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Performance of Low-Density Parity-Check Coded

Modulation

Jon Hamkins∗

This article presents the simulated performance of a family of nine AR4JA low-density

parity-check (LDPC) codes when used with each of five modulations. In each case, the

decoder inputs are codebit log-likelihood ratios computed from the received (noisy) mod-

ulation symbols using a general formula which applies to arbitrary modulations. Subopti-

mal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and

various mappings of bits to modulation symbols are considered. A number of subtle de-

coder algorithm details are shown to affect performance, especially in the error floor region.

Among these are quantization dynamic range and step size, clipping degree-one variable

nodes, “Jones clipping” of variable nodes, approximations of the min∗ function, and par-

tial hard-limiting messages from check nodes. Using these decoder optimizations, all coded

modulations simulated here are free of error floors down to codeword error rates below 10−6.

The purpose of generating this performance data is to aid system engineers in determin-

ing an appropriate code and modulation to use under specific power and bandwidth con-

straints, and to provide information needed to design a variable/adaptive coded modulation

(VCM/ACM) system using the AR4JA codes.

I. Introduction

Forward error correction using Low-Density Parity-Check (LDPC) codes is rapidly gaining

acceptance in the aerospace community [1]. A set of LDPC codes is in the final stages

of approval as an international standardization by the Consultative Committee for Space

Data Systems (CCSDS) [2]. The standard LDPC codes include a family of nine accumulate

repeat-4 jagged accumulate (AR4JA) LDPC codes, available in any combination of three

code rates (1/2, 2/3, and 4/5) and three input block lengths (1024, 4096, and 16384).
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Table 1. Codes, modulations, bit-to-symbol mappings, and demodulator structures considered by this article.

Code Code Bit Demodulator

Rates Lengths Modulations Mappings Types

1/2 1024 BPSK Natural LLR

2/3 4096 QPSK Gray Approximate LLR

4/5 16384 8-PSK Anti-Gray Hard decision LLR

16-APSK DVB-S2

32-APSK

The performance of the AR4JA LDPC codes on a binary-input additive white Gaussian

noise (AWGN) channel is well-documented [1,2]. Such published performance results apply

to binary phase-shift keying (BPSK) or quadrature PSK (QPSK) modulation, as is typically

used in deep space missions. When bandwidth is constrained, however, system engineers

may also desire to know the performance of LDPC codes when used with higher order

modulations, in order to most effectively trade off power efficiency, bandwidth efficiency,

and complexity. The need for bandwidth-efficient higher order modulations will become

more pressing in the future as NASA and other space agencies utilize higher data rates

and more simultaneous missions in the same limited spectrum. Modern variable coded

modulation (VCM) or adaptive coded modulation (ACM) schemes will be able to switch

between the different coded modulations as power and bandwidth resources vary.

Therefore, it is helpful to assess the performance of the standard LDPC codes when used

with higher order modulations such as 8-PSK, 16-ary amplitude PSK (16-APSK), and 32-

APSK. The performance of rate 4/5 AR4JA codes used with BPSK, 8-PSK, and 16-APSK

has been previously reported [3]. For other combinations of codes and modulations, per-

formance may be estimated based on the concept of code imperfectness. First, the code

imperfectness of the code when used with BPSK is determined by measuring the difference

between the code’s required bit signal to noise ratio Eb/N0 to attain a given codeword er-

ror rate (CWER) and the minimum possible Eb/N0 required to attain the same CWER as

implied by the sphere-packing bounds for codes with the same block size k and code rate

r [4]. This same imperfectness is then applied with respect to the capacity of the higher

order modulation to arrive at an approximated performance of the code when used with the

higher order modulation. The imperfectness approximation has generally been found to be

fairly accurate, to within about 0.5 dB, over a wide variety of codes and modulations.

Despite the results mentioned above, it remains helpful to have a comprehensive suite of

simulation results for all combinations of the nine AR4JA LDPC codes and five modulations,

as this is the most accurate estimate of performance. This article provides this suite of re-

sults. Along the way, we also provide a semi-tutorial presentation of the complex baseband

representation of various modulation types, various bit-to-modulation-symbol mappings, a

derivation of associated log likelihood ratios (LLRs), and a description of decoder imple-
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Figure 1. The signal flow considered in this article.

mentation details to optimize performance. One of the simple and well-performing LLR

approximations can be expressed in a general equation that applies to all of the modulation

types.

In particular, this article reports the simulated performance of the parameters shown in

Table 1, for all combinations of codes and modulations, along with some combinations of

mappings, demodulator structures, and number of decoder iterations. As shown in Figure 1,

Section II discusses the LDPC encoder, Section III discusses the modulator, Section IV

discusses the channel model, Section V discusses the demodulator, and Section VI discusses

the decoder. Numerical results of the coded modulation are given in Section VII.

II. Encoding

Since the AR4JA LDPC codes are binary, linear codes, encoding is accomplished by mul-

tiplying, in GF(2), an information vector by a generator matrix. The AR4JA codes have

a number of features that simplify the encoding process, and a more thorough treatment

of the encoding process can be found in [5]. First, they are systematic, which means the

information bits appear unchanged in the encoded codeword. Therefore, only the final n−k

columns of the k × n generator matrix need be stored by the encoder. The codes are also

quasi-cyclic, which is a result of using circulants to permute edges of the protograph copies

[2]. An encoder storing only rows 1,m + 1, 2m + 1, . . ., where m is the circulant size, may

generate the other rows on the fly using shift registers.

In a software implementation, it may remain most convenient and efficient to store the last

n − k columns of the generator matrix in their entirety, not making use of the quasi-cyclic

property, and performing the encoding operation using standard matrix multiplication. In

a high-level language such as C, individual bit operations are not as efficient as operations

that are applied on registers that are 32 or 64 bits wide. Therefore, in C it is efficient to

break each of the n − k columns into 64-bit segments, and store each segment in a 64-bit

wide “long int” data structure. In this way, in one operation, 64-bits of information can

be XORed with a 64-bit portion of the generator column, and the final codebit determined

from the parity of all such 64-bit operations of the column. Since the input lengths of each

of the AR4JA codes are a multiple of 64, this approach makes efficient use of the 64-bit

data structures.

Table 2 shows the encoding speeds achieved using a software encoder in C on a standard
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Table 2. Speed of encoders and decoders in C.

Enc. Dec.

Input Code Eb/N0 Average speed speed

length rate (dB) iterations (Mbps) (Mbps)

1024 1/2 1.80 16.44 14.0 0.597

1024 2/3 2.60 12.86 25.9 0.928

1024 4/5 3.70 9.20 49.5 1.410

4096 1/2 1.25 27.75 8.23 0.357

4096 2/3 2.00 22.94 14.4 0.537

4096 4/5 3.00 16.74 33.8 0.789

16384 1/2 0.95 46.03 1.57 0.219

16384 2/3 1.75 35.11 3.53 0.347

16384 4/5 2.75 23.97 6.45 0.541

desktop. Encoding speeds ranged from 1.5 to 50 Mbps.

