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Universal Decoder for Variable Duty-Cycle
Optical Communications

Bruce Moision∗

Efficient use of a deep-space optical communications channel requires changes to the duty cycle of
the modulation as the signal and noise powers change. This can be facilitated by modulating the
signal with pulse-position-modulation (PPM), supporting multiple PPM orders. To implement
iterative demodulation, which is required by certain error-correction-codes to obtain near-capacity
performance, would nominally require a distinct hardware implementation for each PPM order. In
this paper we describe a method to utilize a single hardware implementation of an iterative
demodulator for any PPM order. The method may be applied to any coded modulation that utilizes
iterative demodulation and maps to multiple modulation orders.

I. Introduction

A deep-space optical communications channel experiences a wide range of signal and noise powers
due to changes in atmospheric conditions and the sun-earth-spacecraft geometry. Fully utilizing the
capability of the link requires changing the peak-to-average power ratio over the course of the
mission. This can be accomplished efficiently by modulating the data with
pulse-position-modulation (PPM), choosing an optimum order for each operating point. For
example, Figure 1 illustrates a range of incident signal and noise power pairs, measured in
photons/ns, representative of an Mars–Earth link. These points were obtained from link budgets
developed for the discontinued Mars Laser Communications Demonstration (MLCD) project 1.
The signal–noise plane is also partitioned into optimum PPM orders and their corresponding
throughputs, assuming a slot-width Ts = 1.6 nsec. We see that the PPM order would ideally be
varied over the duration of the mission from M = 8 to M = 512. (The partitions illustrated here
make no allowance for system margin, which would increase the optimum order and decrease the
achievable throughput).
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1Link budget data provided by Abhijit Biswas, Jet Propulsion Laboratory
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To achieve near-capacity performance with certain error-correction-codes (ECCs), a coded
modulation for this channel decodes the ECC and modulation jointly, treating the modulation as a
component of the code, see, e.g., [1]. This would nominally require a distinct hardware
implementation of the decoder for each PPM order. However, designing, integrating, and
maintaining a large number of designs may be prohibitively expensive. In this paper, we illustrate a
method to utilize a single hardware implementation of the ECC for any PPM order, while still
facilitating iterative demodulation.
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Figure 1. Mapping of MLCD incident signal and noise to optimum PPM order and corresponding
throughput assuming a slotwidth of Ts = 1.6 nsec.
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Figure 2. Coded M -ary PPM channel with l-bit marginals

II. A Marginalized l-bit Decoder

Figure 2 illustrates the processing sequence of the coded modulation. A K-bit vector
u = (u0, u1, . . . , uK−1) is encoded by an (N, K) binary ECC to produce the N -bit vector a. Each
block of m = log2 M coded bits in a is mapped to an M -ary pulse-position-modulation (PPM)
symbol. Each PPM symbol is represented as an M -ary binary vector, with each element referred to
as a slot, where a 1 denotes the pulsed slot. We may think of the modulation as a non-linear binary
(NM/m,N) code. The binary vector of PPM symbols x = (x0, x1, . . . , x(NM/m)−1) is
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transmitted over a Poisson channel such that a Poisson-distributed photon count yi is observed over
each slot, with mean ns + nb for pulsed slots and mean nb for noise, or background, slots.

The M slot photon counts corresponding to a single PPM symbol are conditionally correlated,
given the m-bit vector that maps to those slots. This conditional correlation can be used in
decoding by utilizing the joint m-bit conditional likelihoods. For any vector y = (y0, y1, . . .) let
yM

k,i = yj where i = j mod M and k = (j − i)/M . That is, yM
k,i is the ith element of the kth

M -ary block, and let yM
k = (yM

k,0, . . . , y
M
k,M−1), the kth M -ary block. Without loss of generality,

assume the modulation sends a pulse in the ith slot of the kth symbol if am
k = i, where we use the

shorthand am
k = i to denote that the m-bit vector am

k has integer representation i. For example, the
block a3

1 = (011) = 3 would map to x8
1 = (000100000), and a pulse would be sent in the 3rd slot,

with all other slots in that symbol unpulsed. For the Poisson PPM channel the conditional channel
likelihoods may be expressed as

p(yM
k |am

k = i) = C

(
1 +

ns

nb

)yM
k,i

(1)

where C is a constant that is not a function of i. Hence, we may think of the slot counts yM
k,i as each

representing one likelihood.

Iterative soft demodulation is critical to achieving near-capacity performance for large PPM orders
[1]. However, the complexity, measured in operations per bit, grows exponentially with m, and can
become prohibitively expensive for large PPM orders that would be used by power-constrained
deep-space missions. In addition, if a mission is to support multiple orders, a new hardware design
would have to be generated for each order. Although a ground-based station could upload a new
design for each order, developing, maintaining, and integrating a large number of designs would
represent a considerable expense.

