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Bounds on the Error Variance when Estimating
the Position of an Image

B. Moision1

We illustrate Cramer–Rao lower bounds (CRLBs) on the root-mean-square
(RMS) error in estimating the position of an image on a detector array. Several
models of the image intensity distribution are treated. The case of Poisson arrivals
and a Gaussian image profile, which was treated in [1], is extended to treat an
unknown image mean and a skew-normal profile with unknown skew. We show the
bounds are insensitive to knowledge of the mean while unknown skew can result in
a loss of ≈1.5 dB. We show that a time-varying image profile, with pixel variance
quadratic in the image mean, leads to a floor in the RMS error as a function of the
mean.

I. Introduction

The high frequency of an optical communications link is both a boon and a curse to an optical system
designer. High frequencies allow narrow beam widths that yield good power efficiency but require highly
accurate pointing and tracking. This makes an accurate pointing system a critical component of a deep-
space optical communications link. For example, a 1064-nm laser with a 30-cm aperture yields a far-field
beam width of ≈3.56 µrad. A typical link budget requires a root-mean-square (RMS) pointing error of
less than 1/10 of the beam width, in this case 0.356 µrad.

To achieve highly accurate pointing, a deep-space link may utilize an image of the Earth, with Earth
imaging done in either the visible or infrared bands, see, e.g., [2,3]. An image of the Earth is received
on a focal-plane array on the spacecraft with time-varying distortions that degrade estimation accuracy.
In this article, we compute bounds on the performance of a spatial tracking algorithm that utilizes an
image of the Earth. We extend results from [1] to treat a skew-Gaussian image, which is a more accurate
depiction of an infrared image and model uncertainty in the image in terms of unknown image skew.
We also extend the results of [4] to treat conditional Poisson statistics, which more accurately model a
time-varying image profile, and relate the model from [4] to other models.

1 Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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II. Problem Definition

Let I(ρρρ) be the normalized (
∫

I(ρρρ) = 1) intensity distribution of an image incident on an L detector
array. The offset image with intensity distribution I(ρρρ− rrr) is received in the presence of noise. Given an
observation of the noisy image, the receiver computes an estimate r̂rr of the unknown offset rrr = (r1, r2),
presumed to be a realization of a random process. In the following, we determine Cramer–Rao lower
bounds (CRLBs) on the variance

σ2
r̂rr =

〈
(r̂rr − rrr)2

〉
of an unbiased estimate r̂rr.

The noise and image energy fields yield photoelectron counts over a given area that are random Poisson
variates with mean proportional to the integrated energy over a slot time. Let λs denote the total mean
image photoelectrons and Ai the aperture of the ith detector—a 2δ × 2δ square centered at (ρi,1, ρi,2).
Assume the mean noise photons per detector, λn, are constant over the array. Let

gi(rrr) = fraction of image captured by ith detector

=
∫

Ai

I(ρρρ − rrr)dρρρ

λi = mean photons detected by ith detector

= λsgi(rrr) + λn

ki = photons detected by ith detector

The image is characterized by a collection of unknown parameters θθθ = (θ1, θ2, · · ·). The unknown
parameters always include the position, θθθ = (r1, r2 · · ·), and may, in the more general case, include
other parameters of the image that are unknown at the detector. Uncertainty in the estimation of these
additional parameters will degrade the accuracy in estimation of rrr. Let θ̂θθ = [r̂rr1, r̂rr2, · · ·] be the estimate
of θθθ.

The output of the ith detector is conditionally Poisson, with probability mass function

p(ki|θθθ,λλλ) =
λki

i e−λi

(ki)!

where λλλ = (λ1, λ2, · · · , λL). The detector outputs are assumed independent, so that the joint mass
function of the array output kkk = (k1, · · · , kL) is given by

p(kkk|θθθ,λλλ) =
L∏

i=1

λki
i e−λi

(ki)!

