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An Iterative Information-Reduced Quadriphase-
Shift-Keyed Carrier Synchronization
Scheme Using Decision Feedback

for Low Signal-to-Noise Ratio
Applications

M. Simon1 and A. Tkacenko1

In a previous publication [1], an iterative closed-loop carrier synchronization
scheme for binary phase-shift keyed (BPSK) modulation was proposed that was
based on feeding back data decisions to the input of the loop, the purpose being
to remove the modulation prior to carrier synchronization as opposed to the more
conventional decision-feedback schemes that incorporate such feedback inside the
loop. The idea there was that, with sufficient independence between the received
data and the decisions on it that are fed back (as would occur in an error-correction
coding environment with sufficient decoding delay), a “pure” tone in the presence
of noise would ultimately be produced (after sufficient iteration and low enough
error probability) and thus could be tracked without any squaring loss. This article
demonstrates that, with some modification, the same idea of iterative information
reduction through decision feedback can be applied to quadrature phase-shift keyed
(QPSK) modulation, something that was mentioned in the previous publication but
never pursued.

I. Introduction

In recent years there has been an ever-increasing interest in and application of highly power efficient
error-correction codes such as turbo codes and low-density parity check (LDPC) codes to NASA-sponsored
programs. These codes, which approach the Shannon channel capacity of the system, operate at very low
symbol signal-to-noise ratios (SNRs), thus necessitating the need for synchronization (sync) (e.g., carrier,
symbol, etc.) schemes that likewise operate efficiently at these SNRs. To begin to address this issue,
several years ago the notion of iterative information-reduced carrier synchronization for coded binary
phase-shift-keyed (BPSK) modulation was introduced [1]. The idea behind this notion was to overcome
the penalty in noisy reference loss attributed to the large squaring loss at low SNRs that is characteristic
of the traditional types of BPSK carrier synchronization loops, e.g., the Costas or in-phase–quadrature
phase (I-Q) loop, by removing the modulation from the received signal prior to demodulation, thus
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allowing instead the use of a phase-locked loop (PLL). The process by which the modulation was removed
(information reduced) was envisioned as an iterative one wherein hard decisions on the data produced
by the data detector/decoder would be fed back and applied to (multiplied by) the received signal,
thus improving the carrier synchronization, which in turn would improve the data detector performance,
hence the data decisions fed back on the next iteration, and so on. At the same time, the loop would be
adapting its parameters (i.e., the loop nonlinearity in the in-phase arm) to match the current fidelity of
the data decision process, all the while shifting its configuration from a Costas-type loop toward a PLL
in the limit of perfect detection. Several publications based on this notion appeared in the literature
and included everything from the basic idea and accompanying analysis/performance evaluations [1] to
successful application and implementation for specific error-correcting codes [2,3].

With the continued shift toward increased bandwidth efficiency using modulations such as quadriphase-
shift keying (QPSK), it became apparent, and was alluded to in the conclusions of [1], that the same
ideas could be applied in this case, where the problem of nonlinear (e.g., quadrupling) loss (analogous
to squaring loss for the BPSK case) at low SNRs becomes exacerbated. However, the manner in which
the fed-back decisions are used for information removal is somewhat different since in addition to pro-
ducing the desired (information-reduced) signal on, say, the I (or Q) channel, one now also generates an
undesired (cross-talk) signal on the Q (or I) channel. A positive solution to this problem is proposed in
this article and will be referred to as iterative QPSK information-reduced carrier sync. As in the BPSK
case, the scheme is motivated by maximum a posteriori (MAP) estimation of carrier phase considera-
tions. Section II presents the derivation of the closed-loop architecture. Section III derives the tracking
performance of the loop in terms of its mean-square phase error when operating in the linear (high loop
SNR) region, as is typical. Section IV presents the asymptotic behavior of this performance in the limit
of low SNR and compares it with that of the conventional QPSK tracking loop that does not make use
of decision feedback for information reduction. Section V presents the numerical illustration of the loop
tracking performance and compares it with that of the conventional loop mentioned above. Section VI
explores the sensitivity of the scheme to mismatch between the actual value of symbol-error probability
of the I and Q data decoders and the estimate of it used in the loop implementation. Finally, Section VII
documents our conclusions.

II. MAP Estimation of Carrier Phase for QPSK with Unbalanced Data

Consider the transmission of a QPSK signal over an additive white Gaussian noise (AWGN) channel
whereupon the received signal has the form x(t; θ) = s(t; θ) + n(t), where

s(t; θ) =
√

Sm1(t) sin(ωct + θ) +
√

Sm2(t) cos(ωct + θ) (1)

and the additive noise has the narrowband expansion

n(t) =
√

2
[
nc (t) cos (ωct + θ) − ns (t) sin (ωct + θ)

]
(2)

In Eq. (1), S denotes the received signal power, θ is random (assumed to be uniformly distributed and
time independent) carrier phase, and m1 (t) and m2 (t) are the I and Q modulations, which are described
by binary pulse trains as
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m1(t) =
∞∑

k=−∞
akp(t − kT )

m2(t) =
∞∑

k=−∞
bkp(t − kT )

(3)

where p(t) is a unit power rectangular pulse of duration T and {ak}, {bk} are each equiprobable inde-
pendent, identically distributed (i.i.d.) binary (±1) sequences that are also independent of each other.
The noise process in Eq. (2) is modeled in terms of a pair of independent, low-pass Gaussian processes,
nc(t), ns(t), each with single-sided power spectral density (PSD) N0 W/Hz and bandwidth BH < ωc/2π.

