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abstract. — We address the problem of selecting an optimum field of view (FOV) for an opti-
cal communications link. We derive a closed-form equation that provides an approximation 
to the optimum FOV as a function of an incident signal-to-noise-ratio (SNRi ) and the signal 
spot intensity variance. Using this expression, we show that in the limit of small SNRi  one 
wants to encircle 72 percent of the signal power. The optimum fraction is increasing with 

SNRi , so it follows that one always wants to encircle at least 72 percent of the signal. We 
provide an expression for the loss in selecting a suboptimal FOV and find the FOV that we 
conjecture minimizes the maximum loss. This FOV corresponds to encircling 91 percent of 
the signal power and limits the maximum loss to less than 0.4 dB in signal power for a tar-
get capacity. Finally, we illustrate an application of using the estimate to select an optimum 
FOV for a pixellated focal plane illuminated by a speckled signal intensity pattern.

I. Introduction

In a free-space optical communications system, one may utilize an iris to adjust the field 
of view (FOV). Reducing the FOV has the effect of filtering out both background noise and 
signal power. The optimum setting of the FOV may be taken to be the value that maxi-
mizes the channel capacity. This optimum depends on the magnitude of the signal power, 
the spatial distribution of the signal power in the focal plane, and the intensity of the 
noise power. In this article, we derive a simple approximation to the optimum FOV for an 
intensity-modulated, direct-detected, pulse-position-modulation (PPM) communications 
link. Using the approximation, we show that one should always encircle at least 72 percent 
of the signal power, and illustrate the loss due to choosing a suboptimum FOV. We show 
that if one were to encircle 91 percent of the signal power for all signal and noise pairs, the 
loss, relative to the optimum setting, is less than 0.4 dB, and we conjecture this represents 
the minimum worst-case loss for a fixed FOV.    
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II. Channel Model

A simple model of the receiver is illustrated in Figure 1. We put 

D  = aperture diameter (m),  

F  = focal length (m), 
r0  = atmospheric coherence length (Fried parameter) (m),  
Is  = incident signal irradiance (W/m2),  
Ib  = incident background spectral radiance (W/m2/mm/sr),  
X = detector field of view (sr),  
m = wavelength (m), and 
d  = effective detector radius (m).  

(1)

Figure 1. Free-space optical receiver.

We assume the telescope and channel parameters ( , , , , ,D F r I Is b0 m) are fixed, and that the 
operator may adjust the FOV by changing d  with an adjustable iris (this could also be ac-
complished via signal processing if we replace a single detector with an array, an approach 
we describe in Section V).  Let ( , )I x y  be the normalized mean signal intensity function in 
the focal plane, such that  

( , )I x y dxdy
A
#

is the fraction of the signal incident on an area A. We assume that the mean signal inten-
sity may be modeled as Gaussian 
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This reduces to a diffraction-limited spot when r D0 & , and corresponds to the turbulence-
limited mean spot size when D r0& , which is significantly larger than the diffraction-limit-
ed spot size, representing the blurring of the spot in turbulence. For the purpose of deriving 
an optimum FOV, we presume the intensity is fixed in time, and given by this long-term 
average. Although the intensity is a random process, we find that an analysis based on 
Equation (1) provides results that are sufficiently accurate for our purposes. In Section V, we 
will illustrate the accuracy of the approximation when applied to predicting the behavior of 
a short-term intensity (speckle) pattern.  

Let Is be the signal irradiance, h be the system efficiency (the fraction of photons incident 
on the aperture that are converted to photo-electrons), /E hc m=m , the energy per photon, 
and 
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the total signal photo-electron (pe) flux that would be collected in the focal plane with an 
infinite-area photodetector (in the absence of an iris). Let ls  denote total signal flux col-
lected by the photodetector with an iris of radius d  present. We have
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Let ln  denote the aggregate noise pe flux rate. We assume this is dominated by sky radiance, 
and is given by [1]:

l
E

I D

4n
b

2
rh XD

=
m

m

where D
m
 is the bandwidth of a narrow-band filter and X is the solid angle subtended by 

the photodetector relative to the aperture center. Assuming small angles, we put
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is the aggregate noise pe spatial flux density, in pe/s/m2. We also define two notions of the 
signal-to-noise ratio (SNR) of the system. Let
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The first term, SNR, is the achieved ratio of signal-to-noise rates, after spatial filtering with 
the iris, scaled by ( )/( ( ))lnM M1 2- , to account for how the PPM order impacts the map-
ping of signal and noise rates to the capacity. The second term, SNRi , reflects the incident, 
or initial, ratio of signal and noise rates, prior to spatial filtering. It is the ratio of the total 
signal pe rate to the total noise pe-rate collected in an area with radius 2s — the area that 
would correspond to collecting 86.5 percent of the signal power. We will see later that 
86.5 percent roughly corresponds to a notion of a nominal optimum collecting area.