(a case of correlated observations is treated in Section VI.C). In the general case, due, for example, to
albedo variations, λλλ may be the realization of a random process. Integrating over the joint density of λλλ
yields
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p(kkk|θθθ) =
∫

p(kkk|θθθ)p(λλλ)dλλλ

Let r̂rr be an unbiased estimate of rrr and assume the joint density satisfies the regularity condition

〈
∂ ln p(kkk|θθθ)

∂θθθ

〉
= 0 ∀rrr

Then the estimate variance satisfies the CRLB, see, e.g., [5],

σ2
θ̂θθi

≥
[
I−1(θθθ)

]
i,i

where I is the Fisher information matrix

[
I(θθθ)

]
i,j

=
〈

∂ ln p(kkk|θθθ)
∂θi

∂ ln p(kkk|θθθ)
∂θj

〉

For example, consider the case where θθθ = (r1, r2). Let

a =
1
λs

〈(
∂ ln p

∂r1

)2
〉

(1)

b =
1
λs

〈(
∂ ln p

∂r2

)2
〉

(2)

d =
1
λs

〈
∂ ln p

∂r1

∂ ln p

∂r2

〉
(3)

Then we have

I(kkk) = λs

[
a d
d b

]

and

σ2
r̂rr|rrr =

〈
(r̂rr − rrr)2|rrr

〉

≥ 1
λs

a + b

ab − d2
(4)

Throughout we assume the image is entirely captured in the detector array so that
∑

i gi(rrr) = 1 and∑
i g′i(r1) = 0. We also assume that the prior on rrr is uniform over the array. If the detector area were

infinite and the prior on rrr were uniform, then any estimate would be invariant to a translation by an
integer number of pixels, and it is sufficient to integrate over a single pixel area to obtain the mean-square
error [1]:
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σ2
r̂rr =

1
4δ2

∫ δ

−δ

∫ δ

−δ

σ2
r̂rr|rrrdrrr

We continue to make this simplifying assumption for a finite array. Substituting and factoring out the
image mean yields

σ2
r̂rr ≥ 1

λs
G (5)

where

G =
1

4δ2

∫ δ

−δ

∫ δ

−δ

a + b

ab − d2
drrr

In the following sections, we compute functions analogous to G in Eq. (5) for different models of I(ρρρ).
Section IV treats the case where I(ρρρ) is deterministic and known and arrivals are Poisson; subsections
treat the cases where the mean and skewness are unknown. Section V treats the case of random means
yielding negative-binomial arrivals, and Section VI treats the case of Gaussian arrivals with an unknown
profile. First, in the following section, we present two models for the deterministic component of the
brightness distribution.

III. Models for the Intensity Distribution

In this section, we present two models for the deterministic component, or mean value, of an intensity
distribution. The intensity distribution affects the results through the functions gi(rrr) and their derivatives
g′i(θi) = ∂gi(rrr)/∂θi. Results in later sections are stated in terms of gi(rrr), g′i(θi), and may be extended to
different intensity distribution models in a straightforward manner by substituting these functions.

Figure 1 illustrates a sample intensity distribution of Earth in the infrared. To obtain the distribution,
near-Earth infrared data from the Atmospheric Infrared Sounder were extrapolated to a distance of 2 AU
by filtering with aperture blurring and adding noise (background, shot, and sensor dark noise).2 The
distribution appears Gaussian with some skew. We will use both a normal and skew-normal distributions
as models of the true distribution.

