
IPN Progress Report 42-168 February 15, 2007

Performance and Decoder Complexity Estimates
for Families of Low-Density Parity-Check

Codes
S. Dolinar1 and K. Andrews1

We present methods to estimate code performance and decoder complexity from
the code rate, block size, and word-error rate, for families of related low-density
parity-check (LDPC) codes. Performance estimates are generally within a couple
tenths of a decibel of results determined by simulation; estimates of complexity (and
hence decoder speed) are generally within 10 percent. Experimental data show that
there is a trade-off between complexity and code performance determined by the
design of the LDPC code, and that each 1 dB (26 percent) of increased complexity
is worth about a 0.1-dB reduction in the required signal-to-noise ratio.

I. Introduction

Since the rediscovery of low-density parity-check (LDPC) codes in the mid 1990s, most of the code de-
sign research has been directed towards minimizing the signal-to-noise ratio (SNR) required for successful
decoding. More recently, some code design work has also been done to reduce the computational burden
on the decoder. In this article, we examine the required bit SNR Eb/N0 and a measure of complexity
that counts the total number of messages per decoded bit computed by the iterative decoder. From
both metrics, we distill the portion attributable to the code design from the effects of block size, code
rate, and word-error rate (WER). Through examples, we quantify the trade-off between performance and
complexity that can be achieved through code design.

Several LDPC code families are used in this article, all of which are “protograph” constructions [1,2].
The protograph construction method begins by designing a small bipartite graph with np variable nodes,
perhaps up additional untransmitted or punctured variable nodes, and mp constraint nodes. Figures 1
through 4 show several protograph families, where filled circles represent transmitted variable nodes,
open circles are punctured variable nodes, and squares are check nodes. To construct a full LDPC code,
each node of the protograph is replicated T times, and each edge is replaced by a bundle of T edges.
Finally, each bundle is severed and reconnected in some permuted way (such as with a cyclic shift), thus
interconnecting the copies of the protograph. The result is a code of length n = Tnp, dimension k at least

1 Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

Fig. 1. The G36 protograph.

2u

r = u + 1
u + 2

Fig. 2. The AR3A protograph family.

2u

u + 1
u + 2

Fig. 3. The AR4A protograph family.

r =

2u

r = u + 1
u + 2

Fig. 4. The AR4JA protograph family.

2

T (np + up − mp), and rate k/n at least (np + up − mp)/np. Note that the nominal rate is characteristic
of the protograph and does not depend on the expansion factor. Many researchers have used equivalent
code construction methods, e.g., [3–5].

A family of codes is constructed from a collection of related protographs of different rates. Each pro-
tograph is expanded with permutations of different lengths to yield related codes of different dimensions.
Eight families of codes are considered in this article, as listed in Table 1, all of which are protograph
constructions. The G36 family are regular (3,6) LDPC codes of rate 1/2 and different sizes, built from
the protograph shown in Fig. 1, a subset of the randomly connected Gallager codes [6]. The AR3A,
AR4A, and AR4JA code families (named for an accumulate–repeat–accumulate construction from which
these were derived [7]) are built to various sizes and code rates r from the nested protographs shown in
Figs. 2 through 4. The four Ci code families have protographs shown in [8]. The initial Ci protographs
are constructed by expurgation. The C+

i protographs are formed by lengthening them with accumulators,
and the C+

i [light] and C+
i [med] protographs are variants with different amounts of pre-coding.

Table 1. Eight code families built from protographs.