To alleviate these issues, we introduce an l-bit marginalizer into the processing sequence, as
illustrated in Figure 2. The l-bit marginalizer computes joint l-bit conditional likelihoods for some
fixed l regardless of the PPM order. We can think of it as replacing the computation of conditional
likelihoods given by (1) that would be different for each order M = 2m. For example, consider the
case l = 1. The marginalizer obtains bit-likelihoods from the symbol likelihoods by computing the
marginals

p(yM
k |am

k,i = 0) =
∑

am
k |am

k,i=0

p(yM
k |am

k )

The decoder may then operate on the bit-likelihoods, significantly reducing the complexity and
allowing a single hardware implementation to be used for all orders. However, utilizing
bit-likelihoods incurs a loss in performance–in Section III we illustrate a case of interest where the
loss is 1.5 dB for large orders.

An intermediate solution is to marginalize the m-bit likelihoods to l-bit likelihoods for some l > 1.
This allows a tradeoff of performance for complexity, while requiring a single hardware
implementation (based on an l-bit inner trellis). Figure 3 illustrates an example of mapping m = 3
bit likelihoods to l = 2 bit likelihoods, reducing a collection of 16 likelihoods (two M = 8
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symbols) to 12 (corresponding to three 2-bit symbols). In general l may be larger or smaller than
m, as described in the following.
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Figure 3. Forming l = 2 bit marginals from m = 3 bit likelihoods

Let l = log2 L and put p = lcm(m, l). Let k and j be integers satisfying jm = kl, with jm a
multiple of p. Then the vectors [am

j ,am
j+1, . . . ,a

m
j+(p/m)−1] and [al

k,al
k+1, . . . , a

l
k+(p/l)−1] are

identical–they index the same sequence. The first vector maps to (p/m) consecutive m-bit blocks,
corresponding to p/m consecutive transmitted M -ary PPM symbols. The second vector re-groups
these into (p/l) l-bit blocks. The function of the marginalizer is to compute the conditional
likelihoods of the l-bit blocks given the conditional likelihoods of the m-bit blocks. That is, it
computes, for each k ∈ {0, 1, . . . , N/l − 1}, i ∈ {0, 1, . . . , l − 1}

zL
k,i = p(yM

k′ , . . . ,y
M
k′′ |al

k = i)

where k′ = bkl/mc and k′′ = b((k + 1)l − 1)/mc, such that the symbols yM
k′ , . . . ,y

M
k′′ span the
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set of symbols mapped to by al
k. The marginal zL

k,i may be computed as

zL
k,i = C1

∑

am
k′ ,...,a

m
k′′ |al

k=i

p(yM
k′ , . . . ,y

M
k′′ |am

k′ , . . . ,a
m
k′′)

= C1

∑

am
k′ ,...,a

m
k′′ |al

k=i

k′′∏

j=k′
p(yM

j |am
j ) (2)

= C1

k′′∏

j=k′

∑

am
j |al

k=i

p(yM
j |am

j )

where we’ve assumed the bits ai, aj , i 6= j are IID Bernoulli(1/2), so that C1 is a constant relative
to i and that the symbols are conditionally independent, from which (2) follows.

Consider, for example, the two cases l = m and l = 1. When l = m, k′ = k′′ = k and

zL
k,i = C1p(yM

k |am
k = i)

the conventional m-bit conditional likelihoods. When l = 1, k′ = k′′ = bk/mc and

zL
k,i = C1p(yM

bk/mc|a1
k = i)

a binary likelihood.

III. Results

In this section we examine the performance degradation due to utilizing an l-bit decoder for M -ary
PPM. All simulation results utilize a serially-concatenated-PPM code described in [1]. The code
consists of the serial concatenation of a 4-state convolutional code, a binary interleaver, an
accumulator, and PPM mapping. The binary ECC block length is (N, K) = (15120, 7560).
Codewords are transmitted over a Poisson channel with mean signal photons per pulsed slot ns and
mean noise photons per slot nb. Decoding is performed iteratively, with decoding terminated if the
correct codeword is found, or a maximum of 32 iterations is reached.

Figure 4 illustrates simulated performance on a Poisson channel with nb = 1 for
l ∈ {1, 2, 3, 4, 5, 6, 8}, m = 8. Performance improves as l approaches m. Figure 5 illustrates the
signal power (ns/M ) in excess of capacity required to achieve a word error rate of Pw = 10−3

using an l-bit decoder to decode m-bit PPM. For example, from Figure 4, the gap to capacity for
l = 4 and m = 6 is approximately 1.4 dB. There is no loss relative to the m-bit decoder when l is
divisible by m, since no marginalizations of the m-bit likelihoods are required. However, when
l > m and l does not divide m, e.g., when l = 4,m = 3, we see some loss since marginalizations
of some of the m-bit likelihoods are required. Similarly, when l < m, we see slightly better
performance when l divides m.