With reference to the ad hoc structure illustrated in Fig. 1, the received signal-plus-noise x(t; θ) is
delayed by an amount ∆ (to match the decoding delay of the I-channel data) and multiplied by the data
estimator waveform

m̂1 (t − ∆) =
∞∑

k=−∞
âkp (t − kT − ∆) (4)

to form the signal y1 (t) = x (t − ∆; θ) m̂1 (t − ∆). Similarly, the received signal plus noise x (t; θ) is shifted
by −π/2 rad, delayed by an amount ∆ (to match the decoding delay of the Q-channel data assumed to
be the same as that of the I-channel decoding delay) and multiplied by the data estimator waveform

m̂2 (t − ∆) =
∞∑

k=−∞
b̂kp (t − kT − ∆) (5)

to form the signal y2 (t) = x (t − ∆; θ − π/2) m̂2 (t − ∆). Assuming, as in the previous publications on
the subject, that the sequences of estimates {âk} ,

{
b̂k

}
are each i.i.d. sequences and have the probability

statistics (based on error probability associated with the particular coding/decoding model employed)

Pr {âk �= ak} = p1, Pr {âk = ak} = 1 − p1

Pr
{

b̂k �= bk

}
= p2, Pr

{
b̂k = bk

}
= 1 − p2

(6)

then the results of the above-mentioned products become

y1 (t) =
√

Sm1 (t − ∆) m̂1 (t − ∆) sin (ωct + θ) +
√

Sm2 (t − ∆) m̂1 (t − ∆) cos (ωct + θ) + n1 (t)

=
√

Se11 (t) sin (ωct + θ) +
√

Se21 (t) cos (ωct + θ) + n1 (t)

y2 (t) = −
√

Sm1 (t − ∆) m̂2 (t − ∆) cos (ωct + θ) +
√

Sm2 (t − ∆) m̂2 (t − ∆) sin (ωct + θ) + n2 (t)

= −
√

Se12 (t) cos (ωct + θ) +
√

Se22 (t) sin (ωct + θ) + n2 (t)

(7)
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where we have arbitrarily absorbed the additional carrier phase, ωc∆, due to the decoding delay in the
unknown carrier phase θ. The baseband modulation waveforms e11 (t) , e22 (t) , e12 (t) , e21 (t) that reflect
the errors in the detection of the I and Q input data sequences are modeled as2

e11 (t) =
∞∑

k=−∞
e11kp (t − kT ), e22 (t) =

∞∑
k=−∞

e22kp (t − kT )

e12 (t) =
∞∑

k=−∞
e12kp (t − kT ), e21 (t) =

∞∑
k=−∞

e21kp (t − kT )

(8)

where

e11k = akâk, e22k = bk b̂k, e12k = ak b̂k, e21k = âkbk (9)

are binary (±1) sequences with probability statistics

Pr {eiik = −1} = pi, Pr {eiik = 1} = 1 − pi, i = 1, 2

Pr {e12k = −1} = Pr {e12k = 1} = Pr {e21k = −1} = Pr {e21k = 1} =
1
2

(10)

The additive noises in Eq. (7), namely, n1(t) = m̂1(t − ∆)
√

2
[
nc(t) cos(ωct + θ) − ns(t) sin(ωct + θ)

]
and

n2(t) = m̂2(t − ∆)
√

2
[
nc(t) sin(ωct + θ) + ns(t) cos(ωct + θ)

]
are AWGN in each T -second interval with

statistics identical to n(t) and are independent of the data. Note that to the extent that m̂1 (t − ∆) and
m̂2 (t − ∆) are independent, n1 (t) and n2 (t) are independent.

In an effort to eliminate the quadrature-modulated carrier (cross-talk) term, we next form the sum of
y1(t) and y2(t), resulting in

y(t) = y1(t) + y2(t)

=
√

S
[
e1(t) + e2(t)

]
sin(ωct + θ) +

√
S

[
e21(t) − e12(t)

]
cos(ωct + θ) + n1(t) + n2(t)

=
√

SEd(t) sin(ωct + θ) +
√

SEu(t) cos(ωct + θ) + n1(t) + n2(t)

(11)

where the “d” subscript denotes the desired signal to be tracked and the “u” subscript denotes the residual
undesired cross-talk signal; Ed(t) and Eu(t) are ternary waveforms that can be expressed as

Ed(t) =
∞∑

k=−∞
Edkp(t − kT )

Eu(t) =
∞∑

k=−∞
Eukp(t − kT )

(12)

2 Without loss in generality, for simplicity of notation we herein ignore the decoding delay.

5



where
{
Edk = akâk +bk b̂k

}
and

{
Euk = âkbk−ak b̂k

}
are ternary (0,±2) i.i.d. sequences with probability

distributions as follows:

P {Edk} =

⎧⎪⎪⎨
⎪⎪⎩

(1 − p1) (1 − p2) , Edk = 2

p1p2, Edk = −2

p1 (1 − p2) + p2 (1 − p1) , Edk = 0

(13)

and

P {Euk} =

⎧⎪⎨
⎪⎩

1
2
p1 (1 − p2) +

1
2
p2 (1 − p1) , Euk = ±2

1 − p1 (1 − p2) − p2 (1 − p1) , Euk = 0

(14)

For equal decoding probabilities, i.e., p1 = p2 = p, Eqs. (13) and (14) simplify to

P {Edk} =

⎧⎪⎪⎨
⎪⎪⎩

(1 − p)2, Edk = 2

p2, Edk = −2

2p(1 − p), Edk = 0

(15)

and

P {Euk} =

{
p (1 − p) , Euk = ±2

1 − 2p (1 − p) , Euk = 0
(16)

For p = 1/2, they have identical first-order statistics given by

P {Edk} = P {Euk} �= P {Ek} =

⎧⎪⎪⎨
⎪⎪⎩

1
4
, Ek = ±2

1
2
, Ek = 0

(17)

Note that the sequences
{
Edk

}
and

{
Euk

}
are uncorrelated for all values of p but are not independent.

