nsδ)

)
M−2∑
l=0

1
l + 1

(
M − 2

l

)
p (n;nb)

l


n−1∑

j=0

p (j;nb)




M−l−2

(6)

and

P (E1|δ) = P (C|1 − δ) (7)

where p(n; n̄) = n̄ne−n̄/n! (the Poisson probability mass function). The first term in Eq. (6) is the
probability of picking the correct signal slot when all slots have zero detected photon counts and a
random decision is used to resolve the tie. The second and third terms represent the probabilities that
slot k is maximum and the other slots are either lesser in value than slot k or with some subset of l slots
tied with slot k, and a random decision is used to resolve the tie. Note that in the second term, slot k +1
with mean nb + nsδ is assumed to be tied with slot k, while in the third term, slot k + 1 is strictly less
than slot k. An example of Eq. (5), the error characteristic curve, is shown in Fig. 3, incorporating the
probability of correct detection derived in Eq. (6) into the expression.
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Fig. 3.  Theoretical expected value of an open-loop error signal.
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A rigorous derivation of the steady-state fractional timing-error variance for this tracking loop would
require analysis of the probability density function of the timing-error function, accounting for the effect
of the symbol decision process. As an alternative, we obtain an expression heuristically by modifying the
following error variance formula [2], which assumes perfect knowledge of the signal slot:

(
σε

Ts

)2

=
BLM

λs

(
1 +

λb

λs

)
(8)

Here σ2
ε/T 2

s is the fractional variance of the timing error and BL is the tracking-loop bandwidth. This
formula may be modified to account for the effects of signal-slot detection errors by observing that, in the
high-data-rate PPM model that we are assuming for this problem, the relatively narrow-band tracking
loop does not respond to events occurring on the time scale of PPM symbols, but rather on time scales
on the order of the inverse loop bandwidth. For example, a 10-Hz-bandwidth loop implies response times
on the order of 100 ms, whereas PPM symbols typically occur on time scales of micro-seconds for data
rates on the order of megabits per second. Therefore, we may analyze the loop response by considering
a long string of PPM symbols satisfying the above constraints. If we define the estimated order of a
string of N consecutive PPM symbols as the number of “true” signal pulses observed over the NM slots
contained therein, then if no symbol detection errors occur, the estimated order is NM/N = M . On the
other hand, if symbol detection errors are made and K < N true signal pulses are detected, the estimate
of the PPM order is NM/K > M . In cases where N is sufficiently large (as in our case), K/N is equal
to the probability of correct detection, Pc = P (C|δ ≈ 0). Using this argument, we replace M in Eq. (8)
with NM/K = M/Pc, leading to the following expression:

(
σε

Ts

)2

=
BLM

λsPc

(
1 +

λb

λs

)
(9)
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Rewriting this in terms of the average signal intensity λ̄s = λs/M , we obtain

(
σε

Ts

)2

=
BL

λ̄sPc

(
1 +

λb

Mλ̄s

)
(10)

Note that we also can derive the tracking variance when embedded tracking symbols inserted every
L PPM symbols are used in the synchronizer of Fig. 2 in place of decision-derived symbols. We simply
use Eq. (8), replacing M with LM , giving us

(
σε

Ts

)2

=
BLML

λs

(
1 +

λb

λs

)
=

BLL

λ̄s

(
1 +

λb

Mλ̄s

)
(11)

From Eqs. (10) and (11), one can conclude that the use of embedded synchronization symbols outperforms
the decision-directed algorithm in terms of tracking performance only if the frequency of embedded
symbols 1/L is greater than Pc. On the other hand, insertion of embedded symbols always results in a
degradation of information throughput.

III. Performance Results

A discrete-time Matlab simulink simulation of the algorithm was performed in order to test acquisition
and tracking performance of the decision-directed slot synchronizer. An idealized Poisson model of the
photodetector was assumed, with fixed signal and background photon arrival rates and static phase
offsets. Initially, a first-order loop (loop filter F (z) = 1) was used, along with 64 samples per PPM
slot. In practice, fewer samples per slot typically may be used, along with an interpolation filter to
provide greater resolution timing correction [3]. Finally, for the purposes of these simulations, symbol
boundaries were known, although in fact symbol timing usually is obtained only subsequently to slot
synchronization. As mentioned earlier, this knowledge is not necessary to the algorithm; however, lack
of symbol synchronization generally will degrade the steady-state tracking error as well as increase the
acquisition time. In principle, one could analytically determine the extent of degradation by calculating
the symbol-error probability conditioned on each possible symbol misalignment value (in slots), and then
average as in Eq. (5) to arrive at the mean error signal independent of symbol timing. Our analysis
from Section II did show, however, that it is justifiable to analyze performance by assuming symbol
synchronization.