III. Modulation

A. Modulation types

We now enumerate the modulation types considered in this article, along with their associ-

ated complex signal constellations, default indexing, and average complex baseband energy.

The signal constellations are shown in Figure 2.

1. BPSK is a real-valued constellation with two signal points: c(0) = A and c(1) = −A,

where A is a scaling factor. This is shown in Figure 2(a). The average complex

baseband symbol energy is Es = E[c(i)2] = A2.

2. QPSK is a complex constellation with four signal points, c(i) =
√

2A exp
[

j π
2

(

i + 1
2

)]

,

for i = 0, 1, 2, 3. It is convenient to include the
√

2 factor so that the average symbol

energy is Es = E[‖c(i)‖2] = 2A2, double that of BPSK, but with the same energy per

transmitted bit as BPSK.

3. 8-PSK has constellation points c(i) = A exp
[

j π
4

(

i + 1
2

)]

, for i = 0, 1, . . . , 7. In general,

M -PSK has constellation points c(i) = A exp
[

j 2π
M

(

i + 1
2

)]

, for i = 0, 1, . . . M−1. The

average symbol energy is Es = E[‖c(i)‖2] = A2.

4. 16-APSK is a standard of the second generation Digital Video Broadcast for Satellites

[6]. It is also referred to as 12/4 APSK or 12/4 QAM. It consists of the union of
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Figure 2. Signal constellations of various modulations.
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Figure 3. Required Eb/N0 to achieve CWER = 10−3 with r = 1/2, k = 1024 AR4JA LDPC coded

16-APSK, as a function of ring ratio.

amplitude-scaled QPSK and 12-PSK signal constellations

c(i) =

{

r1 exp
[

j π
2

(

i + 1
2

)]

i = 0, 1, 2, 3

r2 exp
[

j π
6

(

i + 1
2

)]

i = 4, 5, . . . , 15
(1)

The DVB-S2 standard defines the ratio r2/r1 = 3.15, 2.85, 2.75, 2.70, 2.60, and

2.57 for code rates 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10, respectively. The DVB-S2

standard does not specify use of a rate 1/2 code with 16-APSK; for our simulations,

we set r2/r1 = 3.15 when a rate 1/2 code is used. The average symbol energy is

Es = E[‖c(i)‖2] = (r2
1 + 3r2

2)/4.

Figure 3 shows the required Eb/N0 to achieve CWER = 10−3 for r = 1/2, k = 1024

AR4JA coded 16-APSK, as a function of the outer-to-inner ring ratio r2/r1. Although

there is variation, the sensitivity is quite small. The optimal ratio for this coded

modulation combination is about 3.15. For code-modulation combinations specified

by DVB-S2, the simulations reported in this article used the standard ratios. For rate-

modulation combinations not in the DVB-S2 standard, we first optimized the ratios

using data as in Figure 3, and then ran all subsequent simulations with the optimized

ratios.

5. 32-APSK is also a DVB-S2 standard. It is the union of three PSK constellations

c(i) =















r1 exp
[

j π
2

(

i + 1
2

)]

i = 0, 1, 2, 3

r2 exp
[

j π
6

(

i − 4 + 1
2

)]

i = 4, 5, . . . , 15

r3 exp
[

j π
8 i
]

i = 16, 17, . . . , 31

(2)
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The DVB-S2 standard defines the ratios r2/r1 = 2.84, 2.72, 2.64, 2.54, and 2.53, and

r3/r1 = 5.27, 4.87, 4.64, 4.33, and 4.30 for for code rates 3/4, 4/5, 5/6, 8/9, and 9/10,

respectively. The DVB-S2 standard does not specify use of rate 1/2 or 2/3 codes with

32-APSK; for our simulations, we set r2/r1 = 4.0 and 3.15 and r3/r1 = 8.0 and 6.25

when rate 1/2 and 2/3 codes, respectively, are used. The average symbol energy is

Es = E[‖c(i)‖2] = (r2
1 + 3r2

2 + 4r2
3)/8.

B. Mapping bits to symbols

Encoded bits are assigned to a sequence of corresponding complex constellation points,

or modulation symbols. Each of the modulations considered in this article has a number

of constellation points that is a power of two, which makes such bit-to-symbol mappings

straightforward.

The signal constellations in the previous section define a natural binary ordering. For

example, the 8-PSK constellation points indexed by i = 0, 1, 2, 3, 4, 5, 6, and 7 correspond

to the 3-bit patterns 000, 001, 010, 011, 100, 101, 110, and 111, respectively. We refer to this

as the natural bit-to-symbol mapping for the modulation. Note that the natural ordering,

or any other, is dependent on the way the constellation points happen to be indexed which,

in principle, is arbitrary. In part, this is why we were explicit in the previous section in

defining how each modulation is indexed with respect to i.

Other mappings, such as Gray codes,2 can often give better performance. There are many

Gray codes with the defining property that adjacent members in the list differ in exactly one

bit in their binary representation, some with slightly different performance than others. In

our simulations, we use the binary reflected Gray code, which has recently been proven to be

the optimal Gray code for M -PSK modulations [7]. The binary reflected Gray code of length

M is obtained from the binary reflected Gray code of length M/2 by listing the members

0, 1, . . . ,M −1, each preceded by a zero, followed by the members M −1,M −2, . . . , 0, each

preceded by a one.

The binary reflected Gray code has the prefix property, i.e., a length M ′ Gray code’s mem-

bers are equal to the first M ′ members of a Gray code of length M , M > M ′. Thus, when

conducting simulations of Gray codes of various lengths, only the longest Gray code need

be stored.

An anti-Gray code has the property that adjacent members in the list differ either in all their

bits or in all but one of their bits. An anti-Gray code of length M can be obtained from a

binary reflected Gray code of length M by removing the last M/2 entries and inserting after

each of the remaining M/2 entries the ones complement of that entry. Anti-Gray codes do

not have a prefix property, meaning a separate mapping should be stored for each length.

2Technically, a Gray code is more properly referred to as a Gray labeling. A code’s word error rate perfor-

mance is not dependent on the order of indexing, whereas with a Gray labeling, the whole point is that it is

defined in a particular order. Nevertheless, we use the term Gray codes here, for consistency with common

usage.
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For modulations in which constellation points have more than two near neighbors, a spe-

cialized bit to symbol mapping is needed. The DVB-S2 standard specifies such a mapping

to use with 16-APSK and 32-APSK.