Their joint statistics are given by

P {Edk, Euk} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − p)2, Edk = 2, Euk = 0

p2, Edk = −2, Euk = 0

p(1 − p), Edk = 0, Euk = ±2

0, otherwise

(18)

Thus, when p = 1/2 (i.e., in the very early stages of iteration when the loop begins to operate without
reliable data decisions), the signal component of the input to the loop as characterized in Eq. (11) appears
as an I-Q modulation with identically distributed (but not independent) ternary modulations on each
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arm. On the other hand, when p becomes small (the desirable case for reliable data detection), then in
the limit as p → 0, the signal component of the loop input becomes a pure (unmodulated) sinusoidal
tone, which can be tracked by a PLL that exhibits the least degradation in performance.

Returning now to the determination of the MAP estimate of phase, the combined signal plus noise in
Eq. (11) is observed for K data intervals, i.e., over the interval 0 ≤ t ≤ KT . Based on this observation
and knowledge of S, p(t) and ωc, the MAP estimate of phase is that value θ̂MAP that maximizes the
conditional probability density function p

(
θ|y(t)

)
or, equivalently, the likelihood function p(y(t) |θ). As

in previous analyses for equiprobable data statistics, the likelihood function (LF) conditioned on the
data sequences {Edk} and {Euk} in the K-symbol observation is given by (disregarding a proportionality
constant)3

p
(
y (t) |θ, {Edk} , {Euk}

)
=

K−1∏
k=0

exp
(
Edkysk (θ)

)
exp

(
Eukyck (θ)

)
exp

[
−Rd

4
(
E2

dk + E2
uk

)]
(19)

where Rd
�= ST/N0 denotes the symbol signal-to-noise ratio (SNR) and

ysk (θ) �=
√

S

N0

∫ (k+1)T

kT

y (t) sin (ωct + θ) dt

yck (θ) �=
√

S

N0

∫ (k+1)T

kT

y (t) cos (ωct + θ) dt

(20)

Jointly averaging Eq. (19) over the statistics of the data sequences {Edk} and {Euk} as given in Eq. (18)
results in the unconditional LF4

Λ (θ) = p
(
y (t) |θ

)
=

K−1∏
k=0

exp (−Rd)
[
(1 − p)2 exp

(
2ysk (θ)

)
+ p2 exp

(
−2ysk (θ)

)

+ 2p (1 − p) cosh
(
2yck (θ)

)]
(21)

Taking the natural logarithm of Eq. (21) gives the log-likelihood function (LLF)

ln Λ (θ) = − KRd +
K−1∑
k=0

ln
[
(1 − p)2 exp

(
2ysk (θ)

)
+ p2 exp

(
−2ysk (θ)

)

+ 2p (1 − p) cosh
(
2yck (θ)

)]
(22)

The MAP phase estimate θ̂MAP is then the solution to

3 Note that, because of the ternary nature of the effective I and Q data sequences {Edk} and {Euk}, we temporarily retain

the energy term in Eq. (19), exp
[
− (Rd/4)

(
E2

dk + E2
uk

)]
, since, unlike the binary data case, it is possible that it is not

independent of the data sequence. Shortly we shall show that indeed because of the dependence of Edk and Euk on each
other, the term E2

dk + E2
uk only takes on the value 4, and thus this term may be dropped in the likelihood function.

4 For simplicity, we pursue the equal decoding probability case.
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θ̂MAP = max
θ

−1 ln Λ(θ) (23)

Note that as the decoding error probability iteratively improves and eventually becomes vanishingly small,
in the limit of p → 0, Eq. (22) simplifies to (ignoring the constant additive term)

ln Λ (θ) = 2
K−1∑
k=0

ysk (θ) (24)

which is the appropriate result for the LLF in the case of an unmodulated carrier.

Since by definition θ̂MAP is the value of θ that maximizes the LLF, an equivalent statement is that
θ̂MAP is the value of θ at which the derivative of the LLF has zero value (and the second derivative is
negative). For estimates θ̂ of θ in the neighborhood of θ̂MAP, the derivative of the LLF will be positive
or negative in accordance with the sign of θ − θ̂MAP; thus, this derivative can be used as an error signal
in a closed-loop synchronizer to steer the loop in the direction of a locked condition corresponding to
θ = θ̂MAP. Taking the derivative of Eq. (22) with respect to θ gives

d

dθ
ln Λ (θ) = 2

K−1∑
k=0

(1 − p)2 exp
(
2ysk (θ)

)
− p2 exp

(
−2ysk (θ)

)
(1 − p)2 exp

(
2ysk (θ)

)
+ p2 exp

(
−2ysk (θ)

)
+ 2p (1 − p) cosh

(
2yck (θ)

)yck (θ)

− 2
K−1∑
k=0

2p (1 − p) sinh
(
2yck (θ)

)
(1 − p)2 exp

(
2ysk (θ)

)
+ p2 exp

(
−2ysk (θ)

)
+ 2p (1 − p) cosh

(
2yck (θ)