Information block
Code family Rates (r)

sizes (k)

G36 r = 1/2 k = 1024, 4050, 32400

AR3A r = 1/2, 2/3, 4/5 k = 1024, 4096, 16384

AR4A r = 1/2, 2/3, 4/5 k = 1024, 4096, 16384

AR4JA r = 1/2, 2/3, 4/5 k = 1024, 4096, 16384

{Ci, i = 8, 4, 2, 1} r = 1/2, 3/4, 7/8, 15/16 n = 8176

{C+
i , i = 16, 8, 4, 2} r = 1/2, 2/3, 4/5, 8/9 k = 8176

{C+
i [light], i = 16, 8, 4} r = 1/2, 2/3, 4/5 k = 8176

{C+
i [med], i = 8} r = 2/3 k = 8176

II. Code Performance

Figure 5 shows performance curves on the additive white Gaussian noise (AWGN) channel for the
42 codes in Table 1, varying in code rate from 1/2 to 7/8, and in block size from 1024 to 16384; the
legend is shown in Fig. 6. It is difficult to distinguish the best code designs from average ones in this
manner, because most of the 4-dB span in required Eb/N0 is due to variations in block size, code rate,
and WER, not to the quality of the code design.

Empirical evidence shows that codes of a given rate and dimension constructed from the same proto-
graph, but differing in the choices of permutations, perform similarly outside their “error floor” regions.
Let SF (r, k, Pw) be the value of Eb/N0 (measured in decibels) required to achieve WER Pw with a
representative LDPC code of rate r and dimension k, selected from code family F .

The impact of a well-designed code family F can be distinguished from the effects of r, k, and Pw

by comparison to Shannon’s sphere-packing lower bound [9]. The sphere-packing bound S∗CI(r, k, Pw)
for the continuous-input AWGN (CI-AWGN) channel gives (a lower bound on) the minimum SNR (in
decibels) required to achieve a word-error rate of Pw by any code of rate r and dimension k. The difference
between SF (r, k, Pw) and S∗CI(r, k, Pw) is the “imperfectness” of the code [10].

In the limit of infinite block size, and then in the limit of infinitesimal error rate, the sphere-
packing bound reduces to the rate-constrained capacity limit S∗CI(r) for the CI-AWGN channel,

3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Eb /N0, dB

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

W
E

R

Fig. 5. Decoding performance curves for the 42 LDPC codes in Table 1.

AR3A r = 1/2 k = 16384

AR3A r = 2/3 k = 16384

AR3A r = 4/5 k = 16384

AR3A r = 1/2 k = 4096

AR3A r = 2/3 k = 4096

AR3A r = 4/5 k = 4096

AR3A r = 1/2 k = 1024

AR3A r = 2/3 k = 1024

AR3A r = 4/5 k = 1024

AR4A r = 1/2 k = 16384

AR4A r = 2/3 k = 16384

AR4A r = 4/5 k = 16384

AR4A r = 1/2 k = 4096

AR4A r = 2/3 k = 4096

AR4A r = 4/5 k = 4096

AR4A r = 1/2 k = 1024

AR4A r = 2/3 k = 1024

AR4A r = 4/5 k = 1024

AR4JA r = 1/2 k = 16384

AR4JA r = 2/3 k = 16384

AR4JA r = 4/5 k = 16384

AR4JA r = 1/2 k = 4096

AR4JA r = 2/3 k = 4096

AR4JA r = 4/5 k = 4096

AR4JA r = 1/2 k = 1024

AR4JA r = 2/3 k = 1024

AR4JA r = 4/5 k = 1024

C16+[light] r = 1/2 k = 8176

C8+[medium] r = 2/3 k = 8176

C8+[light] r = 2/3 k = 8176

C4+[light] r = 4/5 k = 8176

C16+ r = 1/2 k = 8176

C8+ r = 2/3 k = 8176

C4+ r = 4/5 k = 8176

C2+ r = 8/9 k = 8176

C8 r = 1/2 k = 4088

C4 r = 3/4 k = 6132

C2 r = 7/8 k = 7154

C1 r = 15/16 k = 7665

G36 r = 1/2 k = 32400

G36 r = 1/2 k = 4050

G36 r = 1/2 k = 1024

Fig. 6. Legend for Figs. 5, 8, 10, 11, and 12.