The bit representations of the constellation points under the natural, Gray, anti-Gray, and

DVB mappings are given in Table 3, for lengths 2, 4, 8, 16, and 32. Note that in the Gray

column, 0, 1, 3, 2, . . . in binary is 00000, 00001, 00011, 00010, . . ., and each subsequent

constellation point has a binary representation that differs in exactly one bit, including

wrapping around to the beginning. The anti-Gray column has a separate specification for

each length and, for example, 0, 7, 1, 6, . . ., in binary is 000, 111, 001, 110, . . ., with each

entry differing in either two or all three bits. In Figure 2, the BPSK, QPSK, and 8-PSK

modulations are shown with the Gray code, and the 16-APSK and 32-APSK modulations

are shown with the DVB-S2 standard mapping.

Table 3 gives a mapping from the constellation index i to the bit representation map(i),

but at the modulator we need the inverse operation, to map bits to a constellation point.

The inverse is defined by cm[map(i)] = c(i) for each i, where the subscript m indicates

that the constellation has been mapped to a new ordering. For example, to map “1000”

to a constellation point using the Gray code, we note that “1000” is 8 in decimal, and

cm[8] = c(15) is the corresponding constellation point.

Figure 4 shows the performance of the r = 1/2, k = 1024 AR4JA code with 8-PSK when the

bit-to-symbol mapping is Gray, natural, and anti-Gray. At BER = 10−6, a natural mapping

incurs a loss of 2.8 dB compared to the Gray code, and an anti-Gray code incurs a loss of

4.1 dB compared to the Gray code. It is important for system designers, therefore, to use a

Gray mapping when using LDPC codes and higher order modulations.

IV. Channel Model

To isolate the coded modulation performance from other effects, this article assumes an

additive white Gaussian noise (AWGN) channel with no Doppler, fading, or other chan-

nel impairments, no amplifier distortions, and perfect receiver synchronization of carrier

frequency, phase, and timing.

The passband signal is assumed to be of the form

s(t) = a(t) cos(2πfct + θ(t)) (3)

where fc is the carrier frequency in Hz, and a(t) and θ(t) are arbitrary modulation-dependent

signals. We may rewrite this as

s(t) = Re
{

s̃(t)ej2πfct
}

(4)

where s̃(t) = a(t)ejθ(t) is the complex baseband representation of s(t). We may also write

s̃(t) as

s̃(t) =
√

Pc + m̃(t) (5)
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Table 3. Bit representations of constellation points. Table entries

have been converted from binary to decimal.

Natural Gray Anti-Gray DVB-16 DVB-32

0 0 0 0 0 0 0 12 17

1 1 1 3 7 15 31 14 21

2 3 1 1 1 1 15 23

3 2 2 6 14 30 13 19

4 6 3 3 3 4 16

5 7 4 12 28 0 0

6 5 2 2 2 8 1

7 4 5 13 29 10 5

8 12 6 6 2 4

9 13 9 25 6 20

10 15 7 7 7 22

11 14 8 24 3 6

12 10 5 5 11 7

13 11 10 26 9 3

14 9 4 4 1 2

15 8 11 27 5 18

16 24 12 24

17 25 19 8

18 27 13 25

19 26 18 9

20 30 15 13

21 31 16 29

22 29 14 12

23 28 17 28

24 20 10 30

25 21 21 14

26 23 11 31

27 22 20 15

28 18 9 11

29 19 22 27

30 17 8 10

31 16 23 26
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Figure 4. Performance of r = 1/2, k = 1024 AR4JA LDPC coded 8-PSK using various bit-to-symbol

mappings.

where
√

Pc is an unmodulated residual carrier signal with complex baseband power Pc, and

m̃(t) is a complex baseband modulation with complex baseband power Pd = limT→∞
1
T

∫ T

0
m̃2(t)dt.

This can be put back in passband notation using Equation (4), from which the residual car-

rier signal term
√

Pc cos(2πfct) is readily apparent. The modulations considered in this

article have the form

m̃(t) =

∞
∑

i=−∞

m[i]p(t − iT ) (6)

where m[i] is a member of a signal constellation m[i] ∈ C = {c(0), c(1), . . . , c(M − 1)} in

the complex plane, and where p(t) is square pulse shape of symbol duration T

p(t) =

{

1 if 0 ≤ t < T

0 otherwise.
(7)

For our purposes, the residual carrier signal can be assumed to have been filtered out of the

modulated received signal or, equivalently, Pc = 0. Thus, the received modulated complex

baseband signal is of the form

r̃(t) = m̃(t) + ñ(t) (8)

where ñ(t) is a complex baseband Gaussian noise process with one-sided power-spectral

density N0 in each dimension. At the receiver, r̃(t) is put through a perfect matched filter,

which results in complex soft symbols

r[i] = m[i] + n[i] (9)
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where n[i] is a complex Gaussian random variable with variance variance σ2 in each of its

real and imaginary components.

V. Demodulation– forming the Log Likelihood Ratio (LLR)

Soft decision decoders take as input the log likelihood ratio (LLR) for each code bit [3].

Suppose bits b = bm−1bm−2 · · · b0 are mapped to the complex constellation point c = c(b).

Here, we have dropped the subscript m for notational convenience, and assume c(·) itself

specifies the correct order of symbols for the desired mapping. Let r = c + n denote the

noisy received symbol.

In this section, we derive the exact LLR expression for an arbitrary constellation, provide

a lower-complexity approximate LLR expression based on nearest neighbors to the received

point, and provide the LLR expressions specific to BPSK, QPSK, 8-PSK, 16-APSK, and

32-APSK.

A. LLR for an arbitrary constellation

1. Exact LLR

The LLR for the jth bit of the symbol is

λj
△
= ln

[

P (bj =0|r)
P (bj =1|r)

]

= ln

[

p(r|bj =0)P (bj =0)/p(r)

p(r|bj =1)P (bj =1)/p(r)

]

= ln

[

p(r|bj =0)

p(r|bj =1)

]

(10)

where we use P to indicate a probability and p to indicate a probability density function

(pdf), we applied Bayes’ rule for a mixture of probabilities and pdfs, and in the last step

we assume P (bj =0) = P (bj =1) = 1/2. For i ∈ {0, 1}, we have

p(r|bj = i) =
∑

b:bj=i

p(r|b) (11)

=
∑

b:bj=i

p(r − c(b)) (12)

=
∑

b:bj=i

exp
(

−‖r−c(b)‖2

2σ2

)

2πσ2
(13)

where Equation (11) follows because it is a sum of disjoint events, and Equation (13) is

the pdf of a complex Gaussian random variable with variance σ2 in each of its real and

imaginary components. Substituting into Equation (10), we have

λj = ln





∑

b:bj=0 exp
(

−‖r−c(b)‖2

2σ2

)

∑

b:bj=1 exp
(

−‖r−c(b)‖2

2σ2

)



 (14)
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Thus, to compute the jth bit LLR from r, one may compute the squared distance to each

of the constellation points, separating those constellation points that have a 0 in bit j from

those that have a 1, and using Equation (14).

