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Memory Requirements to Mitigate Fading
Losses on an Optical Channel

B. Moision1 and A. Biswas1

A deep-space optical communications channel is subject to fading losses due to
pointing and tracking errors. Barron and Boroson [1] illustrated that these losses
may be mitigated by introducing an interleaver that spreads a pointing-induced
fade over many codewords of an error-correction code. Several approximations
to determine the interleaver gain, which can be computationally prohibitive, are
introduced in [1]. However, the methods are accurate only for a range of code rates
and interleaver depths. We extend these methods, using a nonlinear fit to capacity,
to allow the analysis of any code rate and fading depth. We also develop an efficient
and accurate approximation of the finite-interleaving losses by an inversion of the
Marcum Q-function, and provide expressions relating the interleaver memory to
the finite-interleaver losses. The resulting expressions provide an accurate tool for
a system engineer to size the interleaver memory as a function of the data rate and
the allowable pointing loss.

I. Introduction

NASA’s pursuit of the vision for space exploration [2] requires orders of magnitude increases in data
return rates from planetary distances. An optical communications link transmitting a narrow laser beam
from planetary distances holds great promise for delivering the increased data rates while imposing rea-
sonable mass and power burdens on a host spacecraft [3]. To realize the benefits of deep-space optical
communications will require accurate and reliable beam pointing to limit pointing losses that would oth-
erwise prevent link closure. Pointing accuracies of 0.1 to 0.2 of the transmitted beam width are typically
sufficient [4]. This beam pointing must be implemented in the presence of vibrational disturbances, space-
craft attitude fluctuations, and (longer-term) thermal drifts. Strategies for beam-pointing control against
the wide spectrum of disturbances are well established for near-Earth space platforms. While preliminary
designs exist for deep-space applications, pointing control is still an active area of study.

In [1], Barron and Boroson investigate the mitigation of pointing losses by introducing an inter-
leaver/deinterleaver in the signaling chain. An interleaver spreads out a pointing-induced fade over many
codewords of the error-correction code (ECC), allowing the fade to be corrected and limiting pointing
losses. In the example in [1], with parameters drawn from models of the since discontinued Mars Laser
Communications Demonstration (MLCD), the introduction of a modest-sized interleaver reduced the
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pointing loss by 1.8 dB. This gain was achieved by signal processing alone, with no improvements to the
mechanical pointing system. In general, the gain will depend upon the coherence time, fading depth, and
the interleaver depth.

The theoretical limit on performance of the channel is given by the fading channel capacity. The
fading channel capacity is the least upper bound on the throughput with no latency constraints, in
particular, allowing an infinite interleaver. Losses are accrued when imposing a latency constraint that
limits the size of the interleaver. These losses are well characterized by the outage probability. However,
a straightforward computation of the outage probability would be prohibitively time consuming. Several
methods to alleviate the computational complexity are developed in [1]. The first, based on a linear
model of capacity, is accurate for ECC rates around 1/2 and fading depths of 1 to 2 dB. The second, a
Gaussian approximation, is accurate for large diversity and small outage probabilities.

In this article, we extend the results from [1], providing a nonlinear approximation to capacity that
is accurate over the entire domain, developing an efficient and accurate approximation of the finite-
interleaving losses by an inversion of the Marcum Q-function, and providing expressions relating the
interleaver memory to the finite-interleaver losses. The goal is to provide a system engineer with an
accurate tool for sizing the interleaver memory as a function of the data rate and the allowable pointing
loss.

This article is organized as follows. Section II describes the fading channel model. In Section III, we
define the capacity of the channel and give some linear and nonlinear approximations for the capacity.
Section IV discusses the outage probability and approximations to it. Section V describes interleavers
required to effectively disperse a fade, and Section VI combines the results, mapping fading losses to a
memory requirement.

II. Fading Channel Model

We adopt the fading channel model from [1], which is briefly reviewed in this section. Pointing and
tracking loops at the transmitter and receiver attempt to orient a detector relative to the transmitted
beam to maximize the received intensity. The transmitted information-bearing signal is pulse-position-
modulated (PPM) and received over a Poisson channel, with M the PPM order and nb the mean noise
photons per slot (note that the noise is not affected by tracking errors). With perfect tracking, an average
ns photons are received per pulsed slot, and an average Pav = ns/M photons are received per slot. To
simplify notation, we refer to Pav as the average power, in photons/second, as opposed to Pavhν/Ts, in
watts, where h is Planck’s constant, ν the frequency, and Ts the slot width.