III. Capacity-Maximizing Field of View

We presume we are signaling with PPM of order M , and that the photo-electron point pro-
cesses are well modeled as Poisson. The capacity of this Poisson PPM channel is not known 
in a form that facilitates a tractable analysis. However, it may be approximated as [2]:
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In Sections III and IV, we presume Equation (2) holds with equality. In Section V, we com-
pare the predictions made using this approximation to an exact (numerical) computation of 
the capacity, illustrating the accuracy of using Equation (2).  

Setting the derivative of Equation (2) with respect to d  to zero yields
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Putting 
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This relates the optimum value of d  in terms of the incident signal-to-noise ratio, SNRi , 
and the spot width (as /22 2c d v= ). Figure 2 illustrates the resulting fraction of the signal 
power, ( )e1 - c- , encircled by the optimum d . As SNRi  increases, one wants to encircle 
more signal power. In the limit of large SNRi, one wants to collect all of the signal. As SNRi  
decreases, the cost of collecting the tails of the spot increases, and one wants to encircle less 
of the spot. In the limit of small SNRi , we have 

.1 2564min
def

c c= =)

corresponding to collecting 71.53 percent of the signal power. Finally, we note that larger 
PPM orders makes one more resilient to noise, as is seen in Equation (2). 

(5)

Figure 2. Optimum fraction of encircled signal power ( )e1 -
c-

 and FOV parameter c  as a function of SNRi .

IV. Cost of a Suboptimal Field of View

Suppose one selects a suboptimal FOV. What loss is incurred in this choice? And is there 
a FOV, specified by a fixed c, that minimizes that loss? In this section, we address these 
questions.  
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Fix nK , M , and v. Select a signal rate sK
* . Let SNRi

)  be the corresponding input SNR, *c   
the optimum FOV parameter, satisfying Equation (5), SNR* the corresponding achieved 
SNR, and C  the achieved capacity. Now suppose, for the same nK , M, and v, one desires 
to achieve the same capacity C , but selects a suboptimum !c c*. Let Ks denote the signal 
rate required to achieve capacity C  with this selection of c, and SNR the corresponding 
SNR. Since the capacity is monotonic in the signal rate, and sK

* is the minimum rate to 
achieve C , we must have s sK K2 *. The ratio s s/K K

*  then represents the increase in signal 
power, or loss, due to the suboptimal choice of c. How large can this be, and how can it be 
minimized? 

Using Equation (2) and setting the capacity of the two cases equal yields
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Substituting ( )( )/( ( ) ( ) )SNR lnK e M M K12 1 2 2s n
2r v c= - -c , we obtain a quadratic in Ks , 

which may be factored to yield
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Figure 3 illustrates losses given by Equation (6) as a function of SNRi  for a range of values 
of c. As one would expect, the loss, from Equation (6), is unbounded in the limits 0"c   
and " 3c . We would like to know, for a nonzero, finite, choice of c, what is the worst-case 
loss? For *#c c , we have
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We can see this, intuitively, as follows. When < *c c , we are encircling a smaller fraction of 
the signal, and less noise. In the worst case, the noise is negligible, so there is no gain from 
filtering out noise, and we must increase Ks  to compensate for the smaller encircled frac-
tion, that is, we have ( ) ( )K e K e1 1*s s

*

- = -c c- -  .  

For > *c c , we have

(6)

(7)
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Figure 3. Loss due to suboptimal FOV as a function of SNRi . Each curve parameterized by fixed c . The red curve 

corresponds to c = 2.44, which corresponds to the FOV that minimizes the maximum loss.
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where, in Equation (8) we use the fact that .1 2564*
minc =  maximizes ( )/e1 **

c- c- . In this 
case, when > *c c , we are encircling more noise than is optimal. The greatest penalty for 
this additional noise occurs when we are in the noise-dominated regime, where the capac-
ity goes as /l ls b

2 . Since the noise is presumed uniform, the ratio / *c c  is the increase in total 
noise flux. To offset this increase in noise flux, the total encircled signal power must be 
increased by the square of the ratio times the ratio of the encircled signal. 

Note that the worst-case losses, Equations (7) and (8), correspond to the limits of small and 
large SNRi  (equivalently, small and large SNR*  or *c , respectively. That is, the largest loss 
for a fixed c occurs either for * *

minc c=  or for * " 3c . Suppose one wants to choose c for a 
system to minimize the maximum loss. Setting the maximum losses given by Equations (8) 
and (7), equal and solving for c yields

(8)
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.2 44c =

The curve corresponding to this c is illustrated in Figure 3. This corresponds to encircling 
91.3 percent of the signal power, and yields a worst-case loss of 0.4 dB. Hence, if one were 
to always choose to encircle 91.3 percent of the signal, the loss would be no greater than 
0.4 dB relative to the optimum FOV.

V. Example: Application to a Pixellated Focal Plane

In this section, we provide an example to illustrate the accuracy of the (approximate) 
optimum given by Equation (5) when we remove several approximations used to derive 
Equation (5). In this numerical example, we assume the focal plane is populated by an ar-
ray of photodetectors and the intensity pattern is speckled, rather than approximated by 
the long-term average. We also utilize (a numerical estimate of) the exact capacity, rather 
than use Equation (2).   