A. Normal Intensity Distribution

Let φ(x; σ) =
(
1/
√

2πσ2
)
e−x2/(2σ2), a zero-mean normal density, and

I(ρρρ) = φ(ρ1;σ)φ(ρ2;σ) (6)

a bivariate normal distribution. Let ξi,1 = ρi,1 − r1 and ξi,2 = ρi,2 − r2, the shifted center of the ith pixel.
Then

2 S. Piazzolla, Reconstructing Earth Emission from AIRS, (internal document), Jet Propulsion Laboratory, Pasadena,
California, 2005.
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Fig. 1.  Example of an intensity distribution extrapolated from AIRS data, δ = 0.5.

gi(rrr) =
∫

Ai−rrr
I(ρρρ)dρρρ

=
∫ ξi,1+δ

ξi,1−δ

φ(ρ1;σ)dρ1

∫ ξi,2+δ

ξi,2−δ

φ(ρ2;σ)dρ2

with partial derivative

g′i(r1) =
∂gi(rrr)
∂r1

=
1
2

(
erfc

(
1√
2σ2

(ξi,2 − δ)
)
− erfc

(
1√
2σ2

(ξi,2 + δ)
))

× 1√
2πσ2

(
exp

(
− 1

2σ2
(ξi,1 − δ)2

)
− exp

(
− 1

2σ2
(ξi,1 + δ)2

))

where

erfc (x) =
2√
π

∫ ∞

x

e−t2dt
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B. Skew-Normal Intensity Distribution

In order to capture the skewness of the observed data, we also consider a skew-normal distribution,
see, e.g., [6],

I(ρρρ) = 4φ(ρ1;σ1)Φ(α1ρ1)φ(ρ1;σ2)Φ(α2ρ2) (7)

where Φ(x) = (1/
√

2π )
∫ x

−∞ e−t2/2dt =
∫ x

−∞ φ(t, 1)dt, the cumulative distribution function of a zero-mean
unit-variance normal density. This scaled version of the bivariate normal density allows some skew by
means of the parameters α1, α2 and reduces to the normal when α1 = α2 = 0. Figure 2 illustrates an
example of a skew-normal distribution. Let

Ψ(x, y, σ, δ) = 2
∫ y

x

φ(ρ;σ)Φ(δρ)dρ (8)

Then

gi(rrr) = Ψ(ξi,1 − δ, ξi,1 + δ, σ1, α1)Ψ(ξi,2 − δ, ξi,2 + δ, σ2, α2) (9)

g′i(r1) = 2Ψ(ξi,2 − δ, ξi,2 + δ, σ2, α2)

×
(
φ(ξi,1 − δ;σ1)Φ

(
α1(ξi,1 − δ)

)
− φ(ξi,1 + δ;σ1)Φ

(
α1(ξi,1 + δ)

))

g′i(α1) = Ψ(ξi,2 − δ, ξi,2 + δ, σ2, α2)
σ2

1

π(1 + σ2
1α2

1)

×
(

exp
(−(ξi,1 − δ)2(1 + σ2

1α2
1)

2σ2
1

)
− exp

(−(ξi,1 + δ)2(1 + σ2
1α2

1)
2σ2

1

))

In numerical results, we evaluate Eq. (8) by numerical integration. The marginal of Eq. (7) has mean

√
2
π

α1σ
2
1

(1 + α2
1σ

2
1)1/2

and variance

σ2
1

(
1 − 2

π

σ2
1α2

1

1 + σ2
1α2

1

)

The mean is irrelevant in our comparisons; however, in comparisons with the normal intensity, we choose
σ1, σ2 such that the variances of the marginals are equal to the variances of the marginals of the normal.
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Fig. 2.  A skew-normal distribution with δ = 0.5, α1 = 0, α2 = 2, σ1 = 0.5, σ2 = 0.64.
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IV. Known Intensity Distribution, Poisson Arrivals

Suppose I(ρρρ) and λs are known to the detector, so that θθθ = rrr. This could be the case, for example,
with a known beacon, and serves as a limiting case when other parameters are unknown. Then

p(kkk|rrr) =
L∏

i=1

λki
i e−λi

(ki)!