Figure 6 illustrates the average operations per information bit required for l-bit and m-bit decoders
to attain a word error rate of Pw = 10−3. All operations are included–not just those of iterative
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demodulation. We see that for a given l, the complexity of decoding remains constant (roughly
constant, the iterations actually decrease with m yielding a small decrease in complexity), whereas
the complexity of m-bit decoding grows exponentially with m. Memory requirements are reduced
by a comparable amount. The complexity savings can be significant. For example, an l = 4
decoder decoding m = 8 requires 5.4 times fewer operations than the full m = 8 decoder, while
suffering a loss of 0.66 dB.
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Figure 4. Word Error Rate of m = 8 (M = 256 PPM) SCPPM decoded with an l-bit decoder,
l ∈ {1, 2, 3, 4, 5, 6}

IV. Comparisons with alternative approaches

In this section we compare the performance of the decoder with a front-end marginalizer with two
other approaches that also allow one to implement variable duty-cycle coded modulation with little
or no modification to the decoder hardware.

A. Guard-Time

The duty-cycle of the modulation may be varied without changing the PPM order by following
each PPM symbol by d unpulsed, or guard-time slots. Suppose you have a parent code with
throughput T bits/sec and average power threshold Pav = ns/M photons/slot. Adding d

guard-time slots while keeping ns fixed has no impact on performance, since the guard-time slots
are effectively ignored in the decoder. However, this reduces the average power to
P ′av = ns/(M + d) = PavM/(M + d) and the throughput to T ′ = TM/(M + d). Adding
guard-time allows one to vary the duty cycle without changing the encoding or decoding, since
M -ary symbol likelihoods are used. Symbol and codeword synchronization algorithms would be
modified to account for the guard-time, and the guard-time periods themselves may be used by the
receiver for symbol synchronization.
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B. Variable slot widths

As the available average power decreases, the optimum peak-to-average power of the link
increases. In practice, physical constraints limit the achievable peak power of a laser transmitter,
constraining the range of duty cycles that may be implemented while utilizing all available average
power at a given slotwidth. For a fixed slotwidth and ECC rate, this limits the range of signal power
over which one can close a link. However, by varying the slotwidth, the operable region can be
increased by increasing the average signal photons per pulsed slot2. One can show that at low
average power, the capacity of the link is invariant to the slotwidth for a fixed duty cycle, see, e.g.,
[3]. Hence, by increasing the slotwidth, while retaining the same peak power and duty cycle, the
operable region can be increased. The decoder is essentially blind to the slotwidth, and no changes
are required to the hardware to accommodate a change in the slotwidth. Slot and symbol
synchronization algorithms may remain unchanged if larger effective slots are constructed from a
baseline minimum slotwidth, as long as the signal strength is sufficiently large.

C. Comparisons

Figure 7 illustrates the achievable power efficiency in photons/bit for each of the described
approaches to implementing a variable duty cycle coded modulation on the Poisson channel. The
noise background is fixed at λb = 1 photon/nsec, the ECC rate at 1/2, and the minimum slotwidth
for all cases is Ts = 1 nsec. The best performance is achieved by choosing the minimum slotwidth,
choosing the optimum PPM order for that signal power, and using an l = m decoder. Performance
is also illustrated for a decoder with front-end marginalizer l = 4, for baseline M = 16 plus
varying duration guard-time, and baseline M = 16 with varying slotwidth. The minimum
slotwidth is used for all but the variable slotwidth system. The l = 4 decoder has a small loss
relative to the l = m decoder. The required bits/photon is fixed for the guard-time decoder, since
adding guard-time does not change the power efficiency. The variable slotwidth decoder is
relatively inefficient, but, as noted, does not require an increase to the peak to average power ratio.

Figure 8 illustrates the increase in signal photon rate relative to the M -PPM system (minimum
slotwidth, optimum PPM order, l = m decoder) required to achieve Pw = 10−3 as a function of
the data rate in Mbps. The data rate is varied by changing M for the l = 4 bit decoder, d for the
guard-time decoder, and Ts for the variable-slotwidth decoder. M = 16 for the guard-time and
variable slotwidth decoders. Losses are greatest with the variable slotwidth. Varying losses are
observed with the l = 4 marginals decoder, bounded by 0.7 dB over the range observed. Losses are
greater with the guard-time decoder. Note that, without changes to the decoder, neither the variable
slotwidth decoder nor the guard-time decoder allow operation at rates above that achieved with the
baseline modulation–125 Mbps for M = 16, ECC rate 1/2 and slotwidth 1 nsec.

2Mars Lasercom Terminal To Ground Terminals Interface Control Document, MLCD-ICD2, Release 2.1a, February 1, 2005
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V. Conclusions

We have demonstrated an architecture that allows a single hardware decoder to decode a wide
range of coded modulations with PPM modulation. This greatly simplifies the implementation of a
system that allows a variable duty cycle. It not only reduces the implementation complexity of the
decoder, but can lead to simplifications of other components of an optical communications system.
For example, a large channel interleaver may be introduced to mitigate fading on the channel [4].
The interleaver interleaves symbol likelihoods and would need to be modified to operate with
varying symbol durations if the PPM order is changed. By mapping all symbol likelihoods to a
common length, the channel interleaver design can be fixed. Other components of the system have
similar reductions in complexity. The approach can be extended to coded modulations where the
hardware implementation of the code is matched to a wide range of modulations and iterative
demodulation is allowed in the decoder.
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