4

S∗CI(r) �= lim
Pw→0

lim
k→∞

S∗CI(r, k, Pw) = 10 log10

(
22r − 1

2r

)

The difference between these bounds is the finite-size penalty computed for the CI-AWGN channel,

∆S∗CI(r, k, Pw) �= S∗CI(r, k, Pw) − S∗CI(r)

This finite-size penalty is plotted in Fig. 7, as a function of k and of
√

1024/k for code rates r = 1/2, 4/5,
and 16/17, and for word-error rates Pw = 10−2, 10−4, 10−6, and 10−8. Curves of different rates virtually
coincide, so the finite-size penalty is nearly independent of the code parameter that determines the
capacity limit. To a good approximation, the effects of the code’s finiteness are separated from those of
the constraints imposed on the channel.

The curves in Fig. 7 are nearly linear in
√

1024/k; this asymptotic dependence on k−1/2 was observed
in [10]. At Pw = 10−8, the sphere-packing bound imposes about 1/3-dB penalty for each quarter-unit
step of

√
1024/k, or each step in the sequence k = ∞, 16384, 4096, 1820, 1024. At Pw = 10−4, the penalty

is about 1/
√

2 as large, and at Pw = 10−2, the penalty is about 1/2 as large. Thus, for the range of k
and Pw plotted in Fig. 7, the finite-size penalty ∆S∗CI(r, k, Pw) can be approximated as

1.000.750.500.250.00

Rate = 16/17

Rate = 4/5

Rate = 1/2

1024 / k

Pw = 10−8

Pw = 10−6

Pw = 10−4

Pw = 10−2

(L
O

W
E

R
 B

O
U

N
D

 O
N

)
P

E
N

A
LT

Y
 D

U
E

 T
O

F

IN
IT

E
 B

LO
C

K
 S

IZ
E

, d
B

Infinity 16384 4096 1820 1024

0.0

0.5

1.0

INFORMATION BLOCK SIZE, k

Fig. 7. Finite-size penalty ∆S *CI (r,k,Pw) for rate r , block size k , and WER Pw , obtained from the
CI-AWGN sphere-packing bound relative to the corresponding CI-AWGN capacity limit.

5

∆S∗CI(r, k, Pw) ≈ 4
3

√
1024

k

√
− log10 Pw

8
for k

>
≈ 1024, 10−8 <

≈ Pw
<
≈ 10−2

The capacity threshold S∗BI(r) for the binary-input AWGN (BI-AWGN) channel is close to the thresh-
old S∗CI(r) of the CI-AWGN channel for rates up to 1/2; for higher rates, a substantial gap appears.
Thus, a high-rate binary LDPC code cannot be expected to perform close to limits determined for the
CI-AWGN channel. Instead it should be compared to a similar benchmark S∗BI(r, k, Pw) which takes into
account both the finite-size constraints and the channel constraints. Given the approximate separability
of these two types of constraints, we approximate S∗BI(r, k, Pw) with the BI-AWGN capacity threshold,
corrected by the finite-size penalty computed for the CI-AWGN channel:

S∗BI(r, k, Pw) ≈ S∗BI(r) + ∆S∗CI(r, k, Pw)

The exact BI-AWGN channel capacity limit S∗BI(r) is given implicitly by [11]

r = 1 −
∫ ∞

−∞

1√
2πρ

e−(x−ρ)2/(2ρ) log2

(
1 + e−2x

)
dx

where ρ = 2Es/N0 = 2r × 10S∗BI(r)/10. For 1/2 <
≈ r

<
≈ 16/17, a range of rates particularly suitable for

LDPC codes, a useful simple approximation for the BI-AWGN capacity threshold is

S∗BI(r) ≈ log2

r

1 − r
for 1/2 <

≈ r
<
≈ 16/17 (1)

Next we define the size-constrained non-optimality ∆SF as the difference between the actual code
performance SF (r, k, Pw) and the estimated performance S∗BI(r, k, Pw) of an optimal code subjected to
the same constraints:

∆SF
�= SF (r, k, Pw) − S∗BI(r, k, Pw)

The size-constrained non-optimality is plotted versus Pw in Fig. 8 for each of the codes in Table 1 with
block size k = 4096 and higher. Experiments show that the size-constrained non-optimality is nearly
independent of k, r, and values of Pw above the code’s error floor, so we attribute it to the design of the
LDPC code family F .