We may use the relation

‖r − c‖2 = ‖r‖2 − 2〈r, c〉 + ‖c‖2 (15)

in Equation (14), where the inner product is

〈r, c〉 △
= Re{r} × Re{c} + Im{r} × Im{c}

When the modulation has symbols each of the same energy, as is the case for PSK modu-

lations, the ‖r‖2 and ‖c‖2 terms in the numerator and denominator cancel we arrive at the

simpler form

λj = ln





∑

b:bj=0 exp
(

〈r,c(b)〉
σ2

)

∑

b:bj=1 exp
(

〈r,c(b)〉
σ2

)



 (16)

2. Approximate LLR

A common approximation to the LLR is to replace each sum in Equation (14) by its largest

term, i.e., by using only the nearest constellation point that has bj = 0 in the numerator,

and the nearest neighbor that has bj = 1 in the denominator. If we denote these nearest

neighbor constellation points by

c∗(j, i)
△
= c

(

argmin
b:bj=i

‖r − c(b)‖2

)

(17)

i ∈ {0, 1}, we may write

λj ≈ ln





exp
(

−‖r−c∗(j,0)‖2

2σ2

)

exp
(

−‖r−c∗(j,1)‖2

2σ2

)



 (18)

=
1

2σ2

(

‖r − c∗(j, 1)‖2 − ‖r − c∗(j, 0)‖2
)

=
1

2σ2

(

2〈r, c∗(j, 0) − c∗(j, 1)〉 + ‖c∗(j, 1)‖2 − ‖c∗(j, 0)‖2
)

(19)

or, for equal energy signal constellations

λj ≈ 〈r, c∗(j, 0) − c∗(j, 1)〉
σ2

(20)

This requires one subtraction and two multiplications. The step of dividing by σ2 can be

eliminated if σ remains constant over many symbols, by precomputing c(i)/σ2 for each i.

Figure 5 shows the codeword error rate (CWER) performance of the decoder when using

the exact LLR in Equation (16) and the nearest neighbor approximation in Equation (19).

The results shown are for 32-APSK with AR4JA LDPC codes of length k = 1024 and rates

r = 1/2, 2/3, and 4/5. As can be seen, the approximate LLR leads to about 0.1 dB of loss for
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Figure 5. Comparison of LLR and approximate LLR decoder performance for AR4JA LDPC coded 32-APSK

with k = 1024, and r = 1/2, 2/3, and 4/5.

r = 1/2, and 0 to 0.05 dB of loss for rates 2/3 and 4/5. This justifies using the approximate

LLR in an implementation. Nevertheless, in all other simulation results reported in this

article the exact LLR is used because the demodulator complexity is small compared to the

decoder complexity, and thus the simulation time is not substantially increased by using the

exact demodulator.

3. LLR for Hard Decision Decoding

When the demodulator produces hard decisions, the decoder does not have access to r, and

therefore cannot compute λj as in Equation (14). Instead, the decoder only is told whether

bj is more probably a 1 or a 0, i.e., whether λj ≤ 0 or λj > 0, respectively. That is, the

hard decision decoder is given sgn(λj).

Because the decoder operates on LLRs, we may proceed as before to define a hard decision

LLR, given by

λ
(H)
j

△
= ln

[

P (bj =0|sgn(λj))

P (bj =1|sgn(λj))

]

= ln

[

p(sgn(λj)|bj =0)

p(sgn(λj)|bj =1)

]

= sgn(λj) · ln
[

1 − p

p

]

(21)
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where p is the probability that the hard decision is incorrect. For BPSK, p = Q
(

√

2Es/N0

)

,

where

Q(x) =

∫ ∞

x

1√
2π

e−x2/2dx

Note that computation of λ
(H)
j requires knowledge of Es/N0. The receiver typically makes

an estimation of this, but if this estimate is not available, there would be an additional

decoder implementation loss.

B. LLR for BPSK

For BPSK modulation there are only two constellation points, and so the expression in

Equation (18), and hence Equation (20), is exact. There is only one bit LLR to compute,

namely, λ0, with c∗(0, 0) = A and c∗(0, 1) = −A, and the LLR is given by

λ0 =
〈r, c∗(j, 0) − c∗(j, 1)〉

σ2
=

〈r, 2A〉
σ2

=
2ARe{r}

σ2
(22)

When a code is used with BPSK, the LLRs of the codebits are independent and identically

distributed (i.i.d.), because each codebit gets mapped to its own modulation symbol, and

each modulation symbol is corrupted by i.i.d. noise.

C. LLR for QPSK

As can be seen from Figure 2(b), the least significant bit (LSB) of a Gray coded QPSK

modulation depends on Re{r} in exactly the same way as for BPSK. This can be seen

mathematically by noting

c(0) = A(1 + j)

c(1) = A(−1 + j)

c(2) = A(1 − j)

c(3) = A(−1 − j)

and then plugging these into Equation (16), which becomes

λ0 = ln





exp
(

〈r,c(0)〉
σ2

)

+ exp
(

〈r,c(2)〉
σ2

)

exp
(

〈r,c(1)〉
σ2

)

+ exp
(

〈r,c(3)〉
σ2

)



 (23)

Using

〈r, c(0)〉 = A(Re{r} + Im{r})
〈r, c(1)〉 = A(−Re{r} + Im{r})
〈r, c(2)〉 = A(Re{r} − Im{r})
〈r, c(3)〉 = A(−Re{r} − Im{r})

and plugging into Equation (23) and simplifying, we have

λ0 =
2ARe{r}

σ2
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which is identical to Equation (22). Following the same procedure for the most significant

bit, where now c(0) and c(1) are in the numerator and c(2) and c(3) are in the denominator,

the LLR is given by

λ1 =
2AIm{r}

σ2
(24)

As was the case for BPSK, with coded QPSK using a Gray bit-to-symbol mapping, the

LLRs of the codebits are independent and identically distributed (i.i.d.). Note, when the

bit-to-symbol mapping is not a Gray code, the LLR expressions will not simplify to the

expressions above, and the LLR’s will not be i.i.d.

D. LLR for 8-PSK

The three bit LLRs for each 8-PSK symbol can be computed using Equation (16), with four

terms each in the numerator and denominator. As there is no apparent simplification of

this exact LLR expression, the approximate LLR computation of Equation (20) can be used

when a lower complexity computation is needed.

To identify the closest constellation point with a 0 or a 1 in the bit position of interest, one

could compute the distances to all eight constellation points. This is unnecessary, however.