We assume the detectors are square, and perfectly fill the plane, with each side l  meters. 
The system parameters, chosen from models of a deep-space downlink, are listed in Table 1. 
We model the speckled intensity pattern as follows.1 Let 

( , ) ,I x y
N

I x x y y
1

G i i
n

N

1

= - -
=

l _ i/

where ( / )N D r0
2= _ i, we assume N 1& , the xi  and yi  are independent, identically distrib-

uted, zero mean, Gaussian random variables with standard deviation

.
r
F0 42
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v
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and 

, ( )/( )expI x y x y
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1
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G
G2

2 2 2

rv
v= - +_ _i i

with

.
D
F0 42

Gv
m

=

This corresponds to the presence of ( / )D r0
2_ i speckle centers, each producing a diffraction 

pattern IG  centered at the random offset ( , )x yi i . Note that [ ( , )] ( , )E I x y I x y=l . For each real-
ization of the set {( , )}x yi i , the j th detector collects a fraction

,I x y dxdy
A j

l_ i#

of the signal power, where A j  is the area of the detector. An example for the parameters 
from Table 1 is illustrated in Figure 4.

1 Sabino Piazzolla, personal correspondence, Communications Architectures and Research Section, Jet Propulsion Labora-
tory, Pasadena, California, 2012.  
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Table 1. System parameters for an example of a random speckle pattern incident 

on a pixellated focal plane. Optimum FOVs (indicated by the fraction of encircled 

signal power, ( )e1 -
c-  and the corresponding number of pixels, K ) are indicat-

ed for { . , . , . , . }SNR 0 1 1 0 10 0 100 0i ! . Also listed are the corresponding estimated 

optimum values, showing good agreement.

 ( )W/cm sr mIb
2
n  4.00 × 10–4

 ( )nmDm  0.5

 ( )r cm0  5

 ( )D m  1.0

 ( )F m  10.0

 ( )l mn  40

 h 0.1

 M  64

 ( / )mI dB Ws
2  –135.8 –125.8 –115.8 –105.8

 SNRi  0.1 1.0 10.0 100.0

 K  48 65 90 118

 ( )e1 -
c-  0.78 0.87 0.94 0.98

 Kt  43 59 104 168

 ( )e1 -
c- t  0.74 0.84 0.96 0.99

-

Figure 4. A randomly generated speckle pattern with parameters specified in Table 1.
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To determine the optimum field of view, we put the pixels in order of their distance from 
the center of the intensity pattern. We evaluate the capacity achieved by summing the first 
(smallest distance) n  pixels, , , ,n 1 2 3 f= , and choose the set that returns the maximum 
capacity. We do not consider weighted combining, as we conjecture that a simple on-off 
combining will suffer only a small loss, see, e.g., [3], and is simpler to implement. We also 
do not consider sorting among the closest n  pixels. For example, one could simply select 
the subset that maximizes the capacity. This provides varying gains, depending on r0 , the 
pixel size, and the signal and noise powers, but was not the emphasis of this work.  

To evaluate the capacity, we approximate the exact bandwidth (or slotwidth) con-
strained expression numerically, see, e.g., [4], and select a slotwidth Ts that yields 
( ) * ( )/( )/ logC M MT1 2 s2. , corresponding to rate-1/2 redundancy. The set, in turn,  

specifies the optimum FOV, and fraction of encircled signal power. Each realization of the 
speckle pattern may yield a different optimum FOV. Table 1 lists the results, averaged over 
100 realizations of the intensity pattern:  the optimum number of detectors, K , and the 
corresponding fraction of encircled power ( )e1 - c- , for input { }. , . , . , .SNR 0 1 1 0 10 0 100 0i ! . 
Also listed are the estimated optimum number of pixels, Kt , and fraction of encircled signal 
power ( )e1 - c- t , where ct  is chosen to satisfy Equation (5). We see that the Kt  overestimates 
the optimum at large SNRi  and underestimates at small SNRi . Figures 5 and 6 illustrate the 
capacity averaged over 100 realizations of the intensity pattern as functions of the num-
ber of combined pixels and the corresponding fraction of encircled signal energy, respec-
tively, for the .SNR 1 0i =  case from Table 1, with T 3 10s

7#= -  s. In this example, we see an 
optimum average fraction of encircled signal power of 87 percent, and a fraction predicted 
by Equation (5) of 84 percent. The standard deviation on the random optimum encircled 
energy is 3.4 percent. The capacity function is relatively flat over a range of combined pixels 
around the peak, hence we can expect both some deviation in the estimate, and that the 
impact of that error to be small.    
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Figure 6. Capacity as a function of the average fraction of encircled power, for 100 speckle patterns with 

parameters specified by the .SNR 1 0i =  entry in Table 1, with slotwidth .T 3 0 10s
7

#=
-  s. 

The optimum number of pixels, K 64= , and the estimate, K 59=t , are illustrated.

Figure 5. Capacity as a function of the average number of combined pixels, for 100 speckle patterns with 

parameters specified by the .SNR 1 0i =  entry in Table 1, with slotwidth .T 3 0 10s
7

#=
-  s. 

The optimum number of pixels, K 64= , and the estimate, K 59=t , are illustrated.
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