)ysk (θ) (25)

which suggests a cross-over type closed loop with cross-coupled nonlinearities in its I and Q arms, where
by “cross-coupled” is meant the fact that each one acts on both the I and Q amplified matched filter
outputs. In particular, in accordance with Eq. (25), defining the two-dimensional nonlinearities

f1 (u, v) �=
2

[
(1 − p)2 exp (2u) − p2 exp (−2u)

]
(1 − p)2 exp (2u) + p2 exp (−2u) + 2p (1 − p) cosh (2v)

(26)

and

f2 (u, v) �=
4p (1 − p) sinh (2v)

(1 − p)2 exp (2u) + p2 exp (−2u) + 2p (1 − p) cosh (2v)
(27)

then the closed-loop QPSK carrier synchronizer motivated by the MAP estimation procedure is as il-
lustrated in Fig. 2, where the value of p to be used in forming the nonlinearities f1(u, v) and f2(u, v) is
derived from an estimate p̂ provided by the data detectors and is iteratively updated. We herein refer to
this loop as the MAP estimation loop for QPSK with unbalanced data. Note that, for p → 0, f1(u, v) → 2
and f2(u, v) = 0, in which case Eq. (25) simplifies to

d

dθ
ln Λ (θ) = 2

K−1∑
k=0

yck (θ) (28)
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which also can be immediately determined from Eq. (24). In principle, this is the same result that
would occur for BPSK and suggests that, in the limit of vanishingly small decoding error probability,
the closed loop behaves similarly to a phase-locked loop (PLL) since no quadrature arm is required in its
implementation.

Finally, for p = 1/2 where, as previously noted, the input to the loop appears as a modulation with
uncorrelated but dependent I and Q ternary data streams with identical first-order statistics [see Eq. (17)],
the nonlinearities of Eqs. (26) and (27) become

f1 (u, v) =
2 sinh (2u)

cosh (2u) + cosh (2v)

f2 (u, v) =
2 sinh (2v)

cosh (2u) + cosh (2v)
= f1 (v, u)

(29)

which suggests a balanced (symmetrical nonlinearities) cross-over type of loop.

III. Tracking Performance of the MAP Estimation Loop for QPSK with
Unbalanced Data

Consider the information-reduced MAP estimation loop for phase synchronization of QPSK with
dependent unbalanced ternary I and Q data illustrated in Fig. 2. The analysis of the tracking performance
of the loop in Fig. 2 begins by paralleling the approach taken in [4] for the MAP-motivated loop; however,
there are some significant differences that arise fairly early in the development and inhibit completion of
the analysis. First, the I and Q nonlinearities in each arm of the loop in [4], namely, hyperbolic tangent
functions, are not cross-coupled, i.e., each depends only on the amplified matched filter output of its
respective arm. Second, several of the steps in the analysis approach carried out in [4] depend upon the
I and Q nonlinearities being an odd function of their argument, which is clearly not the situation here.
Finally, the assumption of independent I and Q data sequences, as was the case in [4] where the input to
the loop is truly the received QPSK signal, is another important difference between the analyses when
carrying the statistical averages over these sequences needed to arrive at the parameters that characterize
the loop’s performance. Despite these differences, we begin the analysis here in the same fashion as in [4]
and proceed as far as one can go until the point is reached where certain simplifying assumptions must
then be invoked.

Assuming unit input I and Q phase detector (multiplier) gains and demodulation reference signals
rc (t) =

√
2 cos

(
ωct + θ̂

)
and rs (t) =

√
2 sin

(
ωct + θ̂

)
, then, after amplification by

√
S/2/N0, the sample-

and-hold outputs uk (φ) and vk (φ) in the interval (k + 1)T ≤ t ≤ (k + 2)T are given by

uk(φ) �=

√
S/2
N0

∫ (k+1)T

kT

y(t)rs(t)dt =

√
S/2
N0

[
T

√
S

2
(Edk cos φ − Euk sinφ) − N1 sinφ − N2 cos φ

]

vk(φ) �=

√
S/2
N0

∫ (k+1)T

kT

y(t)rc(t)dt =

√
S/2
N0

[
T

√
S

2
(Edk sinφ + Euk cos φ) − N2 sinφ + N1 cos φ

] (30)
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where N1, N2 are zero mean, independent Gaussian random variables5 with variance σ2
N1

= σ2
N2

= N0T
�=

σ2 and φ
�= θ − θ̂ is the loop phase error. Rewriting Eq. (30) in normalized form, we have

uk (φ) =
1
2

[
Rd (Edk cos φ − Euk sinφ) −

√
2RdX1 sinφ −

√
2RdX2 cos φ

]

vk (φ) =
1
2

[
Rd (Edk sinφ + Euk cos φ) −

√
2RdX2 sinφ +

√
2RdX1 cos φ

] (31)

where Xi
�= Ni/σ, i = 1, 2 are normalized (unit variance) i.i.d. Gaussian random variables (RVs). Mul-

tiplying vk(φ) by the nonlinearly processed uk(φ), vk(φ) pair gives one component of the dynamic error
signal, namely,

zk1(φ) = vk(φ)f1

(
uk (φ) , vk (φ)

)
(32)

Similarly, multiplying uk (φ) by the nonlinearly processed uk (φ) , vk (φ) pair gives the other component
of the dynamic error signal, namely,

zk2(φ) = uk (φ) f2

(
uk (φ) , vk (φ)

)
(33)

Finally, the total dynamic error signal, ek(φ), in the kth signal interval is the difference of zk1(φ) and
zk2(φ), i.e., ek(φ) = zk1(φ) − zk2(φ).