The terms a, b, d, defined by Eqs. (1) through (3), reduce to

a =
L∑

i=1

1
λ̃i

(
g′i(r1)

)2 (10)

b =
L∑

i=1

1
λ̃i

(
g′i(r2)

)2 (11)

d =
L∑

i=1

1
λ̃i

g′i(r1)g′i(r2) (12)
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where λ̃i = λi/λs = gi(rrr) + λn/λs. This yields

σ2
r̂rr ≥ 1

λs
Gn(δ, σ, λn/λs) (13)

Gn(δ, σ, λn/λs) =
1

4δ2

∫ δ

−δ

∫ δ

−δ

a + b

ab − d2
drrr (14)

We see the error variance is inversely linear in the image mean for a fixed λs/λn, and the normalized
error σ2

r̂rr λs depends only on the ratio λs/λn, as illustrated in [1].

Figure 3 reproduces a result from [1], illustrating the normalized 2-D RMS error σr̂rr

√
λs/σ as a function

of the pixel-to-image-size ratio 2δ/σ for I(ρρρ) normal, Eq. (6). Figure 4 illustrates the RMS error σr̂rr in
units of pixel lengths (i.e., δ is set to 0.5) as a function of the image mean for varying noise means. For
example, we see that if we desire an RMS error of less than a tenth of a pixel, we require an image mean
of at least 66 photons per image. In Fig. 4, σ = δ = 0.5, since, as shown in Fig. 4, a pixel-width-to-image
standard deviation of approximately 2 is optimum over a wide range of image and noise pairs. In the
limit of small background, the multiplier goes to Gn(0.5, 0.5, 0) ≈ 0.67.

A. Gaussian Intensity, Unknown Image Mean

In practice, it may be necessary to estimate the image mean, which will be varying due to variations
in the Earth albedo. Let θθθ = [r1, r2, λs] and

c =
1
λs

〈
∂ ln p

∂λs

2〉
=

1
λ2

s

L∑
i=1

gi(rrr)2

λ̃i

e =
1
λs

〈
∂ ln p

∂r1

∂ ln p

∂λs

〉
=

1
λs

L∑
i=1

gi(rrr)g′i(r1)
λ̃i

f =
1
λs

〈
∂ ln p

∂r2

∂ ln p

∂λs

〉
=

1
λs

L∑
i=1

gi(rrr)g′i(r2)
λ̃i

It follows that

σ2
r̂rr ≥ 1

λs
Gn,2(δ, σ, λn/λs)

where

Gn,2(δ, σ, λn/λs) =
1

4δ2

∫ δ

−δ

∫ δ

−δ

a + b − 1
c
(e2 + f2)

ab − d2 +
1
c
(2def − e2b − af2)

drrr

λ̃i = λi/λs and a, b, d are given by Eqs. (10) through (12). In the absence of noise, λn = 0, we have
e = f = 0, and the error variance reduces to Eq. (4). Figure 5 illustrates Gn,2/Gn in decibels, the relative
gain in λs to achieve the same bound on σ2

r̂rr , as a function of λs/λn. With a Gaussian intensity profile,
we see an error variance close to Eq. (4) (less than uncertainty in numerical evaluation of the integrals).
Hence, the position estimate is not sensitive to knowledge of the image mean.
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Fig. 5.  Relative difference in bounds (dB).  All skew-normal 
distributions have α1 = 4, α2 = 0.
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B. Skew-Normal Intensity, Unknown Skew

We may model uncertainty in the image distribution by assuming the distribution is skew-normal with
an unknown skew. Here we examine the impact of not knowing one of the skewness parameters. Let
θθθ = [r1, r2, α1] and

c =
1
λs

〈
∂ ln p

∂α1

2〉
=

L∑
i=1

1
λ̃i

(
g′i(α1)

)2

e =
1
λs

〈
∂ ln p

∂r1

∂ ln p

∂α1

〉
=

L∑
i=1

1
λ̃i

g′i(r1)g′i(α1)

f =
1
λs

〈
∂ ln p

∂r2

∂ ln p

∂α1

〉
=

L∑
i=1

1
λ̃i

g′i(r2)g′i(α1)