As can be seen from Figure 2(c), if we express r in polar coordinates as r = ‖r‖ejφ, the

closest constellation point with LSB equal to zero is given by

c∗(0, 0) =























c(0) if 0 ≤ φ < π/4

c(3) if 3π/4 ≤ φ < π

c(4) if π ≤ φ < 5π/4

c(7) if 7π/4 ≤ φ < 2π

(25)

This computation requires only comparisons to constants, and no computation of distances.

Similarly

c∗(0, 1) =























c(1) if π/4 ≤ φ < π/2

c(2) if π/2 ≤ φ < 3π/4

c(5) if 5π/4 ≤ φ < 3π/2

c(6) if 3π/2 ≤ φ < 7π/4

(26)

These can then be plugged into Equation (20). The LLRs for the other two bits can be

computed in a similar fashion.

Unlike BPSK and QPSK, when higher order modulations are used, the codebit LLRs are

neither independent nor identically distributed. They are not independent because noise

affecting reception of an 8-PSK constellation point affects the LLRs of the three associated

codebits in a correlated manner. They are not identically distributed because the distance

properties are not the same with respect to each bit. For example, with Gray-coded 8-PSK

as shown in Figure 2(c), the most significant bit (MSB) is ‘1’ if the point is above the I axis

and ‘0’ otherwise. Figure 6 shows this partition, and the partitions for the middle bit and

least significant bit (LSB).
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Figure 8. Voronoi regions of 16-APSK.

The distance properties of the LSB are worse than those of the other two bits. As a result,

the MSB and middle bit of Gray-coded 8-PSK are received, on average, with a higher

absolute LLR than the LSB is. Figure 7 shows this for k = 1024, r = 2/3 coded 8-PSK

at Eb/N0 = 5 dB. This SNR corresponds to CWER ≈ 10−5. As can be seen, the LSB is

more likely to have a lower absolute LLR than the MSB or middle bits. The aggregate

LLR distribution for 8-PSK is shown as well. This effect is important when considering an

implementation of interleavers, which is discussed in Section VIII.

E. LLR for 16-APSK

The four bit LLRs for each 16-APSK symbol can be computed using Equation (16), with

eight terms each in the numerator and denominator. As there is no apparent simplification

of this exact LLR expression, the approximate LLR computation of Equation (20) can be

used when a lower complexity computation is needed.

To identify the closest constellation point with a 0 or a 1 in the bit position of interest,

one could compute the distances to all sixteen constellation points. As was the case for

8-PSK, this is unnecessary. Since 16-APSK is simply the union of two PSK modulations,

the angle comparison approach used for 8-PSK can be used to identify the closest inner-

ring constellation point with a 0 in the bit position of interest, and separately, to identify

the closest outer-ring constellation point. Then 〈r, c〉 can be computed for each of the two

candidate constellation points to find the closer point. This requires computation of a total

of four inner products, or eight multiplications, to compute an approximate bit LLR.

A more careful approach can be even more efficient. The Voronoi regions of 16-APSK are

shown in Figure 8. As can be seen, the Voronoi region boundaries between the inner and

outer constellation points are either horizontal, vertical, or at a 45 degree angle. Thus, a

carefully crafted series of comparisons involving Re{r}, Im{r}, Re{r} ± Im{r}, and φ can

identify c∗(j, i) without multiplications. In this way, only comparisons and the one inner

product in Equation (20) would need to be computed.
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F. LLR for 32-APSK

The five bit LLRs for each 32-APSK symbol can be computed using Equation (16), with

sixteen terms each in the numerator and denominator. As there is no apparent simplification

of this exact LLR expression, the approximate LLR computation of Equation (20) can be

used when a lower complexity computation is needed. Since 32-APSK is the union of three

PSK modulations, the angle comparison approach used for 8-PSK can be used to identify the

closest constellation point with a 0 in the bit position of interest, on each ring. Then 〈r, c〉
can be computed for each of the three candidate constellation points to find the closest

point. The same type of calculation is made for constellation points with a 1 in the bit

position of interest. This requires computation of a total of six inner products, or twelve

multiplications, to compute an approximate bit LLR.

The Voronoi boundaries of 32-APSK are not all horizontal, vertical, or at a 45 degree angle,

so the more efficient method detailed above for 16-APSK could not be used for 32-APSK.

VI. Decoding

An LDPC code is decoded with an iterative message passing algorithm on a bipartite graph.

A summary description (e.g., [1]) and full derivation (e.g., [8]) of the decoding algorithm is

available in several places in the literature. Such descriptions address the computation of

appropriate conditional probabilities of maximum a posteriori (MAP) bit estimates, how-

ever, they do not typically address some of the practical aspects of decoder design, such as

the quantization of the input LLRs, the finite-precision of the computations and messages

being passed, complexity-reducing approximations, and subtle decoder variations. These

details can have a significant impact on performance. We will discuss some of these details

here.

Figure 9 is representative of the type of performance differences observed in independently

developed decoders. The code illustrated is the k = 1024, r = 4/5 AR4JA code, with BPSK

modulation. Shiva Planjery produced perhaps the largest set of decoder variations for this

code3, although those results are not included here. Among the CCSDS AR4JA LDPC

codes, the highest error floor is usually seen on this code, so it is an instructive code to

study.

As can be seen in Figure 9, the location of the floor is dependent on the decoder. The

three decoders share several salient features – they all used 8-bit quantization and a similar

min∗ implementation, for example – but small differences in the decoders led to significant

differences in the error floor performance. The JH2009 curve4 has an error floor beginning

3Shiva Planjery, Fall 2008 CCSDS presentation, and unpublished manuscript.

4The blue curve in Figure 9, labeled JH2009, is from a software simulation made by Jon Hamkins in 2009.

That decoder is an 8-bit decoder with dynamic range (-15.875, 15.875). It uses an approximation of min∗

based on min minus one log correction term (with the difference not allowed to flip the sign), no special

clipping of channel symbols for degree-1 variable nodes, and no Jones clipping of variable nodes.
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Figure 9. Previously reported performance of (1024,4/5) AR4JA decoders.
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at about CWER= 10−4 and BER=10−6, the KSA2006 curve5 has a floor beginning at

about CWER=10−5 and BER=3 × 10−7, and the CRJ2006 curve6 has no indication of a

floor except possibly in its last simulated point, at about CWER=10−6 and BER=10−8.

Shiva’s multiple-decoders approach showed an error floor near about CWER=10−7 and

BER=10−10.

After optimization, the performance can be improved to that shown in Figure 10. This

performance was the result of a simulation of more than 8 × 1012 bits. We now discuss the

various optimizations used to achieve this performance. (The use of partial hard-limiting

discussed in Section VI-D.4 was the key to the dramatically lower floor.)