The tracking performance of a loop such as that in Fig. 2 can, in its linear region of operation (small
phase error), be characterized by the variance of the phase error which can be evaluated from the slope
of the equivalent S-curve at φ = 0 and the power spectral density (PSD) of the equivalent additive
noise. These parameters in turn can be determined by evaluating the statistics of the signal and noise
components of zo(t;φ), making the usual assumption that the loop bandwidth is much less than the data
bandwidth. With this in mind, the loop S-curve is defined as the expected value of the error signal and
is given by

η (φ) �= ek (φ)
Edk,Euk,X1,X2 = vk (φ) f1

(
uk (φ) , vk (φ)

)
− uk (φ) f2

(
uk (φ) , vk (φ)

)Edk,Euk,X1,X2
(34)

where the overbar denotes statistical averaging over the probability distributions of the data and noise RVs
indicated, keeping in mind that the average over the data RVs must be performed jointly in accordance
with Eq. (18). While, in principle, the averaging required in Eq. (34) cannot be obtained in closed form,
using the properties of the nonlinearities obtained from Eqs. (26) and (27), namely that

f1 (u, v) = f1 (u,−v)

f2 (u, v) = −f2 (u,−v)
(35)

it is nevertheless possible to show analytically that the S-curve is an odd function through the ori-
gin, i.e., η (φ) = −η (−φ), as is desirable of such a tracking characteristic. Figures 3(a) through 3(c) are

5 Note that multiplication of a Gaussian process by a binary (±1) waveform of rate 1/T does not change the Gaussian
properties of the original process within any T -second time interval. Thus, for any input bit, the corresponding sample-
and-hold outputs of the integrate-and-dump (I&D) filters are still Gaussian random variables.
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(c)

Fig. 3.  Loop S-curve versus symbol SNR: (a) p = 0.1, 
(b) p = 0.3, and (c) p = 0.5. Dashed curves correspond 
to the y-axis on the left, and solid curves correspond 
to the y-axis on the right.
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illustrations of the transitional behavior of the S-curves for φ ≥ 0 (obtained by computer evaluation
of the averages required in Eq. (34) using MATLABTM software) for three different values of p with
symbol SNR Rd as a parameter. The y-axis scale on the left applies to the curves corresponding to
the lower values of SNR (the dashed curves), whereas the y-axis scale on the right applies to the curves
corresponding to the higher values of SNR (the solid curves). In addition, we remind the reader that in
the limit of p → 0 the loop becomes a PLL, and thus the S-curve has the form of sinφ.

The slope Kη of this S-curve at the origin is obtained from

Kη =
dη(φ)
dφ

|φ=0 = uk(0)f1

(
uk(0), vk(0)

)
+ vk(0)f ′

1

(
uk(φ), vk(φ)

)
|φ=0

Edk,Euk,X1,X2

+ vk(0)f2

(
uk(0), vk(0)

)
− uk(0)f ′

2

(
uk(φ), vk(φ)

)
|φ=0

Edk,Euk,X1,X2
(36)

where from Eq. (31) we have made use of the relations

duk (φ)
dφ

= − vk (φ)

dvk (φ)
dφ

= uk (φ)

(37)

Also, the derivatives of the nonlinearities as denoted by the primes in Eq. (36) are given by

f ′
i (uk (φ) , vk (φ)) =

∂fi

(
uk (φ) , vk (φ)

)
∂uk (φ)

duk (φ)
dφ

+
∂fi

(
uk (φ) , vk (φ)

)
∂vk (φ)

dvk (φ)
dφ

= − vk (φ)
∂fi

(
uk (φ) , vk (φ)

)
∂uk (φ)

+ uk (φ)
∂fi

(
uk (φ) , vk (φ)

)
∂vk (φ)

, i = 1, 2 (38)

From Eqs. (26) and (27), the partial derivatives needed in Eq. (38) are given by

g(u, v) �=
∂f1 (u, v)

∂u
=

∂f2 (u, v)
∂v

=
8p (1 − p)

{
2p (1 − p) + cosh (2v)

[
(1 − p)2 exp (2u) + p2 exp (−2u)

]}
[
(1 − p)2 exp (2u) + p2 exp (−2u) + 2p (1 − p) cosh (2v)

]2

h(u, v) �=
∂f1 (u, v)

∂v
=

∂f2 (u, v)
∂u

= −
8p (1 − p) sinh (2v)

[
(1 − p)2 exp (2u) − p2 exp (−2u)

]
[
(1 − p)2 exp (2u) + p2 exp (−2u) + 2p (1 − p) cosh (2v)

]2

(39)
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which for p = 1/2 simplify to

g (u, v) �=
∂f1 (u, v)

∂u
=

∂f2 (u, v)
∂v

=
4
[
1 + cosh (2v) cosh (2u)

]
[
cosh (2u) + cosh (2v)

]2

h (u, v) �=
∂f1 (u, v)

∂v
=

∂f2 (u, v)
∂u

= − 4 sinh (2v) sinh (2u)[
cosh (2u) + cosh (2v)

]2
(40)

and also could be determined directly by differentiation of Eq. (29). Finally, substituting Eq. (38)
combined with Eq. (39) into Eq. (36), the slope of the S-curve becomes

Kη = uk (0) f1

(
uk (0) , vk (0)

)
+ vk (0) f2

(
uk (0) , vk (0)

)Edk,Euk,X1,X2

−
[
u2

k (0) + v2
k (0)

]
g
(
uk (0) , vk (0)

)Edk,Euk,X1,X2

+ 2uk (0) vk (0)h
(
uk (0) , vk (0)

)Edk,Euk,X1,X2
(41)

where, from Eq. (31),

uk(0) =
1
2

(
RdEdk −

√
2RdX2

)

vk (0) =
1
2

(
RdEuk +

√
2RdX1

) (42)

We note that, in an actual implementation, p would itself depend on the loop phase error (since the data
decisions being fed back to the input of the loop depend on the phase of the in-phase carrier demodulation
reference derived from the loop). However, since the slope of the S-curve is evaluated at φ = 0, then the
value of p needed in Eq. (41) is the value at φ = 0, i.e., the ideal performance of the data detector. Thus,
the dependence of p on φ is irrelevant to the evaluation of the S-curve slope.