Let w(t) =
(
wx(t),wy(t)

)
be the two-dimensional (2-D) tracking error at time t, where wx,wy are

orthogonal directions of angular displacement. The beam intensity is Gaussian as a function of the
angular displacement, yielding an instantaneous fade of

v(t) = exp
(
−wx(t)2 + wy(t)2

2σ2
b

)

where σb is the angular beam width. The intensity is presumed constant during a slot, so that the mean
signal photons per pulsed slot in the presence of fading is vns, where v is a sample of the process v(t). To
simplify notation, we let σb = 1 and use units of beam widths for angular displacement throughout. Since
the beam is symmetric, we may assume without loss of generality that the mean tracking error is entirely
in the x-direction. The tracking error is modeled as a circularly symmetric Gaussian random process with
marginal variance σ2 and a mean pointing error of m, i.e., w(t) is distributed as N

(
[m, 0], σ2I

)
. This

yields a mean signal power in the presence of fading of
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PavE
[
v(w)

]
= Pav

1
1 + σ2

exp
( −m2

2(1 + σ2)

)

This represents a static loss of received power that cannot be recovered.

We assume throughout that the decoder has perfect knowledge of the intensity. This is a reasonable
assumption since the coherence time of the fading time series is typically much longer than the slot, or
sampling, time and may be estimated accurately. Moreover, the loss relative to having no such information
for a typical Mars–Earth link has been shown to be less than 0.1 dB.2

The coherence time, Tcoh, of the pointing error, or fading, process is the minimum duration such
that samples of the fading process separated by more than Tcoh are (approximately) uncorrelated. For
example, a coherence time of Tcoh = 20 ms is typical for recent pointing budgets proposed for an Earth–
Mars link [1]. We assume a block-fading model of the pointing error, i.e., that the fading process v(t)
takes a fixed value over one coherence interval, drawn from the distribution on v, then takes a fixed value
in the next coherence interval, drawn independently from the distribution on v, and so on.

The sequence of transmitted PPM symbols is interleaved prior to transmission, and received symbols
are deinterleaved on reception. A codeword consists of Ncw PPM symbols, which may have seen different
fades, depending on the interleaver depth and coherence time. Let Nf be the number of independent fade
realizations per codeword. We assume that these fades are distributed equally throughout the codeword,
i.e., that there are Nf groups of Z symbols with Ncw ≈ NfZ, as would approximately be the case for a
well-designed interleaver.

III. Channel Capacity

We will assume throughout that M and nb are fixed, and express performance as a function of the
average power. Unless otherwise noted, capacity is expressed in units of bits/slot. The fundamental
limitation on the throughput that can be achieved on the fading channel is the fading capacity given by

Cfad(Pav) =
∫ ∞

0

C(vPav)fv(v)dv

= Ev

[
C(vPav)

]

where C(Pav) is the capacity of the unfaded channel with average power Pav and fv is the density function
of the fading process.

We also refer to the “power in decibels such that the capacity equals rate R” as

Pcap,fad,dB(R) =
{
10 log10 Pav : Cfad(Pav) = R

}

This represents the minimum power required to close the link, i.e., to achieve arbitrarily small probability
of error, with a code of rate R. For the Poisson PPM channel, the capacity is given by [5]

2 R. Barron, “Quantifying the Effects of Channel Interleaving on MLCD System Performance in a Fading Environment,”
Technical Report, MIT Lincoln Laboratory, Lexington, Massachusetts, June 2004.
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C(Pav) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log2 M

M

(
1 − 1

log2 M
Ey1,···,yM

log2

[
M∑

j=1

(
1 +

MPav

nb

)(yj−y1)
])

, nb > 0

log2 M

M
(1 − e−ns), nb = 0

(1)

where y1 is Poisson with mean nb + ns and the yj , j = 2, · · · , M are Poisson with mean nb. Equation (1)
may be evaluated accurately via a sample mean. However, this can be inefficient and does not lend itself
to analytical approximations. The following sections present approximations to Eq. (1).