It follows that

σ2
r̂rr ≥ 1

λs
Gsn,2(δ, σ, λn/λs) (15)

where
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Gsn,2(δ, σ, λn/λs) =
1

4δ2

∫ δ

−δ

∫ δ

−δ

a + b − 1
c
(e2 + f2)

ab − d2 +
1
c
(2def − e2b − af2)

drrr

λ̃i = λi/λs, a, b, d are given by Eqs. (10) through (12), and gi(rrr) is given by Eq. (9). Similar to the normal,
let Gsn = Gsn,2|e=f=0, the scaling factor of a skew-normal with known skew. We set the pixel length
to δ = 0.5 and set σ1, σ2 such that the standard deviations of the marginals of the intensity are equal
to δ. Figure 5 illustrates the ratio of scale factors for Gn, Gsn and Gsn,2. The ratio yields the difference
in λs required to achieve the same RMS error as a function of λs/λn. When λs � λn, we see a loss
of 1.5 dB between the skew-normal with unknown skew and the normal (and a similar loss between the
skew-normal with known and unknown skew). When the skew is known, we see only a small difference
between the normal and skew-normal (some skew actually reduces the RMS error bound).

V. I(ρρρ) Random, Negative-Binomial Arrivals

In the previous sections, we assumed the image density was deterministic, with possibly unknown
parameters. In practice, the image intensity is time-varying. A time-varying image intensity may be
modeled as a random process, and a realization of this yields pixel means λi that are random variables.
In this section, we treat this case by modeling the integrated intensity of the optical receivers as random
variates with a Gamma-distribution [7, Section 4.5]

p(λi) =
λM−1

i e−Mλi/〈λi〉

Γ(M)

(
M

〈λi〉

)M

where, for a fully developed speckle field, M is the speckle count, which is known at the receiver, and

〈λi〉 = λs

∫
Ai−rrr

I(ρρρ)dρρρ = λsgi(rrr)

where I(ρρρ) is the mean intensity, also presumed known, and we have set λn = 0, to simplify discussion.
The ki have a negative-binomial distribution

p(ki) =
∫ ∞

0

p(ki|λi)p(λi)dλi

=
(

ki + M − 1
ki

) 〈λi〉kiMM(
M + 〈λi〉

)ki+M

with mean and variance

〈ki〉 = 〈λi〉

σ2
ki

= 〈λi〉 +
〈λi〉2
M
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Here the variance of the photon counts is quadratic in the received signal mean. We will see that this
quadratic growth in the uncertainty restricts the rate of decrease of the RMS error. Let θθθ = [r1, r2]. The
elements of the Fisher information matrix for this case are given by

a =
1
λs

〈(
∂ ln p

∂r1

)2
〉

=
∑

i

g′i(r1)2

gi(rrr)

(
M

λsgi(rrr) + M

)

b =
1
λs

〈(
∂ ln p

∂r2

)2
〉

=
∑

i

g′i(r2)2

gi(rrr)

(
M

λsgi(rrr) + M

)

d =
1
λs

〈
∂ ln p

∂r1

∂ ln p

∂r2

〉
=

∑
i

g′i(r1)g′i(r2)
gi(rrr)

(
M

λsgi(rrr) + M

)

and the variance bound is given by Eqs. (13) and (14). Figure 6 illustrates the RMS error as a function
of the signal mean parameterized by M . The image density is normal with σ = 0.5; the pixel width is
one: δ = 0.5; and the background is zero: λn = 0. The results approach the Poisson for M � λs, as
the negative-binomial approaches the Poisson for large M . In the limit of large λs, the bound on σ2

r̂rr

approaches the limit

1
M

1
δ2

∫ δ

−δ

∫ δ

−δ

∑
i

(
g′i(r1)/gi(rrr)

)2 +
(
g′i(r2)/gi(rrr)