The noise component of ek(t;φ) (evaluated at φ = 0) is given by Ne(t) = ek(t; 0) − η(0) = ek(t; 0),
which from Eqs. (32) and (33) becomes

Ne(t) = vk(0)f1

(
uk (0) , vk (0)

)
− uk (0) f2

(
uk (0) , vk (0)

)
(43)

with variance

σ2
Ne

=
[
vk (0) f1

(
uk (0) , vk (0)

)
− uk (0) f2

(
uk (0) , vk (0)

)]2Edk,Euk,X1,X2

(44)

Here again the value of p needed in Eq. (44) is the value at φ = 0, which is consistent with the previous
usage of the same parameter for the S-curve slope in Eq. (41).

Because of the sample-and-hold circuits shown in Fig. 2, the noise process of Eq. (43) is piecewise
constant over intervals of T -second duration. Thus, as long as the loop bandwidth is much less than the

14



data bandwidth, this process can be approximated, as has been done in the past, by a delta-correlated
process with correlation function given by

RNe (τ) �= Ne(t)Ne (t + τ) =

⎧⎪⎨
⎪⎩

σ2
Ne

[
1 − |τ |

T

]
, |τ | ≤ T

0, |τ | > T

(45)

and equivalent single-sided noise spectral density (in the neighborhood of f = 0)

N ′
0

�= 2
∫ ∞

−∞
RNe

(τ)dτ = 2σ2
Ne

T (46)

Finally, then, the linearized phase error variance is given by

σ2
φ =

N ′
0BL

K2
η

�= (ρSL)−1 (47)

where ρ = S/N0BL is the linear loop (PLL) signal-to-noise ratio (BL is the single-sided loop bandwidth)
and, analogous to conventional quadriphase Costas loop terminology, SL is the “quadrupling loss,” which
reflects the penalty paid due to the signal and noise cross-products present in ek(t;φ). Solving for SL

from Eq. (47) gives

SL =
K2

η

Rd (N ′
0/T )

(48)

which unfortunately cannot be obtained in closed form for arbitrary values of p. In the limiting case of
p = 0, however, Kη = 2Rd and N ′

0 = 4RdT , and thus SL = 1, which corresponds to no quadrupling loss,
as one would expect of a PLL.

IV. Asymptotic Behavior at Low SNR

It is of interest to examine the behavior of the information-reduced carrier synchronization scheme at
low SNR (small symbol energy-to-noise ratio) since this is the region where the quadrupling loss associated
with conventional carrier synchronization schemes is large and thus limits their performances. Since the
outputs of the I&D filters in Fig. 2 are proportional to Rd, then for small values of this parameter, the
I and Q nonlinearities can be approximated by the first few terms of their Taylor series expansion. In
particular, for the p = 1/2 case, making the approximations sinhx ∼= x + x3/6, cosh x ∼= 1 + x2/2 in
Eq. (29), we obtain (keeping only terms up to order x3)

f1(u, v) ∼= 2
(

u − 1
3
u3 − uv2

)

f2(u, v) ∼= 2
(

v − 1
3
v3 − vu2

) (49)

which when substituted in Eq. (34) results in the S-curve
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η (φ) =
4
3

[
vk (φ) u3

k (φ) − uk (φ) v3
k (φ)

]Edk,Euk,X1,X2

=
4
3

uk (φ) vk (φ)
[
u2

k (φ) − v2
k (φ)

]Edk,Euk,X1,X2

(50)

It is interesting (although not surprising) that the functional form of the error signal in Eq. (50) is identical
to that in a conventional QPSK Costas loop (derived from MAP phase estimate considerations at low
SNR) [4]. Substituting Eq. (31) into Eq. (50) and carrying out the required statistical averages results in

η (φ) =
1
3
R4

d sin 4φ (51)

with slope at the origin

Kη =
4
3
R4

d (52)

To evaluate the equivalent noise power spectral density in Eq. (46), we need to evaluate the variance
in Eq. (44), which, using the approximate expressions for the nonlinearities in Eq. (49), becomes

σ2
Ne

=
16
9

u2
k (0) v2

k (0)
[
u2

k (0) − v2
k (0)

]2Edk,Euk,X1,X2

=
16
9

[
u6

k (0) v2
k (0)

Edk,Euk,X1,X2

+ v6
k (0)u2

k (0)
Edk,Euk,X1,X2

− 2v4
k (0)u4

k (0)
Edk,Euk,X1,X2

]
(53)

However, from the definitions of uk (0) and vk (0) in Eq. (31), these variables are noise-wise independent.
Thus, the following first-order moments are useful in evaluating the joint moments required in Eq. (53):

u2
k (0)

X2
=

1
4

[
R2

dE
2
dk + 2Rd

]

v2
k (0)