A. Linear Approximation

Figure 1 illustrates C(Pav) for M = 64 parameterized by nb. C(Pav) is approximately linear in log Pav

in a region around log2 M/(2M)—the region corresponding to a rate 1/2 code. It was noted in [1] that
the capacity in this region may be well approximated as

C(Pav) ≈ a log(Pav) + γ (2)

where a, γ are functions of M, nb. Linear fits to C(Pav) are illustrated in Fig. 1. Intercepts for ECC
rates of 1/4, 1/2, and 7/8 are also illustrated (corresponding to composite rates of (ECC Rate) ×
log2 M/M bits/slot). Applying the linear approximation gives an approximation to the threshold [1]:

Pcap,fad,dB ≈ 10 log10(e)
(

R − γ

a
+ σ2 +

m2

2

)
(3)
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Fig. 1.  PPM capacity, M = 64, and linear approximations.
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B. Nonlinear Approximation

As illustrated in Fig. 1, the linear fit is accurate in an ≈ ±2 dB range of Pav around the intercept for
an ECC rate of 1/2. If the ECC rate differs significantly from 1/2 (or the depths of fades are significantly
greater than 2 dB), the linear fit will yield inaccurate results. In order to evaluate the capacity efficiently
outside the region where the linear approximation holds, we developed the following nonlinear fit to
capacity:

C(Pav) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ns + nb) log(1 + ns/nb) − ns

log(2)
, Pav ≤ P

(1)
av

∑4
i=0 αiP

i
av, P

(1)
av < Pav ≤ P

(2)
av

β0 − exp
(∑4

i=1 βiP
(i−1)
av

)
, P

(2)
av < Pav ≤ P

(3)
av

log2 M

M
, Pav > P

(3)
av

The estimates for high and low Pav are asymptotically tight as Pav goes to infinity and zero, respectively.
The remaining domain is split into a region where a polynomial fit is tight and one where an exponential
fit is tight. The coefficients may be determined from the Levenberg–Marquant algorithm [6]. Table 1 lists
a set of coefficients for M = 64, nb = 0.2. Figure 2 illustrates errors in the four approximations relative to
an evaluation of the sample mean with at least 107 samples, as well as the linear fit, showing the regions
where the four approximations are tight. Residual errors on the order of hundredths of a decibel are due
to uncertainty in the “true” value, which is itself an approximation by means of the sample mean.

IV. Probability of Outage

To approach the fading channel capacity requires codewords of increasing duration. Codeword lengths
and interleaving depths in practice are limited by latency and memory constraints. We would like a
measure of the capacity under a finite codeword or interleaver constraint in order to predict losses and
design interleavers. One approach would be to define the capacity for a channel with finite codewords
as the minimum required power such that information may be transmitted with an arbitrarily small
probability of error. This is, however, a misleading quantity on a fading channel, since there will be a finite
probability that every symbol in the codeword sees the worst-case fading. This definition of capacity will
be dominated by the worst-case fading, which can be significantly worse than the degradation measured
at a required error rate.

Table 1. Coefficients for fitting PPM capacity, M = 64, nb = 0.2,
P

(1)
av = −22.5 dB, P

(2)
av = −15.0 dB, P

(3)
av = −7.5 dB.

i αi βi

0 1.289 × 10−3 0.09375

1 0.5937 −2.322

2 98.17 −16.47

3 −2.687 × 103 −383.9

4 2.199 × 104 1.462 × 103
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Fig. 2.  Tightness of fits to PPM capacity, M = 64, nb = 0.2.
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A more accurate representation of the degradation is given by the probability of outage,

pout(R, Pav) = Pr(C̄ ≤ R)

=
∫ R

0

fC̄(c)dc (4)

the probability that the instantaneous capacity C̄ falls below the rate of the code, where the instantaneous
capacity of an Nf -block fading channel is given by

C̄ =
1

Nf

Nf∑
i=1

C(viPav) (5)

where the vi are independent samples of the process v. As Nf → ∞, the instantaneous capacity ap-
proaches the fading capacity and the outage probability approaches a step function.

Inverting Eq. (4) yields Pav,dB(R, p∗out, Nf ) = {10 log10 Pav : pout(R, Pav) = p∗out}, the average power
required to achieve outage probability p∗out for a given interleaving depth Nf . The difference

lossdB = Pav,dB(R, pout, Nf ) − Pcap,fad,dB(R)

represents the finite interleaving loss—the power required in addition to the fading capacity to achieve a
specified outage probability. In the remainder of this section, we discuss several methods to compute or
estimate pout.
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A. Monte Carlo Estimation, Nonlinear Approximation

Determining fC̄ accurately can be problematic; hence, rather than evaluate Eq. (4) by estimating
fC̄, we may compute an estimate of pout(R, Pav) by means of Monte Carlo simulation. A sample of C̄
is generated by first generating Nf samples v1, · · · , vNf

and computing C(viPav). An estimate of each
C(vi, Pav) may be generated by a sample mean or by the nonlinear approximations developed earlier. For
example, Fig. 3 illustrates the outage probability computed using the nonlinear approximation for the
case R = 1/4, M = 64, nb = 0.2, m = 0.25, σ = 0.2, and varying interleaving depths. Losses of 2.75 dB
with no interleaving can be reduced to less than 0.15 dB with sufficient interleaving.