For protograph LDPC codes, the size-constrained non-optimality ∆SF can be divided into two com-
ponents. First, density evolution can be applied to the protograph to determine its asymptotic iterative
decoding threshold SP(r), which is a capacity-like limit in that it defines a minimum SNR required for
achieving arbitrarily small error rates in the limit as the protograph is expanded (sufficiently randomly)
to build an arbitrarily large code. The difference between the protograph’s iterative decoding threshold
and the corresponding capacity limit is the protograph non-optimality

∆SP
�= SP(r) − S∗BI(r)

On top of the protograph non-optimality is an additional expansion non-optimality

∆SX
�= ∆SF − ∆SP ≈ SF (r, k, Pw) −

[
SP(r) + ∆S∗CI(r, k, Pw)

]

6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.5

SIZE-CONSTRAINED NON-OPTIMALITY, dB

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

W
E

R

Fig. 8. Normalized performance comparison of the codes in Table 1 with information block size 4096
bits and higher, measured in terms of their size-constrained non-optimalities ∆S

��
.

1.2 1.3 1.4

The reference point for computing the expansion non-optimality is approximated by the sum in square
brackets: the protograph’s iterative decoding threshold, corrected by the finite-size penalty computed for
the CI-AWGN channel. Since this approximation is not an exact bound, the expansion non-optimality
∆SX computed from it can conceivably be negative, but we have never observed this for any of the codes
that we have examined.

The protograph non-optimality is due to constraints imposed by the design of the protograph. The
expansion non-optimality is caused by all finite-size effects, including the choice of permutations used
to expand the protograph and the possible introduction of an error floor at error rates Pw of interest.
The protograph non-optimality, plotted in Fig. 9 for the first seven code families in Table 1, can be held
to less than 0.5 dB with careful protograph designs that allow efficient expansions to reasonable-size
codes. With such protographs, we have been able to limit the additional expansion non-optimality to
only about 0.05 to 0.2 dB if we apply optimized expansion techniques to build the full protograph code
and avoid the introduction of an error floor at the error rates of interest. While it is possible to push
the protograph non-optimality even closer (perhaps arbitrarily close) to 0 dB, we have found that highly
optimized protographs are too complex and produce intolerably large expansion non-optimality when
these protographs are expanded to codes of a few thousands or tens of thousands of bits. Thus, we
generally look for protographs optimized under the constraint that they are also simple and small.

III. Decoder Complexity

An LDPC belief propagation decoder is usually designed to update each edge message according to
a variable node rule, and then again by a check node rule, and to iterate this process until either a
codeword is found or some maximum number of iterations is reached. This decoder computes an average

7

Ci+[light]

Ci

AR4A

AR4JA

G36

AR3A

Ci+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.4 0.5 0.6 0.7 0.8 0.9 1.0

CODE RATE

D
E

C
O

D
IN

G
 T

H
R

E
S

H
O

LD
 M

IN
U

S
 C

A
P

A
C

IT
Y

 L
IM

IT
, d

B

Fig. 9. Protograph non-optimalities ∆S for seven of the protograph families in Table 1.

of 2IE/rn edge messages per decoded bit, where E is the number of edges in the LDPC graph and
I is the average number of iterations performed. While different decoder implementations operate in
very different ways, we have found that this is an appropriate complexity metric for both software and
hardware decoders.

Figure 10 shows decoder complexity for the 42 codes in Table 1. The horizontal axis is logarithmic,
showing M = 10 log10(2IE/rn), the complexity measured in decibels. For a given LDPC code, the
complexity is lower when the decoder is operating at lower error rates, because this implies a higher SNR
and fewer average iterations required. Small high-rate codes are easier to decode than large low-rate
codes, and decoder complexity spans more than a factor of 10 among the cases shown.

