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A Truncation-Depth Rule of Thumb for
Convolutional Codes

B. Moision1

The commonly used rule of thumb of 5m for the truncation depth of a memory m
convolutional code is accurate only for rate 1/2 codes and should be replaced by
two to three times m/(1 − r) for a rate r code.

I. Introduction

An exact maximum-likelihood decoding of a convolutional code via the Viterbi algorithm requires
storage of a path history for each state of the code to a depth at which all these paths agree. In practice,
the complexity is often reduced by storing only a finite path length corresponding to the prior τ trellis
stages, the truncation depth of the decoder. Decisions are forced (regardless of whether the paths agree)
after a delay of τ stages. Forcing a decision after a fixed delay yields some performance degradation and,
when designing the decoder, one wants to choose a truncation depth sufficiently large as to make this loss
negligible, but no larger, so as not to incur unnecessary complexity.

A commonly cited rule of thumb is that a truncation depth of four to five times the memory of the
code is acceptably large to limit losses due to finite truncation; see, e.g., [1, p. 258; 2, p. 338; 3, p. 262;
4, p. 485]. However, this rule is accurate only for rate 1/2 codes, a point that is not made in much of the
literature. We will show that, for a rate r code, a more appropriate rule of thumb is that the truncation
depth be two to three times m/(1 − r).

II. Truncation-Depth Bound

Our bound derives from the random coding results of [5]. We first review some notation from [5].
An (M, ν) trellis is a trellis corresponding to a shift register of length ν, where each register contains
an M -vector and the input is an M -ary sequence (the corresponding trellis contains Mν states). An
(M, ν, n) trellis code augments an (M, ν) trellis by assigning n channel symbols to each edge. The rate
of the code is r = log2(M)/n bits/symbol. A random trellis code is an (M, ν, n) trellis in which each
channel symbol on each edge is chosen randomly and independently according to some distribution p.

When M = qk, the (M, ν, n) trellis corresponds to a rate log2(q)k/n nonsystematic convolutional code
over the field GF (q) with k equal constraint lengths νi = ν, 1 ≤ i ≤ k. The memory of this code is
m = maxi νi = ν.
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We assume the code is decoded via the Viterbi algorithm with decisions on edges of the trellis made
after a delay of τ trellis stages. A truncation error occurs when an incorrect edge is chosen that would
not have been chosen with an infinite truncation depth. Forney [5] proved the following bound on the
truncation error rate.

Theorem 1. The probability of truncation error for an (M, ν, n) random trellis code satisfies

P (Et) ≤ exp
(
− nτE(r)

)

where E(r) is the block code exponent.

This may be related to the code memory via the error-rate bound for ensembles of random trellis
codes [13].

Theorem 2. For any ε > 0, the probability of error per unit time for an (M, ν, n) random trel-
lis code with maximum-likelihood (ML) decoding satisfies

P (E) ≤ K1 exp
(
−nν

(
e(r) − ε

))

where K1 is independent of ν, and e(r) is the convolutional code exponent for the input distribution p.

It follows that the probability of error due to finite truncation is asymptotically equal to the ML error
probability when [5]

τ

ν
=

e(r)
E(r)

In the Appendix we show this ratio may be bounded by

e(r)
E(r)

≥ 1
1 − r/C

≥ 1
1 − r

where C is the channel capacity, and the second inequality holds for a binary-input channel (q = 2).
Moreover, the ratio approaches 1/(1 − r) as the fidelity of the channel increases, so that the bound is
tight at sufficiently large signal-to-noise ratios (SNRs).

Hence, the loss due to finite truncation is on the order of the error rate when

τ =
νe(r)
E(r)

≥ ν

1 − r

(1)

Viterbi [6] illustrated a bound for the very noisy channel, that is, a channel where the output is almost
independent of the input, e.g., as the SNR approaches zero:
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4

1
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√
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C

4
≤ r ≤ C
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1 +
√

r/C

1 −
√

r/C
,

C

2
< r < C

This bound is complementary, giving a bound on the truncation depth for a channel with low SNR.
As noted, the bound in Eq. (1) is useful at high SNR, corresponding to the region where the minimum
distance terms dominate.

A. Punctured Codes

Suppose we form a (qk, ν, n) code by puncturing a (qk1 , ν1, n1) mother code, where k1 divides k
and ν = ν1k1/k; see, e.g., [7]. We refer to the resulting code as the daughter code. The two codes are
represented by trellises with the same number of states, with k/k1 stages of the mother code corresponding
to 1 stage of the daughter code. Applying Eq. (1), the required truncation depth is

τ ≥ ν

1 − r
stages of daughter code trellis

=
ν1

1 − r
stages of mother code trellis

i.e., the truncation depth on the mother code goes as the memory of the mother code scaled by one minus
the rate of the punctured code.

That the truncation depth should be increased for punctured codes has been noted, e.g., in [3, Sec-
tion 6.6.4]. However, this is not emphasized in the literature. For example, [7, Section 4.6] tabulates
performance of Consultative Committee for Space Data Systems (CCSDS) standardized rate 2/3, 3/4,
5/6, and 7/8 convolutional codes punctured from a rate 1/2, memory 6 mother code. For the mother
code, a truncation depth of 30 has losses relative to an infinite truncation depth of ≈0.1 dB, and at a
depth of 60 the losses are negligible. However, in [7, Section 4.6], the truncation depth of 60 is carried
through for all daughter codes. This yields losses of 0.5 dB for the rate 7/8 daughter code, where a depth
≈120 should be used to yield negligible losses.