)2

∑
i

(
g′i(r1)/gi(rrr)

)2 ∑
j

(
g′j(r2)/gj(rrr)

)2 −
(∑

i

(
g′i(r1)g′i(r2)

)
/gi(rrr)2

)2 dr1dr2

hence the error variance cannot be decreased arbitrarily by increasing the signal mean. This type of
behavior was observed with a Gaussian approximation to the conditional Poisson model in [4], which we
address in the following section.
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VI. I(ρρρ) Random, Gaussian Arrivals

In the prior sections, we presumed either the intensity profile was known, was known with unknown
parameters, or was random with a known mean. In [4] the estimate of the intensity profile is modeled
as a random offset of the true profile. Here we revisit the approach from [4], relating it to other models,
extending the results to a correlated noise case, and illustrating their connection with the Poisson in the
limit. In this section, we presume the noise background is zero: λn = 0.

Suppose the image intensity distribution is given by

I(ρρρ) = Î(ρρρ) + Ĩ(ρρρ)

where Î(ρρρ) is a deterministic, estimated intensity distribution, and Ĩ(ρρρ) represents an error in that esti-
mate, modeled as a zero-mean Gaussian process with autocorrelation R(ρρρ;ρρρ′). To simplify analysis, let
the observed photon counts be equal to their mean,

ki = λi = λsgi(rrr)

= λs

∫
Ai−rrr

I(ρρρ)dρρρ

= λs

(
ĝi(rrr) + g̃i(rrr)

)

where

ĝi(rrr) =
∫

Ai−rrr
Î(ρρρ)dρρρ

g̃i(rrr) =
∫

Ai−rrr
Ĩ(ρρρ)dρρρ

The photon counts are Gaussian random variables with mean

〈λi〉 = λs

∫
Ai−rrr

Î(ρρρ)dρρρ

= λsĝi(rrr)

and covariance

CCCi,j =
〈(

λi − 〈λi〉
)(

λj − 〈λj〉
)〉

= λ2
s

〈
g̃i(rrr)g̃j(rrr)

〉

= λ2
s

∫
Ai−rrr

∫
Aj−rrr

R(ρρρ;ρρρ′)dρρρdρρρ′
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which is characterized by the autocorrelation of the Gaussian noise process. The joint density of the
photon counts is

p(λλλ|rrr) =
1√

(2π)L|CCC|
exp

(
−1

2
(
λλλ − 〈λλλ〉

)
CCC−1(λλλ − 〈λλλ〉

)T
)

and the elements of the scaled Fisher information matrix are given by [5, Eq. (3.31)]3

a =
1
λs

〈(
∂ ln p

∂r1

)2
〉

=
∑
i,j

λsĝ
′
i(r1)ĝ′j(r1)CCC

−1
ij − 1

2λs

(
∂CCCij

∂r1

) (
∂CCC−1

ij

∂r1

)
(16)

b =
1
λs

〈(
∂ ln p

∂r2

)2
〉

=
∑
i,j

λsĝ
′
i(r2)ĝ′j(r2)CCC

−1
ij − 1

2λs

(
∂CCCij

∂r2

) (
∂CCC−1

ij

∂r2

)
(17)

d =
1
λs

〈(
∂ ln p

∂r1

) (
∂ ln p

∂r2

)〉
=

∑
i,j

λsĝ
′
i(r1)ĝ′j(r2)CCC

−1
ij − 1

2λs

(
∂CCCij

∂r1

) (
∂CCC−1

ij

∂r2

)
(18)

so that the CRLB is

σ2
r̂rr ≥ 1

4δ2λs

∫ δ

−δ

∫ δ

−δ

a + b

ab − d2
drrr (19)

We consider here several examples for the covariance of the additive noise process and the implications
on the error variance.