Lacking theoretical bounds on complexity, we nonetheless attempt to normalize the raw complexity
numbers with respect to a rate and size dependence of complexity determined by empirically fitting
a model to experimental data. The data show that to a good approximation the decoder complexity
depends on the code rate and on Eb/N0 only in the combination rEb/N0 = Es/N0, the symbol SNR,
or, equivalently, on Ss

�= 10 log10 Es/N0, the symbol SNR measured in decibels. Thus, we write the
complexity (in decibels) in Fig. 10 as M = MF (Ss, k, Pw) = 10 log10(2IE/rn), a function of symbol
SNR, code dimension, word-error probability, and the design of the family of LDPC codes.

When complexity is measured in decibels, its dependence on Ss is roughly linear, and its dependence
on k is roughly logarithmic. Thus, we decompose MF (Ss, k, Pw) into two components,

MF (Ss, k, Pw) ≈ M∗(Ss, k) + ∆MF (Pw)

where M∗(Ss, k) is an estimate of the lowest complexity attained by any of the code families in Ta-
ble 1 at low error rates, and ∆MF (Pw) measures the remaining component of complexity dependent

8

15 16 17 18 19 20 21 22 23 31

MESSAGES PER DECODED BIT, M, dB

10−7

10−6

10−5

10−4

10−3

10−2

10−1

W
E

R

Fig. 10. Decoding complexity for the 42 LDPC codes in Table 1.

24 25 26 27 28 29 30

on error rate and code family. Curve-fitting the data in Fig. 10 leads to an approximation for M∗(Ss, k):

M∗(Ss, k) ≈ 10 − 1.2Ss + 0.84 log2(k)

The residual complexity component, ∆MF (Pw), is plotted in Fig. 11. Here it is noted that codes in the
same family, but of different rates and block sizes, now cluster together. Each of these clusters has a similar
shape, with different horizontal displacements. The shape shows how the decoder’s complexity depends
on Pw; this can be approximated by ∆M∗(Pw) ≈ 5.6P

1/4
w . The remaining horizontal displacement, ∆MF ,

is determined by the design of the LDPC code family, and varies between 0 and 4 dB for the cases shown.
Collecting these results, the decoder complexity, measured in decibels, is approximated by

MF (Ss, k, Pw) ≈
[
M∗(Ss, k) + ∆M∗(Pw)

]
+ ∆MF

The reference complexity formula in brackets, M∗(Ss, k)+∆M∗(Pw), is not a theoretical lower bound,
and it is easy for the family-dependent component of complexity, ∆MF (in decibels), to be negative for
poorly performing codes. However, the empirical evidence suggests that it provides a useful benchmark on
the complexity of capacity-approaching LDPC codes that achieve small size-constrained non-optimality
∆SF .

9

{Ci, Ci+}

{Ci+[light]}

AR4A

AR4JA

G36

AR3A

{Ci+[med]}

0 8

NORMALIZED MESSAGES PER DECODED BIT, ∆M
�

 (Pw), dB

10−7

10−6

10−5

10−4

10−3

10−2

10−1

W
E

R

Fig. 11. Normalized decoding complexity ∆M
�

 (Pw) for the 42 codes in Table 1, after adjusting for an
empirically observed dependence M* (Ss ,k) on symbol SNR and block size.

1 2 3 4 5 6 7

IV. Performance–Complexity Trade-off

In Sections II and III, code performance and decoder complexity were normalized by code rate, block
size, and other factors, leaving the size-constrained non-optimality ∆SF and the family-dependent com-
plexity component ∆MF . These are plotted against each other in Fig. 12 for a WER of 10−4.