B. Linear Approximation

Approximation (2) leads to the following closed form for pout [1]:

pout(R, Pav) ≈ QNf

(√
Nfm

σ
,

√
2Nf (γ + a log Pav − R)/a

σ

)
(6)

where

Qm(α, β) =
∫ ∞

β

x
(x

α

)n−1

exp
(
x2 + α2

)
In−1(αx)dx

is the generalized Marcum Q-function. In numerical results, we evaluate the Marcum Q-function by
means of the recursive algorithms presented in [7].
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Fig. 3.  Outage probability parameterized by interleaving depth Nf . 
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Solving Approximation (6) for Pav is, in general, problematic. However, models of tracking errors show
that m and σ vary such that their ratio remains relatively constant. This motivates the following inversion
of Approximation (6), extending the results from [1]. Let Q−1

Nf
(pout;m/σ) =

{
ξ|QNf

(
√

Nfm/σ,
√

Nfξ) =
pout

}
, which may be precomputed for integer Nf and a fixed ratio m/σ. This gives an approximation for

the average power,

Pav,dB ≈ 10 log10(e)
((

Q−1
Nf

(
pout;

m

σ

))2 σ2

2
+

R − γ

a

)

Taking the difference with Approximation (3) yields

lossdB ≈ 5 log10(e)σ
2

(
Q−1

Nf

(
pout;

m

σ

)2

−
(

2 +
(m

σ

)2
))

(7)

The loss is not a function of the rate, PPM order, or the noise.

C. Gaussian Approximation

For large Nf , C̄ may be approximated as Gaussian with mean µC̄ = µC = E
[
C(vPav)

]
= Cfad and

variance σ2
C̄

= var
(
C(vPav)

)
/Nf = σ2

C/Nf . Under a Gaussian approximation, the outage probability is
given by [1]

pout(R, Pav) ≈ 1
2

erfc

(√
Nf (µC − R)

σC

√
2

)
(8)

Applying Approximation (2), we may approximate the mean and variance as

µC ≈ a log Pav + γ − a

(
σ2 +

m2

2

)
(9)

σ2
C ≈ a2

2
(m2σ2 + σ4) (10)

Substituting Approximations (9) and (10) into Approximation (8) and inverting yields

Pav,dB ≈ 10 log10(e)

(√
σ2 + m2σ2

2Nf
erfc−1(2pout) +

R − γ

a
+

(
σ2 +

m2

2

))
(11)

Taking the difference with Approximation (3) yields an approximation of the finite interleaver loss,

lossdB ≈ 10 log10(e)

√
σ2 + m2σ2

2Nf
erfc−1(2pout) (12)
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D. Approximation Accuracy

Figure 4 illustrates five estimates of pout for the case Nf = 4, M = 64, nb = 0.2, m = 0.2, σ = 0.25,
R = (1/4)(6/64): from Monte Carlo simulation where C(viPav) is computed by means of a sample mean;
from Monte Carlo simulation where C(viPav) is determined from the nonlinear approximation; by means
of the Linear Approximation (6); by means of the Gaussian Approximation (8) with estimated mean
and variance; and by means of the Gaussian Approximation (8) with mean and variance from Linear
Approximations (9) and (10). In this region, the linear approximation underestimates the mean and
overestimates the variance. The Gaussian approximation using a sample mean and variance is good, even
with such small Nf . However, the Gaussian and linear approximations lead to an underestimate of lossdB

by means of Approximation (12). We see no difference between the nonlinear approximation and Monte
Carlo simulations.