III. Truncation Depths for Particular Codes

How good is the estimate τ ≥ ν/(1 − r) for particular codes from the ensemble? We are interested in
the high SNR region, where the minimum distance terms dominate performance. A good indicator of the
required truncation depth in this region is the path length at which all paths that diverge from a particular
path have accumulated the minimum distance of the code; see, e.g., [8; 9; 3, p. 262]. Onyszchuk [10]
showed that the truncation depth required to limit losses to <0.05 dB is slightly larger than this, but
it remains a good approximate measure. Without loss of generality, assume the all-zeros sequence is
transmitted and let N(x, τ) denote the number of paths of length τ and weight x that first diverged from
the all-zeros state τ stages in the past (N(x, τ) includes all open, closed, and compound events).

Let d be the free distance of the code. Figure 1 illustrates N(d − 1, τ), N(d, τ), and N(d + 1, τ) for
the rate 1/2 optimum-distance-profile (ODP) codes with 2 ≤ m ≤ 10 from [11, Table 8.1]. We see that
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Fig. 1.  Number of paths with distance d − 1, d, and d + 1 as a function of τ/m 
for some nonsystematic rate 1/2 codes with m = 2,3, ...,10.
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τ ≈ 5m is sufficient to guarantee all paths have accumulated distance d and that the multiplicity of the
minimum distance paths has settled to that for an infinite truncation depth. However, the τ ≈ 5m rule
is inaccurate for code rates other than 1/2.

Figure 2 illustrates N(d, τ)/N(d,∞) for a large collection of nonsystematic codes with roughly equal
constraint lengths νi and rates 1/6 to 7/8 as a function of τ(1 − r)/m. Included are (m + 1, r) =
(15, 1/6), (15, 1/4) codes; the CCSDS standard punctured codes of rate 2/3, 3/4, 5/6, and 7/8; all rate
2/3 ODP codes from [11, Table 8.14]; all rate 1/3 ODP codes with m ≤ 15 from [11, Table 8.10]; and
all rate 1/2 ODP codes with m ≤ 15 from [11, Table 8.1]. We see that τ ≈ 2.5m/(1 − r) is a good
predictor of the depth at which all paths have accumulated the minimum distance. The few outlying
points correspond to codes with m = 2.

Let τmin be the first depth at which all distance d events have closed and all open events have accu-
mulated distance greater than d. Figure 3 plots τmin versus two estimates of the value, 2m/(1 − R) and
4m, for the collection of codes illustrated in Fig. 2 (the estimates agree for rate 1/2 codes). We see that
the first estimate is a good predictor of τmin for all codes considered.

IV. Conclusions

The commonly used rule of thumb of a truncation depth of five times the memory of a convolutional
code is accurate only for rate 1/2 codes. For an arbitrary rate, an accurate rule of thumb is 2.5m/(1− r).
For a punctured code, the rule also goes as 2.5m/(1 − r), measured in stages of the mother code, where
m is the memory of the mother code and r is the rate of the punctured code.
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Fig. 2.  N (d,τ )/N (d,      ) as a function of τ (1 − r )/m for some nonsystematic 
codes.  Code rates 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6, and 7/8 are represented.
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Fig. 3.  Approximations τ min (d ) = 4m, τ min (d ) = 2m / (1 − r ) as a function of τ min (d ). 
Approximation 4m points are labeled with the code rate k /n .
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Appendix

Bound on e (r) /E (r)

Consider a discrete memoryless channel with input distribution p and channel transition probabilities
pjk. Let C = I(X;Y ) be the mutual information of the channel (the fixed p capacity in [5]), and

E0(ρ) = − ln
∑

j

[∑
k

pkp
1/(1+ρ)
jk

]1+ρ

Gallager [12] illustrated that

E0(ρ) ≥ 0, with equality iff ρ = 0 (A-1)

C ≥ ∂E0(ρ)
∂ρ

> 0 (A-2)

∂2E0(ρ)
∂ρ2

≤ 0 (A-3)

The convolutional code exponent is given by

e(r) = sup{E0(ρ)|0 ≤ ρ ≤ 1, ρ < ρr}

where ρr is the parameter that satisfies r = E0(ρr)/ρr. The block code exponent is given by

E(r) = max
0≤ρ≤1

E0(ρ) − ρr

and the ratio of the block code and convolutional code exponents may be expressed as [5]

E(r)
e(r)

= max
s

1 − r

s

e(s)
e(r)

(A-4)

From Eq. (A-1), e(r) ≥ 0, hence the maximum in Eq. (A-4) is always achieved for s ≥ r (otherwise
E(r) < 0, a contradiction). Since e(r) = 0 for r > C, we may also limit s ≤ C. It is straightforward to
show that e(r) is decreasing in r; hence, for any s ≥ r we have e(s) ≤ e(r) and

E(r)
e(r)

≤ max
r≤s≤C

1 − r

s
≤ 1 − r

C
(A-5)

which we may loosely bound for a binary input channel (C < 1) as

e(r)
E(r)

≥ 1
1 − r
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In the construction of e(r), when r ≤ E0(1), the constraint ρ < ρr is active and e(r) = E0(1). From
Eqs. (A-1) through (A-3), we see that

E0(1) ≤ I(X;Y )

with equality if H(X|Y ) = 0 [12]. In this case, e(r) = C for r ≤ C and, from the concatenation
construction [5], we have equality in Eq. (A-5). Hence, the bound is tight in the limit of very good
channel fidelity.
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