A. Number of iterations

Figure 11 shows the bit error rate (BER) performance of a decoder as a function of the

number of iterations. The results shown are for the k = 1024, r = 1/2 AR4JA code used

with BPSK on an AWGN channel, demodulated with an exact LLR computation quantized

to 8 bits, and with a decoder limited to a maximum of 2, 5, 10, 20, 50, 100, and 200

iterations. As indicated in the figure, there is not much performance improvement beyond

about 50 iterations for this code. The k = 4096 and k = 16384 results show slightly larger

performance improvement beyond 50 iterations than is the case for k = 1024, and this has

led us to conduct the remainder of simulations reported in this article with a maximum

of 200 iterations. When a codeword takes significantly longer than the average number

of iterations to decode, incoming codewords may be buffered, and generally a buffer of 2

or 3 codewords reduces the probability of buffer overflow (or equivalently, implementation

loss) to near zero. In a deployed implementation, a system engineer may trade off the

implementation loss with the maximum number of iterations supported.

B. Quantization

In a practical decoder, LLRs are represented by digital quantities. This quantization limits

both the dynamic range and the resolution of the LLRs. In early experiments, it has been

determined that 8 bits of quantization for the LLRs leads to a negligible loss in performance7.

5The red curve in Figure 9, labeled KSA2006, is from a simulation by Ken Andrews in 2006. This was an

integers-only decoder using 8 bits for channel LLRs and all messages, uniform quantization between -127/8

and +127/8, and clipping of degree-1 variable nodes to maximum magnitude 116/8.

6The green curve in Figure 9, labeled CRJ2006 is from an FPGA simulation by Chris Jones in 2006. This

performance was reported in the FY2006 annual review of the IND Technology Program and in the AR4JA

CCSDS Orange Book. This also was an 8-bit decoder with dynamic range (-15.875, 15.875) and degree-1

clipping, and in addition it incorporated “Jones clipping” at variable nodes, in which the sum of all messages

into a variable node is clipped (e.g., to ±127, for an 8-bit decoder) prior to forming an outgoing message by

subtracting off one of the incoming messages. It also included a number of other differences in check node

processing, such as at most 2 unique outgoing messages at each iteration.

7Kenneth Andrews, personal communication.
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Figure 10. A (1024,4/5) AR4JA decoder with a lower error floor.
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Figure 11. Performance of k = 1024, rate 1/2 AR4JA LDPC coded BPSK/QPSK, when decoded with a
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A quantizer of the form

Q(x) =















127 if Cx ≥ 127

−127 if Cx ≤ −127

round(Cx) otherwise

(27)

is convenient, where C is a scale factor. In this way, Q(x) takes on the integer values -127,

-126, . . . , 126, 127, and can be stored in an 8-bit register. This is a symmetric, uniform

(equal step-size) quantizer, and for x in the grunular region, Q(x) ≈ Cx. In the decoding

algorithm, the value Q(x)/C can be used wherever x would normally be used. Note that the

quantizer represents zero exactly, which is helpful to represent the LLRs of untransmitted

variable nodes. It also is symmetric about zero, so that a decoder will not be biased toward

either positive or negative LLRs.

Since the quantizer output has maximum magnitude 127, it represents LLRs in the dynamic

range (−127/C,+127/C). Smaller values of C correspond to a larger dynamic range, which

could aid the performance of a decoder. Given the fixed number (255) of quantizer levels,

however, a larger dynamic range also means larger, coarser step size between quantizer

levels. These two effects may be traded off to optimize performance. Figure 12 shows the

performance of the r = 4/5, k = 1024 AR4JA code operating at Eb/N0 = 4 dB, as a function

of C. As can be seen, a value of C = 8 approximately optimizes performance. Hence, in

the following numerical results, we use C = 8, which corresponds to a step-size of 1/8 and

an LLR dynamic range of
(

−15 7
8 ,+15 7

8

)

.
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Figure 12. Performance of 8-bit decoder for r = 4/5, k = 1024 AR4JA code operating at Eb/N0 = 4 dB, as

a function of dynamic range of quantized LLRs.

C. Variable node processing

A given variable node receives LLR messages u1, u2, . . ., ud from d check nodes, where d is

the degree of the variable node, along with an LLR λ from the demodulator. The message

the variable node sends back to the jth of the d check nodes connected to it is given by

vj = λ +

d
∑

i=1

i6=j

ui (28)

Given quantized inputs Q(λ) and Q(ui), which as described above are about 8 times their

true LLR values and are clipped to ±127, the outgoing quantized message may be computed

as

Q(vj) = clip






Q(λ) +

d
∑

i=1

i6=j

Q(ui)






(29)

where

clip(x) =















127 if x ≥ 127

−127 if x ≤ −127

x otherwise

(30)

This can also be written as

Q(vj) = clip (U − uj) (31)

where U
△
= Q(λ) +

∑d
i=1 Q(ui). This form is convenient because each of the outgoing

messages v1, . . . , vd can be computed from U with a single subtraction.
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1. Jones clipping

In an early FPGA LDPC decoder implementation by Chris Jones8, U was clipped prior to

the subtraction

Q(vj) = clip (clip(U) − uj) (32)

Intuitively, this clipping seems undesirable because, for example, if all of the incoming

messages are large, including uj , then the outgoing message will be near zero. Without the

clipping of U , the message Q(vj) would be large, as is intuitively desirable.

Despite the intuition about the detrimental effect of this “Jones clipping,” it turns out

that the overall effect is to improve performance because such clipping apparently helps the

decoder dig itself out of trapping sets in which it otherwise would get stuck. The effect

may be analogous to simulated annealing, in which the algorithm occasionally moves in the

opposite direction of the gradient in order to dig itself out of a local minimum. A solid

theoretical understanding of this is lacking, however.

The performance improvement can be seen in the green curve labeled “with Jones clipping”

in Figure 13. The blue curve is a nominal 8-bit decoder, and shows an error floor beginning

at about CWER= 10−4. Introducing Jones clipping reduced the error floor by one decade, to

about CWER=10−5. As we shall see below, this reduced-floor performance can be improved

even more by carefully utilizing additional optimizations.

2. Clipping degree-1 variable nodes.

When channel symbol LLRs for degree-1 variable nodes are not clipped to levels below the

maximum magnitude of check node messages, an error floor results9. The reason for the

floor is that a strong but wrong channel symbol LLR is not able to be overcome by the

single message from the check node. For the (1024,4/5) code with 128 degree-1 variable

nodes, channel symbol LLRs clipped to ±15.875, and a decoder with maximum check node

message 15.125, the theoretical floor10, 128Q((4Es/N0 + 15.125)/
√

8Es/N0), is shown in

light blue Figure 13. The theoretical floor reaches a maximum of approximately 2.4× 10−6

at Eb/N0 ≈ 6.7 dB, and then trends lower at higher SNR.