X1
=

1
4

[
R2

dE
2
uk + 2Rd

]

u4
k (0)

X2
=

1
16

[
R4

dE
4
dk + 12R3

dE
2
dk + 12R2

d

]

v4
k (0)

X1
=

1
16

[
R4

dE
4
uk + 12R3

dE
2
uk + 12R2

d

]

u6
k (0)

X2
=

1
64

[
R6

dE
6
dk + 30R5

dE
4
dk + 180R4

dE
2
dk + 120R3

d

]

v6
k (0)

X1
=

1
64

[
R6

dE
6
uk + 30R5

dE
4
uk + 180R4

dE
2
uk + 120R3

d

]

(54)

Using Eq. (54), the joint averages over the data sequences of the terms in Eq. (53) become
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u6
k (0) v2

k (0)
Edk,Euk,X1,X2

= v6
k (0)u2

k (0)
Edk,Euk,X1,X2

=
1
16

(
4R7

d + 30R7
d + 60R5

d + 15R4
d

)

v4
k (0)u4

k (0)
Edk,Euk,X1,X2

=
1
16

(
12R6

d + 36R5
d + 9R4

d

)
(55)

which upon substitution in Eq. (53) gives

σ2
Ne

=
1
9

(
8R7

d + 36R6
d + 48R5

d + 12R4
d

)
(56)

Finally, using Eq. (56) in Eq. (46) together with Eq. (52), the quadrupling loss as computed from Eq. (48)
becomes

SL =
1

1 +
9

2Rd
+

6
R2

d

+
3

2R3
d

(57)

which is identical to the result for the conventional QPSK Costas loop derived from MAP carrier phase
estimation considerations at low SNR [4, Eq. (35)]. What is particularly interesting about this result is
that, despite the fact that for p = 1/2 the effective I and Q sequences that are input to the iterative
information-reduced loop are ternary in nature and not independent of each other, whereas in the con-
ventional QPSK Costas loop they are i.i.d. binary and independent, the quadrupling loss is nevertheless
the same in the limit of low SNR operation of the former.

Thus, we see that at the outset of the iteration process, the information-reduced QPSK loop performs
the same as the conventional QPSK loop. However, as the loop continues to produce better and better
carrier phase estimates, p continues to decrease, and thus the quadrupling loss performance of the loop
varies between its value as given by Eq. (57) and its value corresponding to the error rate performance
of the data detector at the particular value of Rd under consideration. (In the limit of p → 0, the
quadrupling loss would disappear entirely.) By contrast, the quadrupling loss of the conventional QPSK
loop remains fixed at its value as determined from Eq. (57). In the following section, we will demonstrate
this more quantitatively with numerical results obtained by computer simulation.

V. Evaluation of the Tracking Performance as a Function of Detection SNR

As discussed in the previous section, the amount of quadrupling loss is commonly used as a measure of
the tracking performance degradation of QPSK carrier synchronization loops. With this in mind, Fig. 4
is a plot of the quadrupling loss SL of the information-reduced QPSK loop versus detection (symbol)
SNR Rd with p as a parameter. These results were obtained by computer simulation (MATLABTM

numerical methods) of the statistical averages required to compute the S-curve slope Kη and equivalent
noise PSD N ′

0 needed in Eq. (48). While we recognize that, even for perfect carrier synchronization,
any given form of coded modulation and associated data detector/decoder results in a value of p that
is a function of Rd, we have chosen to maintain p as a constant parameter in this figure. The reason
for this is that the results presented there can then be independent of the specific form of data detector
or, equivalently, the specific form of error correction coding employed, provided that the conditions for
an i.i.d. and noise-dependent error sequence are still met. For any given coding application, only a sin-
gle point on each curve of constant p would be applicable, namely, the one corresponding to the given error
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Rd, dB

Fig. 4.  Quadrupling loss versus symbol SNR in decibels 
with p as a parameter.
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rate behavior of the data detector (decoder), and thus the performance for that particular application
would be illustrated by a single curve passing through this series of points.

We observe from the results in Fig. 4 the monotonic behavior of the quadrupling loss as a function
of p.6 Although somewhat cumbersome to evaluate analytically, the limiting behavior of this loss at low
SNR is given by

lim
Rd→0

SL = (1 − 2p)2 (58)

which is the identical result obtained for the information-reduced BPSK loop in [1]. Furthermore, we
observe the immediate large improvement in quadrupling loss at low SNR as soon as some degree of
fidelity of the data decisions begins to take place. More specifically, for improvement to take place in
the carrier synchronizer, the data estimator is not required to operate with symbol-error probabilities as
small as those typically needed for reliable communication. In fact, when used in the manner illustrated
in Fig. 1, a value of p = 0.1, which in most applications would be considered unacceptable for data
decisions, can result in dramatic improvement in carrier synchronization performance relative to that of
the conventional QPSK Costas loop as represented by the curve labeled p = 0.5. It should be further
noted that, although this curve was obtained by computer simulation, it agrees with the theoretical result
in Eq. (57).