V. Interleavers

In this section, we give relationships between the size of an interleaver, measured in bits, and the
resulting spread, measured in independent fades per codeword, Nf . Interleaving in all cases will be over
PPM symbols. This imposes no loss relative to interleaving over slots, since each symbol has only one
slot affected by fading (noise slots are not affected). Let Nb be the interleaver memory size in bytes.
We assume there are M bytes per soft symbol at the receiver—one byte per slot. We have found this is
sufficient to yield negligible performance degradation in a soft-decision decoding algorithm [8]. Results
may be scaled to reflect changes to the bits/symbol quantization. Let Ncoh = Tcoh/Tsymbol, the duration
of the coherence time in symbols, and recall Ncw = Tcodeword/Tsymbol, the duration of a codeword in
symbols.
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Fig. 4.  Approximations to the outage probability, 
M = 64, σ = 0.25, m = 0.2, nb = 0.2.
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A. Block Interleaver

A block interleaver writes received symbols to a P ×Q matrix in rows and reads them out in columns.
The memory required is Nb = MPQ bytes. Suppose PQ > Ncw. A spreading of Nf is achieved by
choosing P = Nf , Q = Ncoh, such that

Nf =
Nb

MNcoh

B. Convolutional Interleaver

A convolutional interleaver, illustrated in Fig. 5, consists of N rows of delays (shift registers) of length
0, B, 2B, · · · , (N − 1)B, where each register contains one PPM symbol. The memory required for the
interleaver is Nb = M × N(N − 1)B/2 bytes. For an input sequence · · · , v0, v1, · · ·, where each vi is the
faded amplitude of a symbol, i.e., of the signal slot in that symbol, the interleaver output is

· · · , vkN , v(k−B)N+1, v(k−2B)N+2, · · · , v(k−(N−1)B)N+N−1, v(k+1)N , · · ·

We see that adjacent symbols in the output correspond to input symbols separated by NB − 1 or
NB(N − 1) + 1. Similarly, adjacent symbols in the input, e.g., v0, v1, are separated in the output
by NB − 1 or NB(N − 1) + 1 symbols (the interleaver is symmetric in this sense). Suppose N divides
Ncw and the first bit of the codeword corresponds to vkN . Then the block of symbols corresponding to
a single codeword spans a duration of

kN −
((

k − Ncw

N
− 1 − (N − 1)B

)
N + N − 1

)
= N(N − 1)B + Ncw + 1 symbols

≈ N(N − 1)B symbols

and, hence,

Nf ≈ N(N − 1)B
Ncoh

=
2NbTs

Tcoh
(13)

and we see that a convolutional interleaver achieves twice the diversity of a block interleaver with the
same memory. In the remainder, we assume a convolutional interleaver is used and use Eq. (13) to relate
the memory and spreading achieved by the interleaver.

 . . . v 2, v 1,v 0, . . .

B

2B

(N − 1)B

Fig. 5.  A convolutional interleaver.
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VI. Memory Requirements

Figure 6 illustrates lossdB as a function of the interleaver depth Nf with pout = 10−4, m = 0.2, and
σ = 0.25. Illustrated are a computation using the nonlinear approximation for C(viPav), the Linear
Approximation (7), and the Gaussian/Linear Approximation (12). The linear approximation is very
accurate since, as illustrated in Fig. 4, errors in Pav,dB and Pcap,fad,dB offset.

The interleaving depth may be mapped to a memory requirement by means of Eq. (13). For example,
to reduce losses to less than 0.2 dB requires Nf ≈ 64. This can be achieved on a channel with a coherence
time of Tcoh = 10 ms and slot widths of Ts = 1 ns with an interleaver of

Nb =
NfTcoh

2Ts
= 40 Mbytes

An approximation of the memory requirements to limit losses to less than lossdB may be obtained by
applying the Gaussian/linear approximation. Solving Approximation (11) for Nf yields

Nb ≈
⌈(

10 log10(e) erfc−1(2pout)
)2(σ4 + m2σ2)

loss2dB

⌉
Tcoh

2Ts

We see that the memory requirements are inversely quadratic in the required decibel loss.
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VII. Conclusions

In this article, we have extended methods to compute the losses due to fading on an optical channel.
To determine the capacity efficiently in regions where a linear approximation is inaccurate, a presented
nonlinear approximation may be used. However, the nonlinear approximations, although very accurate,
do not lend themselves to closed-form solutions to the finite interleaver losses. The errors from the
linear approximation of the fading channel capacity and the outage probability offset to yield an accurate
estimate of the finite interleaver loss. Gaussian approximations remain accurate only if accurate estimates
of the mean and variance are used.

Desired finite interleaver losses may be mapped to memory requirements in a straightforward manner.
This allows a system designer to see the cost (in memory) of combating fading—e.g., to determine how
much storage is required to limit losses to some acceptable quantity.
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