Altering the decoder to clip degree-1 variable nodes to to 116/8=14.5 made little difference

in the error floor, as seen in the red curve labeled “degree-1 clipping” in Figure 13, because

the degree-1 problem was not the dominant flooring effect in this decoder in the region

simulated.

8Chris Jones, personal communication.

9Chris Jones and Sam Dolinar, Monthly Management Review for the IND Technology Program, October

2004.

10Sam Dolinar, personal communication.
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Figure 13. A few (1024,4/5) AR4JA decoder variants.
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D. Check node processing

A given check node receives messages v1, v2, . . ., vd from d variable nodes, where d is the

degree of the check node. The message the check node sends back to the jth of the d variable

nodes connected to it is given by

uj = 2 tanh−1







d
∏

i=1

i6=j

tanh
vi

2






(33)

This can be computed by repetitively applying the function

min∗(x, y)
△
= 2 tanh−1

[

tanh
(x

2

)

tanh
(y

2

)]

(34)

= sgn(xy)
[

min(|x|, |y|) − ln
(

1 + e−(||x|−|y||)
)

+ ln
(

1 + e−(|x|+|y|)
)]

(35)

1. Quantized min∗

The second ln term of min∗ is smaller than the first, and can be ignored. The first ln term

can be quantized using the approximation

ln
(

1 + e−||x|−|y||
)

≈ 1

8
round

[

8 ln
(

1 + e−||x|−|y||
)]

(36)

With quantized inputs Q(x)/8 and Q(y)/8 in place of x and y, this is nonzero only when

||Q(x)|−|Q(y)|| ≤ 21, so a length 22 look-up table can implement this approximation. Thus,

the entire min∗ approximation can be computed with a few comparisons, one subtraction,

and no multiplications, logarithms, or exponentials.

In some implementations, such as a software decoder on a standard desktop, it is efficient to

replace the comparisons, small look-up table, and subtraction with a single look-up table.

With the 8-bit quantized values, an unsigned min∗ table has 128 × 128 = 16384 1-byte

entries, and a signed min∗ table has 256 × 256 = 65536 1-byte entries, which is within the

reach of typical computing platforms.

2. Exact min∗.

When a full look-up table is used for min∗, there is no need to use an approximation as in

Equation (36). Instead the table can simply contain the entries

Q(min∗(Q(x), Q(y)) = Q

{

2 tanh−1

[

tanh

(

Q(x)

2C

)

tanh

(

Q(y)

2C

)]}

(37)

which can be conveniently computed once, ahead of time. This is equivalent to Equa-

tion (34), using quantized inputs. Note, using the approximation (36) for both log terms

of Equation (35) is not equivalent to Equation (37), because Equation (36) quantizes the

log term separately, introducing quantization noise twice, whereas Equation (37) does not

quantize until the end of the full computation.

Nevertheless, this more exact min∗ computation made no discernible difference in the sim-

ulated error floor.
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3. Additive unreliability at check node.

The rate 4/5 AR4JA codes have degree-18 check nodes. To compute a min∗ function of 17

variables, multiple 2-input min∗ functions are repeatedly computed, using a tree-structure.

Since each min∗ involves quantization noise, the total quantization noise for the min∗ with 17

variables could be significant. As an alternative, each reliability message vi from a variable

node can be transformed to an unreliability Ψ(vi) = ln(tanh(vi)), so that the product in

Equation (33) becomes a summation

uj = Ψ







d
∑

i=1

i6=j

Ψ(vi)






(38)

Here, we have made use of the fact that Ψ(·) is a self-inverse function. With quantized

inputs and outputs this becomes

Q(uj) = Q






Ψ







d
∑

i=1

i6=j

Ψ

(

Q(vi)

C

)












(39)

In this form, the addition can be performed without introducing quantization noise beyond

that present in the inputs, and the result is transformed back to a reliability and re-quantized

only at the end of the computation. The overall quantization noise is less using this method.

This alteration had no discernible effect on error-floor performance, as seen in the magenta

curve in Figure 13. Since this optimization also led to a slower software, it was not used in

the numerical in the remainder of this article.

4. Partial hard limiting check node messages

One additional decoder variation made a big difference in the error floor performance. Mes-

sages from each check node were partially hard-limited, so that every message from a check

node which would otherwise have a quantized magnitude at least 100 was re-assigned to have

maximum magnitude (127). This resulted in the performance in the red curve in Figure 10.

As can be seen, the floor was reduced to about CWER=3×10−8 and BER=3×10−10, with

no loss in the waterfall region. The average number of iterations in the waterfall region is

the same as for the JH2009 decoder, so this decoder seems to be a promising candidate for

low-complexity error-floor mitigation.

We may offer some limited reasoning for why the check-node hard-limiter helps improve

performance. The lower floor means that the decoder is handling trapping sets better than

the JH2009 decoder. Consider a trapping set V of incorrectly converged variable nodes,

with a set C of neighboring check nodes, each connected to V an odd number of times (i.e.,

a (|V |, |C|) trapping set). The check nodes in C are unsatisfied. In general, a node of V

may receive messages from nodes in C and nodes not in C. If the decoder is stuck in the

trapping set, the (correct) messages from nodes in C are not powerful enough to overcome

the (incorrect) messages from nodes not in C. Because of how C is connected to V , the

messages from check nodes in C tend to start converging slightly faster than those not in
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C. By hard-limiting the messages from all check nodes above 100, the unsatisfied checks are

able to more quickly correct incorrect nodes in V . The interaction of Jones clipping with

the partial hard-limiter may also be important.

5. Other variations

Various other damping, amplifying, optimal processing of cycles, and iterative demodulation-

decoding may also be incorporated. These may lead to additional performance improve-

ments.

E. Software Implementation

Software was written in C to implement the encoder, bit-mapper, modulator, noise genera-

tor, demodulator, LLR computation, and decoder for each combination of code, modulation,

bit-mapping type, and demodulation type shown in Table 1. Additional support for ran-

dom message generation, noise generation, and gathering performance statistics was also

included. The decoder uses LLRs quantized to eight bits.

The same encoder/decoder software is used for all nine codes. Prior to simulating the

coded modulation, the software reads an initialization file that defines the protograph LDPC

code’s input and output length, circulant size, number of check and variable nodes in the

protograph, number of edges in the protograph, a compact representation of the generator

matrix, and an edgelist describing the parity check protograph and circulant offsets.

Table 2 shows the encoding and decoding speed of the C simulations, when compiled with

a GNU C compiler on a typical desktop PC (a 3 GHz Intel Xeon processor running linux).