In our first set of simulations, we assume 64-PPM, Ts = 40 ns, mean number of background photons
per slot nb = λbTs = 9, and first-order loop bandwidth BL = 10 Hz. The mean number of signal photons
per pulse, ns = λsTs, ranges from 2 to 10, and static initial timing delays of Ts/4 and Ts/2 are used.
Phase output plots for these two initial delay values are shown in Fig. 4, demonstrating convergence
to the desired timing offsets. In Fig. 5, we plot the fractional error variance from Eq. (9) along with
measured variances from the simulation results obtained once the loop has acquired for the two initial
delay values, showing reasonable agreement between analysis and simulation. The error variance results
are also tabulated in Table 1, along with acquisition times and uncoded symbol-error rates.

The acquisition time for a first-order error-tracking loop is proportional to the inverse loop bandwidth,
i.e., Tacq ∝ 1/BL, if a uniform distribution on the initial phase error is assumed [4]. In the decision-directed
loop, the acquisition time is expected to be somewhat longer due to the erroneous symbol decisions that
do not contribute to the derivation of a useful error signal. Accounting for this by reducing the loop
bandwidth by the percentage of correct symbol decisions, or Pc, we can argue that

Tacq ∝ 1
BLPc

(12)
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Fig. 4. Phase output from the simulated slot synchronizer (first-order loop):
64-PPM, Ts = 40 ns, nb = 9, BL = 10 Hz, 64 samples per slot.
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Table 1. Simulation data: 64-PPM, Ts = 40 ns, nb = 9, BL = 10 Hz, 64 samples per slot.

Tacq , s (σε/Ts)2

nb ns ∆/Ts SER

Simulation Eq. (12) Simulation Eq. (9)

9 10 0.25 0.1413 0.1479 8.9 × 10−6 7.19 × 10−6 0.324
0.5 0.2782 6.88 × 10−6

9 8 0.25 0.22 0.196 1.77 × 10−5 1.33 × 10−5 0.49
0.5 0.619 1.74 × 10−5

9 6 0.25 0.2432 0.3033 2.59 × 10−5 3.23 × 10−5 0.67
0.5 0.3122 3.88 × 10−5

9 4 0.25 0.7378 0.584 1.31 × 10−4 1.22 × 10−4 0.829
0.5 1.498 2.10 × 10−4

9 2 0.25 2.048 1.54 0.0013 1.08 × 10−3 0.935
0.5 2.432 0.0013

As we see in Fig. 3, however, an unstable equilibrium point exists at a delay offset of half a slot. The
small restoring force at this initial offset can result in acquisition times that are two to three times larger
than the average acquisition time, as can be seen in Table 1, which tabulates the simulation acquisition
time results. Note that at even the highest SER the decision-directed algorithm is able to lock in and
track the slot clock.

A second set of simulations was performed for conditions more similar to an MLCD mission operating
point. In order to track a frequency offset, a second-order loop was used, with a digital loop filter having
frequency response F (z) = G1+G2/(1−z−1), where G1 and G2 are functions of the loop gain, bandwidth,
and update time [5]. These simulations also used 64-PPM but have nb = 0.0025, ns ranging from one to
four, and 1.6-ns slots, corresponding to the narrow slot widths used in the MLCD mission. Per typical
hardware specifications [3], only four samples per slot were used here, along with an interpolation filter to
adjust the fine-timing resolution. Figure 6 shows the resulting data for the two initial fractional timing
offsets of 0.25 and 0.5, as well as a case with a frequency offset of 100 Hz, demonstrating the ability of
the second-order loop to track the frequency offset, as shown from the phase-error plot of Fig. 7. We
note here that the simulated tracking-error variances do not match the analytical expression as well as in
the first-order case. There may be a number of reasons for this. The operating point is different, so that
some of the assumptions used to derive Eq. (9) may not hold. The fact that this is a second-order loop
and the inclusion of an interpolation filter also may affect the digital loop transfer function and loop gain
in such a way that the actual loop bandwidth does not match the design loop bandwidth used to set the
loop filter coefficients. In any case, further analysis is merited to resolve this discrepancy.

IV. Synchronization of Repeat-Coded PPM

The results presented in the previous sections assume use of conventional contiguous PPM symbols,
as in Fig. 1. The signaling structure for MLCD, however, calls for use of repeat-coded PPM symbols
to implement longer slot durations in order to overcome limitations of the transmitting laser.2 Figure 8
shows an example of repeat-coded PPM. Here we discuss the impact of the repeat-coded symbols upon
performance of the decision-directed synchronizer. We refer to the underlying transmitted slot of dura-
tion T̃s as the “primitive” slot, and the corresponding M -ary PPM symbol with slot duration T̃s as the
primitive PPM symbol. The original PPM symbol is transmitted by repeating R of the primitive PPM
symbols, all having the same pulse location. Each primitive symbol has the same average signal intensity

2 Mars Laser Communications Demonstration ICD, draft (internal document), Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, 2005.
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Fig. 8.  Repeat-coded PPM symbols.
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as the original, λs, but shorter pulse duration, so that the mean number of signal photons per original
PPM symbol pulse, ns, is divided equally into the R primitive symbol pulses. The order R repeat-coded
PPM symbol has “effective” slot duration Ts = RT̃s.