On this plot LDPC codes within the same family cluster together, showing that their family resem-
blances run deeper than the simple appearances of their protographs. Furthermore, there are substantial
performance–complexity trade-offs among the families. As is well-known, the iterative decoding threshold
of the regular (3,6) Gallager construction is 0.9 dB from the corresponding capacity limit, but interestingly
its decoding complexity is particularly low. Code families with irregular degree distributions and carefully
designed protographs, such as AR3A, AR4A and AR4JA, can get within about 0.4 dB of S∗BI(r, k, Pw),
but at a cost in decoder complexity. This substantial cost, 4 dB or a factor of 2.5 times, is due to several
factors, including a larger number of average iterations, an inefficiency due to the presence of punctured
variable nodes, and a larger number of graph edges per code symbol.

Figure 12 suggests that there is a trade-off between required SNR and decoder complexity that is
determined by the design of an LDPC code or its protograph family. At the boundary of the achievable
region of these two quantities, they trade at a rate of about 1 dB of increased complexity for every 0.1 dB
of reduced SNR.

It is well-known that code design (in combination with details of the decoder design and implementa-
tion) determines the location of an error floor. In the error-floor region, both performance and complexity
deviate markedly from the estimates derived here. In this case, the size-constrained non-optimality can

10

G36

{Ci, Ci+}

{Ci+[med]}

{Ci+[light]}

AR4A

AR4JA

AR3A

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1.0 1.2

SNR DUE TO CODE DESIGN, dB

C
O

M
P

LE
X

IT
Y

 D
U

E
 T

O
 C

O
D

E
 D

E
S

IG
N

, d
B

Fig. 12. Performance and complexity trade-offs, for the portions of each
attributed to code design, measured for a WER of 10−4.

easily go off the horizontal scale of Fig. 12 to the right, and conversely the complexity will be abnormally
low because the increase in required SNR allows the decoder to converge more quickly. Codes such as
those in the AR3A family, which appear from Fig. 12 to give a very favorable performance–complexity
trade-off at a WER of 10−4, will suffer in comparison to regular (3,6) and AR4JA codes at lower WER
values, where the AR3A family’s error floors arise (as seen in Figs. 5 and 8).

V. Summary

A code’s required bit SNR S (in decibels) on the BI-AWGN channel can be well-approximated by

S ≈ S∗BI(r) + ∆S∗CI(r, k, Pw) + ∆SF

where the three terms are as follows:

• S∗BI(r) is the capacity-constrained threshold. For 1/2 <
≈ r

<
≈ 16/17, this is well-approximated

by S∗BI(r) = log2 (r/(1 − r)). That is, each step in the rate sequence 1/2, 2/3, 4/5, 8/9, 16/17
costs about 1 dB of Eb/N0.

• ∆S∗CI(r, k, Pw) is the finite-size penalty. For k
>
≈ 1024 and 10−8 <

≈ Pw
<
≈ 10−2, this is well-

approximated by ∆S∗CI(r, k, Pw) = (4/3)
√

1024/k
√

(− log10 Pw)/8. Each shorter block size
in the sequence ∞, 16384, 4096, 1820, 1024 costs about 1/3 dB of Eb/N0 at WER = 10−8, or
1/(3

√
2) dB at WER = 10−4, or 1/6 dB at WER = 10−2.

• ∆SF is the size-constrained non-optimality of the code. Approximately 0.3 to 0.8 dB of required
SNR for the codes in Table 1 is attributed to the particular LDPC code design.

For protograph LDPC codes, the size-constrained non-optimality is further subdivided into two com-
ponents. The protograph non-optimality is computed from the protograph’s iterative decoding threshold,
determined by density evolution. The expansion non-optimality is due to the selected permutations and

11

other factors, and is determined by simulation of the finite-size code expanded from the protograph.
Our best code designs typically include a protograph non-optimality of around 0.4 dB and an expansion
non-optimality of around 0.1 dB. Our attempts to reduce the protograph non-optimality further have
typically produced codes with greater expansion non-optimality and/or prominent error floors.