The decoder is an 8-bit message passing decoder that stops iterating when a codeword

is found. Because more iterations are needed at lower signal-to-noise ratios (SNRs), the

speed of such a variable iterations decoder is sensitive to the SNR. The speeds reported in

the table refer to a simulation with BPSK modulation, soft decisions, and operation at the

Eb/N0 shown, which in each case corresponds to operation at a codeword error rate of about

10−4 and represents a reasonable lower limit on the Eb/N0 at which the decoder would be

operated in practice. The software simulation was found to spend only a small fraction of

its running time computing LLRs. Most of the time is spent performing decoder iterations.

This is true even with the high order modulations such as 16-APSK and 32-APSK, where

exact LLR computations amounted to only about 5 percent of the overall simulation time.

As a result, the numerical results reported in this article used the exact LLR expression

of Equation (14), and not the lower-complexity approximate LLR expressions developed in

Section V.

We also developed a separate MATLAB implementation of equivalent functionality. The

MATLAB implementation was found to run about 50 times slower. Simulation results

reported in the article were collected with the C software.
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VII. Numerical Results

We are now ready to present the main numerical results of the article: the performance

of AR4JA codes when used with a variety of modulations, an optimized bit-mapping, an

optimum demodulator (LLR computation), and the optimized decoder algorithms described

in the sections above.

A. Performance of AR4JA coded BPSK, QPSK, 8-PSK, 16-APSK, and 32-APSK

Figure 14 shows the performance of AR4JA coded BPSK or QPSK on an AWGN channel,

demodulated with an exact LLR computation and quantized to 8 bits, and decoded using up

to a maximum of 200 iterations. BERs and CWERs are shown for codes of input codeword

lengths k = 1024, k = 4096, and k = 16384 and rates 1/2, 2/3, and 4/5. These simulation

results are in agreement with those reported elsewhere [1], except that the error floors have

been eliminated.

Figure 15 shows the performance of AR4JA LDPC codes as before except that 8-PSK with

a Gray mapping is used. BERs and CWERs are shown for codes of input codeword lengths

k = 1024, k = 4096, and k = 16384 and rates 1/2, 2/3, and 4/5.

Figures 16 and 17 show the performance of AR4JA as before, except that 16-APSK and

32-APSK, respectively, with the DVB-S2 mapping is used. BERs and CWERs are shown

for codes of input codeword lengths k = 1024, k = 4096, and k = 16384 and rates 1/2, 2/3,

and 4/5.

B. Hard decision Decoding

Figures 18, 19, and 20 show the loss when the demodulator uses hard decision decoding.

When taking a hard-decision input, the decoder uses Equation (21) as its LLR. The results

shown are for the nine AR4JA codes used with BPSK on an AWGN channel. For all nine

codes, the loss due to hard decision decoding is seen to be about 1.6 dB at CWER = 10−4.

VIII. Conclusions and Future Work

This article provides a large set of simulation results for LDPC codes in combination with

several modulations. The numerical results are consistent with previous results [1,3], except

that a new partial hard-limiter for check node messages has been introduced to eliminate

error floors. The simulation results provide a foundation for the design of variable coded

modulation (VCM) or adaptive coded modulation (ACM) schemes.

Performance depends on optimization of bit-to-symbol mapping in the modulator, LLR com-

putation by the demodulator, and on the decoder’s quantization dynamic range and step-

size, variable node clipping strategy, check node partial hard-limiting, and number of itera-

tions. With careful optimizations, error floors can be avoided down to below CWER=10−6.
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Figure 15. Performance of AR4JA LDPC coded 8-PSK.
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Figure 16. Performance of AR4JA LDPC coded 16-APSK.
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Figure 17. Performance of AR4JA LDPC coded 32-APSK.
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Figure 18. Performance of rate 1/2 AR4JA LDPC coded BPSK/QPSK using hard decision demodulator.
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Figure 19. Performance of rate 2/3 AR4JA LDPC coded BPSK/QPSK using hard decision demodulator.
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Figure 20. Performance of rate 4/5 AR4JA LDPC coded BPSK/QPSK using hard decision demodulator.

Error floors may be lower, as they were not reached with the simulations conducted here.

Performance is not sensitive to ring ratios used in 16-APSK and 32-APSK, nearest neigh-

bor approximations to the LLR, and maximum iterations beyond about 200. Use of an

interleaver may be avoided without performance degradation.

Iterative demodulating and decoding was not attempted here and may improve performance

further.
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Appendix: A word about interleavers

This article did not make use of an interleaver – each set of adjacent codebits was grouped

and used as input to the modulator, as shown in Figure 21(a) for 8-PSK. The blue, red, and

green colors correspond the most significant bit, middle bit, and least significant bit shown

in the 8-PSK signal constellation in Figure 2(c). When a codeword is not a multiple of the

number of bits per modulation symbol, the modulator input can be padded with zeros to

generate the final symbol, or combined with the first bits of the following codeword.

Not using an interleaver may make a code vulnerable to losses when used with higher order

modulations, because a weakly received modulation symbol may give rise to multiple poor

codebit LLRs. An interleaver helps distribute these bursts of poor LLRs across multiple

codewords, instead of bunching them in a single codeword. Codebits are passed through an

interleaver, π, prior to modulation, and a de-interleaver, π−1, after demodulation, as shown

in Figure 22.

In the single codeword interleaver, the bits within a codeword are re-ordered arbitrarily, as

shown in Figure 21(b), prior to being mapped to modulation symbols. In principle, any
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Figure 21. Interleavers for coded 8-PSK.
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Figure 23. Performance of coded modulation when not interleaved, block interleaved, and block interleaved

with bit re-ordering.

interleaver of this type may simply be incorporated into the definition of the LDPC code,

with no need to refer to an additional interleaver. However, it was convenient to define

the AR4JA codes in the way they were because they have the quasi-cyclic property, which

simplifies the encoding process. Changing the definition of the code to reorder the bits

would destroy this property.

In a block interleaver, codewords are written in rows and read out in columns, as shown

in Figure 21(c), again for 8-PSK. In the usual type of block interleaver, the first codeword

would always correspond to the msb, the second codeword to the middle bit, and the third

codeword to the lsb. As noted in Figures 6 and 7, the lsb of Gray-coded 8-PSK has worse

distance properties, which means that the error rate for the codeword 3 using the lsbs will be

much worse. This is shown in Figure 23. The performance of codewords mapped to the MSB

is very good, while those mapped to the LSB are quite poor, and the average performance

would be dominated by the poor LSB performance. As a result, a block interleaver of this

type should not be used with modulations whose bits have different distance properties.

Additionally, Figure 23 indicates that a block interleaver with bit re-ordering does not offer

an advantage over the non-interleaved coded modulation. This implies that the AR4JA

codes are inherently resilient to the bursts of poor LLRs that result from the use of a higher

order modulation. This may be because the number of bits per modulation symbol, five or

less, is small compared to the codeword length, which is 1280 or longer.
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