Another interpretation of the numerical results can be obtained by recognizing that the loop SNR
ρ = S/N0BL can be expressed in terms of the symbol SNR Rd = ST/N0 by ρ = Rd/BLT , which when
substituted in Eq. (47) gives an expression for the normalized phase error variance as

σ2
φ

BLT
= (RdSL)−1 (59)

Figure 5 is a plot of this normalized variance, with SL determined as in Fig. 4 versus Rd with p as
a parameter. As one would anticipate, here the curves are both monotonic with p for fixed Rd and

6 At the same time, we note that for fixed p we cannot guarantee a monotonic performance with SNR.
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Rd, dB

Fig. 5.  Normalized phase error variance versus symbol 
SNR in decibels with p as a parameter.
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monotonic with Rd for fixed p. These curves represent the tracking performance of the loop when the
loop bandwidth–symbol time product is held fixed and once again show the rapid dramatic improvement
with data detection efficiency at low SNR for the information-reduced QPSK loop. Here again we see the
dramatic improvement in performance at low SNR as the information reduction increases, i.e., the data
estimates improve.

VI. Sensitivity to Mismatch

Having improved the phase tracking by the use of data feedback, the new improved carrier phase
estimate will help the data detector obtain better symbol estimates, which suggests an iterative procedure.
That is, the phase tracking loop is initially designed assuming a value of p corresponding to no feedback.
The initial data estimates obtained using this particular structure as a carrier synchronizer are fed back,
and the carrier synchronizer structure then is modified based on the new estimated value of p. This
updated carrier synchronizer provides improved phase tracking, which in turn provides improved data
detection. These new data estimates, having a smaller value of p, then are fed back to the input of the
carrier synchronizer and the iteration continues. Thus, in practice, at any given time instant there will be
a mismatch between the true value of p associated with the input error sequence and its estimate, p̂, used
to implement the nonlinearities of Eqs. (26) and (27) in the loop. As such, we wish to investigate the
sensitivity of the loop performance as measured by the quadrupling loss to mismatch between p and p̂.
That is, how good must our estimate of p be for the purpose of loop implementation and yet still achieve
an improvement in performance relative to not implementing decision feedback at all?

We begin this discussion by recognizing that when p and p̂ are unequal, the quadrupling loss expres-
sion of Eq. (48) is still appropriate provided that, in the expressions used to compute Kη and N ′

0, p̂ is
substituted for p in the definitions of the nonlinearities in Eqs. (26) and (27) as well as their derivatives
in Eq. (39). The first point to observe is that, for p̂ = 0.5, f1(u, v) and f2(u, v) and their associated
derivatives simplify to the forms in Eqs. (29) and (40), respectively, which in view of the symmetry prop-
erties of these functions results in the averages over the data sequences Euk and Edk needed to evaluate
Kη and N ′

0 becoming independent of p. This in turn results in the quadrupling loss also becoming in-
dependent of p. That is, if we assume p̂ = 0.5 for the loop design, then the performance is independent
of the true data input probabilities. Next, suppose that we are optimistic in our estimate of p used for
the design of the loop, i.e., p̂ ≤ p. Figures 6(a) and 6(b) are plots of the squaring loss as determined
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Fig. 6.  Quadrupling loss performance in the presence of 
mismatch: (a) p = 0.01, p ≤ p and (b) p = 0.1, p ≤ p.
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from Eq. (48) versus Rd in decibels with p̂ as a parameter and p = 0.01 and p = 0.1, respectively. The
deviation between p and p̂ is as much as a factor of 5. We see that for this case the performance of the
loop is quite insensitive (a variation on the order of 0.1 dB or less) to the mismatch and yet we still
obtain a significant improvement relative to the case of no feedback at all. Figures 7(a) and 7(b) show
the analogous results for the case where we are pessimistic in our estimate of p used for the design of
the loop, i.e., p̂ ≥ p. Although we see a bit more sensitivity of the loop performance to the mismatch
between p and p̂, in all cases performance is as good or better than the case of no feedback (information
reduction) at all. It is also interesting to note in these figures that, except for the singular case of p̂ = 0.5,
the limiting quadrupling performance as Rd → 0 behaves like (1 − 2p)2 independently of the amount of
mismatch and thus is consistent with Eq. (58) for the perfectly matched case. For p̂ = 0.5, as previously
mentioned, the performance is independent of the true value of p and becomes synonymous with that of
the conventional Costas loop.
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Fig. 7.  Quadrupling loss performance in the presence of 
mismatch: (a) p = 0.01, p ≥ p and (b) p = 0.1, p ≥ p.
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VII. Conclusions

Using the same iterative information-reduction principle previously introduced for carrier synchroniza-
tion of coded BPSK, it is possible to design an analogous closed-loop configuration for coded QPSK that
outperforms the conventional I-Q schemes. It has been shown that very accurate symbol decisions are
not required in order to achieve significant improvements in low SNR tracking threshold (or, equivalently,
operation with greatly reduced phase error) as measured by the reduction in the quadrupling loss of the
loop. Stated another way, the new QPSK carrier synchronization loop can operate effectively at signal
levels that might be too low for a conventional I-Q loop to even lock. Furthermore, once phase-locked,
the loop continues to iteratively improve its performance by transferring its phase estimates to the data
detector and receiving in return improved data decisions to modify its I and Q nonlinearities, all the while
attempting to approach the tracking performance of a phase-locked loop operating on an unmodulated
tone.
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Finally, it should be noted that the same information-reduction principle can in principle be applied
to offset QPSK (OQPSK) to generate a carrier tracking loop for such a modulation. However, in this
case the effective ternary I and Q sequences generated at the input to the loop now occur at twice
the data rate (because of the half-symbol offset between the transmitted I and Q data streams), and
furthermore these effective data sequences are now themselves correlated in time in addition to being
jointly dependent. Because of this, analysis of the behavior of such a loop is difficult if not impossible,
and thus the performance would need to be obtained by computer simulation. Such a task is left as an
exercise for the interested reader.
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