For codes that achieve small size-constrained non-optimality ∆SF , the average number of edge mes-
sages per decoded bit, M (measured in decibels), that must be computed by the decoder is well approx-
imated by

M ≈ M∗(Ss, k) + ∆M∗(Pw) + ∆MF

where Ss is the symbol SNR in decibels and the three terms are as follows:

• M∗(Ss, k) ≈ 10−1.2Ss+0.84 log2(k) is an empirical measure of complexity dependence on rate,
block size, and SNR. Decoder complexity decreases by about 1.2 dB for each 1 dB increase in
symbol SNR, and increases by about 0.84 dB for each doubling of block size.

• ∆M∗(Pw) ≈ 5.6P
1/4
w is an empirical measure of complexity dependence on WER, taking a

similar shape for all codes studied. Decoder complexity increases roughly in proportion to the
fourth root of the word-error rate.

• ∆MF is determined by the design of the code family, and it is fairly independent of rate, block
size, SNR, and error rate. It ranges between 0 dB and 4 dB for the code families studied.

Code performance and decoder complexity depend upon the design of the LDPC code mainly through
∆SF and ∆MF . We observed in Fig. 12 a trade-off between these two parameters at the boundary of
an achievable region, at the approximate rate of about 1 dB of increased complexity for every 0.1 dB of
reduced SNR.

References

[1] J. Thorpe “Low-Density Parity-Check (LDPC) Codes Constructed from Pro-
tographs,” The Interplanetary Network Progress Report 42-154, April–June
2003, Jet Propulsion Laboratory, Pasadena, California, pp. 1–7, August 15, 2003.
http://ipnpr/progress report/42-154/154C.pdf

[2] T. Richardson, “Multi-Edge Type LDPC Codes,” presented at the Workshop
Honoring Prof. McEliece on his 60th birthday (not in the proceedings), California
Institute of Technology, Pasadena, California, May 2002.

[3] Y. Kou, H. Tang, S. Lin, and K. Abdel-Ghaffar, “On Circulant Low Density
Parity Check Codes,” IEEE International Symposium on Information Theory,
Lausanne, Switzerland, p. 200, June 2002.

[4] A. Sridharan, D. Costello, and R. M. Tanner, “A Construction for Low Density
Parity Check Convolutional Codes Based on Quasi-Cyclic Block Codes,” IEEE
International Symposium on Information Theory, Lausanne, Switzerland, p. 481,
June 2002.

[5] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for Designing LDPC
Codes Using Protographs and Circulants,” IEEE International Symposium on
Information Theory, Chicago, Illinois, p. 238, June 2004.

12

[6] R. G. Gallager, Low Density Parity-Check Codes, Cambridge, Massachusetts:
MIT Press, 1963.

[7] A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate Repeat Accumulate Codes,”
IEEE International Symposium on Information Theory, Chicago, Illinois,
p. 505, June 2004.

[8] S. Dolinar, “A Rate-Compatible Family of Protograph-Based LDPC Codes Built
by Expurgation and Lengthening,” IEEE International Symposium on Informa-
tion Theory, Adelaide, Australia, pp. 1627–1631, September 2005.

[9] C. E. Shannon, “Probability of Error for Optimal Codes in a Gaussian Channel,”
Bell System Technical Journal, vol. 38, pp. 611–656, 1959.

[10] S. Dolinar, D. Divsalar, and F. Pollara, “Code Performance as a Function of
Block Size,” The Telecommunications and Mission Operations Progress Report
42-133, January–March 1998, Jet Propulsion Laboratory, Pasadena, California,
pp. 1–23, May 15, 1998. http://ipnpr/progress report/42-133/133K.pdf

[11] S. J. Dolinar and F. Pollara, “The Theoretical Limits of Source and Channel
Coding,” The Telecommunications and Data Acquisition Progress Report 42-102,
April–June 1990, Jet Propulsion Laboratory, Pasadena, California, pp. 62–72,
August 15, 1990. http://ipnpr/progress report/42-102/102G.PDF

13