Upon acquisition of the repeat code, the receiver forms the sum of the slot statistics from the ith primi-
tive slots of the R primitive PPM symbols over a repeat-code block, and then forms the likelihood ratio for
the ith slot of the repeat-coded PPM symbol from this sum to pass on to the decoder, for 0 ≤ i ≤ M − 1.
Likewise, once slot acquisition has been performed, the decision-directed slot-synchronization loop makes
a decision based on the repeat-coded PPM symbol (as opposed to the primitive symbol), as shown in
Fig. 9. The primitive PPM symbols, delayed by some timing error ∆, are passed to the top branch that
forms the integrated primitive slot values, combines them over the repeat-code block, and selects the slot
corresponding to the maximum value. In the lower branch, the signal is further delayed by a repeat-coded
symbol duration and is passed to the error detector, which multiplies it by a square wave at the primitive
slot frequency—and integrates over the primitive slot. This signal then is gated by the slot selector from
the upper branch in order to create the timing-error signal, which is filtered and then passed to the NCO
that outputs the primitive slot clock.

We see from Eq. (9) that the timing error as a fraction of the slot duration is a function of the signal
and background arrival rates, the loop bandwidth, the PPM order, and the probability of making a correct
symbol decision, which is itself a function of the signal and background photon arrival rates, the PPM
order, and the slot duration. Therefore, all other parameters being fixed, a reduction in the slot duration
ordinarily would decrease Pc, thereby increasing the error variance. However, as our PPM symbol decision
for the slot-synchronization loop is made over the repeat-coded symbol, whose duration MTs = MRT̃s

remains constant (the repeat-code order R increasing with decreased primitive slot duration), Pc should
remain fixed as well, assuming negligible loss in combining the primitive PPM symbols to make the
decision. So theoretically, the implementation of the repeat code should not impact the slot statistics
delivered to the decoder.

We now want to examine the impact of slot synchronization of repeat-coded PPM symbols on the de-
tection statistics used in forming likelihood ratios for the decoding process. Let σbig and Tbig = Ts refer
to the rms tracking error and slot duration of a non-repeat-coded symbol, and σsmall and Tsmall = T̃s refer
to the same parameters for a primitive symbol. Let σrep be the rms timing error on the detection statistic
formed from the combined repeat-coded symbol. Denote the zero mean timing delay on a primitive slot
by the random variable ∆. We know from Eq. (9) that if the PPM symbol decisions are made over the
entire repeat-code block, then
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Fig. 9.  Block diagram of a slot-synchronization loop for repeat-coded PPM.
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where Tsmall = Tbig/R. The decoder likelihood ratio for the ith PPM slot is given by

LR(i) = e−ns

(
1 +

ns

nb

)Y (i)

(14)

where Y (i) is the detected observable in the ith slot. In the case of repeat-coded PPM, Y (i) =
∑R

j=1 Xj(i),
where Xj(i) is the detected observable in the ith slot of the jth primitive PPM symbol. Now Xj(i) is
Poisson with parameter λbTsmall + λs(Tsmall − ∆) for a given timing error ∆. Therefore, Y (i) is also
Poisson with parameter RλbTsmall + Rλs(Tsmall − ∆) = λbTbig + λs(Tbig − R∆), since for tracking we
assume that the loop bandwidth is narrow enough that all of the primitive slots see the same value of ∆.
We interpret this to mean that the timing error on the combined statistic Y (i) is R times as large as on
the primitive slot statistic Xj(i), and the variance on that timing error, σ2

rep, is given by the variance
of R∆. We then have

σ2
rep = Var

[
(R∆)2

]
= R2σ2

small

= R2

(
Tsmall

Tbig

)2

σ2
big

= σ2
big

So theoretically, the implementation of the repeat code should not change the loss on the detection
statistic due to slot-synchronization tracking errors. On the other hand, acquisition likely will be affected
by a short primitive slot duration.
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V. Conclusions

A decision-directed algorithm was presented for slot synchronization in PPM signals. Expressions for
the error characteristic curve and tracking error variance were derived, and simulations were performed,
showing good agreement for the first-order loop. The loop was shown to track under conditions similar
to those present in the Mars Laser Communication Demonstration, including a frequency offset. Finally,
it was argued that the implementation of repeat-coded PPM does not affect the tracking performance of
this algorithm.
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