A. Uncorrelated Offset with Variance Proportional to Mean

Let

R(ρρρ, ρρρ′) =
γ2

Aλs
∆(ρρρ − ρρρ′)

where A is the area of a pixel, ∆(·) is the Dirac delta function, and γ2/(Aλs) is the variance of Ĩ, which
is inversely proportional to the signal power. Then

Cij = γ2λs∆ij

(here ∆ is the Kronecker delta function). Here, as with the case of Poisson arrivals with a deterministic
profile, the variance is a linear function of the mean (note that the noise process is given by λsĨ(ρρρ)) and

σ2
r̂rr ≥ γ2

λs
Gg

3 Note that the second term in the corresponding sums [4, Eqs. (17a) through (17c)] are off by a factor of −1/2.
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where

Gg =
1

4δ2

∫ δ

−δ

∫ δ

−δ

∑
i ĝ′i(r1)2 + ĝ′i(r2)2( ∑

i ĝ′i(r1)2
) (∑

j ĝ′j(r2)2
)
−

( ∑
i ĝ′i(r1)ĝ′i(r2)

)2
dr1dr2 (20)

Here the error increases linearly with the mean of the noise process and decreases linearly with the image
mean. In this case, one can drive the error variance to be as small as desired by increasing the image
mean. With Î(ρρρ) Gaussian, given by Eq. (6), δ = 0.5, and σ = 0.5, numerical integration, including
enough terms in the sums to have negligible contributions from the tails of the intensity distribution,
yields Gg ≈ 6.2.

B. Variance Proportional to Square of the Mean

Let

R(ρρρ;ρρρ′) =
γ2

A
∆(ρρρ − ρρρ′)

where A is the area of a pixel. Then

Cij = γ2λ2
s∆ij

and

σ2
r̂rr ≥ γ2Gg

with Gg given by Eq. (20). Here the noise mean, as with the negative-binomial model, is quadratic in
the signal mean. This could arise, for example, in the presence of Albedo variations, where increasing the
image mean by increasing the integration time leads to increases in the variance. As with the negative-
binomial model, we observe a floor in the error variance beyond which increasing the signal mean does
not decrease the variance.

C. Correlated Noise Power

Suppose the distribution noise arises from Albedo variation. It is realistic for the noise from these
elements to be correlated due to filtering of the signal by the receive aperture. We’ll consider a simple
case where adjacent pixels are correlated with variance quadratic in the signal mean:

Cij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ2λ2
s, i = j

γ2λ2
s

2
, pixel i adjacent to pixel j

0, otherwise

With Î(ρ) Gaussian, given by Eq. (6), δ = 0.5, and σ = 0.5, numerical evaluation of Eq. (19) yields

σ2
r̂rr

>≈ γ2(13.5)

In this case, the noise correlation leads to an increase in the error variance by a factor of 13.5/6.2 = 2.18.
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D. Gaussian as Approximation to Poisson

When the photon count is sufficiently large, Poisson arrivals may be modeled as Gaussian. In this
regime, the Gaussian approximation will agree with the Poisson. To see this, set the Gaussian variance
equal to the mean

Cij = 〈λi〉∆ij = λsĝi(rrr)∆ij

Substitution into Eq. (16) yields

1
λs

〈(
∂ ln p

∂r1

)2
〉

=
∑

i

ĝ′i(r1)2

ĝi(r1)

(
1 +

1
2λsgi(rrr)

)
(21)

and we obtain similar multipliers for Eqs. (17) and (18). We see that Eq. (21) reduces to the Poisson
case, Eq. (10), for large λs (when λn = 0, as was assumed throughout this section).

VII. Conclusions

We have placed a number of models of distortions in an image under a common framework, allowing
comparisons of the impact of the uncertainties on the variance in the image position estimate. We propose
using a skew-Gaussian model for an Earth image to capture asymmetries in the image intensity. As noted
in [4], if the variance of the photon counts is quadratic in the mean photon rate, then the error variance
cannot be reduced below a certain threshold.
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