
1

IPN Progress Report 42-194 • August 15, 2013

Decoding Complexity and Performance of
Short-Block LDPC Codes Over GF (q )

Bruce Moision*

* Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. © 2013 California Institute
of Technology. U.S. Government sponsorship acknowledged.

abstract. — We examine the power efficiency and decoding complexity of short-block, low-
density parity-check (LDPC) codes being considered for inclusion in a deep-space telecom-
mand standard. The codes have rate 1/2, blocklengths { }, ,k 64 128 256! , and operate over
Galois fields (GF) of order { }, ,q 2 16 256! . We show that codes over GF(16) are ≈ 4 times as
complex to decode in return for a 0.6 dB gain in performance and codes over GF(256) are
≈ 44 times as complex to decode in return for a ≈ 1.0 dB gain in performance, all relative to
codes over GF(2) at the same blocklength. This provides a quantitative trade-off in selecting
a class of codes for a standard.

I. Introduction

The power efficiency of error-correction codes increases with their blocklength. However,
certain channels are constrained to use short-block codes due to latency or memory con-
straints. For example, a deep-space communications uplink channel, transmitting at rela-
tively low data rates and with short packets, may be constrained to have blocklengths on
the order of hundreds of bits. Among short-block codes, low-density parity-check (LDPC)
codes are very power efficient and have been proposed for this application, see, e.g., [1]. In
this article, we examine a class of short-block LDPC codes proposed for this use.

LDPC codes are linear codes, and the collection of codewords belonging to a code are the
vectors of symbols that satisfy a set of parity-check equations. The parity checks, and sym-
bols, may be over a binary alphabet, or from a Galois field of order q, denoted GF(q), where

q is typically chosen to be a power of 2. It has been shown that the power efficiency of
LDPC codes of a given blocklength can be made to increase with q [2].

The commonly used decoding algorithm for an LDPC code is iterative, requiring a random
number of iterations that is a function of the channel signal-to-noise ratio (SNR) and code
design. We’ll see that LDPC codes over GF(q) require on the order of () | |Elogq q2 opera-
tions per decoding iteration, where | |E is the number of edges in a graph describing the
code. A binary LDPC code requires on the order of | |E operations per iteration, and the

2

average number of iterations at a specified error rate generally increases for more power
efficient codes. The number of edges for a code over GF(q) typically decreases with q (for
comparable performance and blocklength). Taken together, the complexity increases with

q, and one trades performance for complexity when varying q. A quantitative comparison
depends on the details of the code design. In this article, we quantify the performance/com-
plexity trade-off for several short-blocklength codes that are candidates for a Consultative
Committee for Space Data Systems (CCSDS) uplink standard.

The article is organized as follows. In Section II, we briefly describe the channel model; in
Section III, we review a decoding algorithm for q-ary codes, treating the binary (q = 2) as
a special case, and tabulate its complexity. In Section IV, we illustrate the simulated per-
formance of the candidate codes. In Section V, we illustrate the performance/complexity
trade-off for the codes. In Section VI, we draw some conclusions. Two Appendices contain
derivations and descriptions of the decoding algorithms.

Our notation is as follows. We use ,x y to denote vectors and ,x xi to denote scalars. The col-
lection of scalars with indices in a set N is denoted N { | Nx ix i != }. We use ,a b to denote
elements of GF(q). (|)p y x|Y X i i denotes the conditional density of random variable Y given
X xi= evaluated at yi. To simplify notation, we simply write this as (|)p y xi i . Uppercase ()P A
denotes the probability of the event A.

II. Channel Model

Figure 1 illustrates our channel model. An (,)n k q code is a collection of qk vectors of length

n with elements from GF(q). Given a mapping from GF(q) to ()log q2 -vectors over GF(2)
maps the (,)n k q code to an (,)n k 2l l code. As our channel modulation is fundamentally bi-
nary, we represent the encoder and decoder with their binary equivalents.

Figure 1. Block diagram of LDPC-encoded additive white Gaussian noise (AWGN)

binary phase-shift keyed (BPSK) channel model.

(, ,)a aa k1 f= l

j ,{ }a 0 1!

()logk k q2=l

q(,)n k

Encoder

(, ,)x xx n1 f= l

j { , }x E Es s! -

()logn n q2=l

j ,(/)Nn N0 2o+

|
(, ,)y yy n1 f= l

jy R!

q(,)n k

Decoder

(,)a aa k1 f= lt t t

(,)x xx k1 f= lt t t

j { },a 0 1!t

j { , }x E Es s! -t

3

A block of ()logk k q2=l bits (, ,)a aa k1 f= l are mapped by an (,)n k q LDPC encoder to a
block of ()logn n q2=l binary symbols (, ,)x xx n1 f= l , with each { , }x E Ei s s! - , where
Es denotes the energy of the transmitted symbol. Independent Gaussian noise samples jn
with mean 0 and variance /N 22

0v = are added to each symbol, such that we receive the
vector (, ,)y yy n1 f= l with j j jy x n= + . The decoder maps y to estimates (, ,)a aa k1 f= lt t and

(, ,)x xx n1 f= lt t of the information and coded sequences, respectively. A decoding word error
occurs if x x!t . We characterize the performance of the code by determining its word error
rate)(P P x x!=~ t as a function of the SNR /E Nb 0, where /(/)E E k nb s= is the energy per
information bit. In this article, we focus on the complexity of the decoding algorithm and
its performance, and do not address the encoding algorithms.

III. Decoding Algorithms

Decoding algorithms for LDPC codes over binary and higher order fields are well
known [3,4,5]. We repeat them briefly here for completeness of presentation, and to es-
tablish assumptions in tabulating decoding complexity. As a measure of complexity, we
determine the average number of binary operations performed per decoded information bit
(we exclude certain operations such as bit shifts that are considered to have negligible cost,
as described later). This does not take into account the fact that not all binary operations
have the same complexity, e.g., an operation stored as a precomputed table lookup may not
have the same complexity as an addition. It also does not delve into the details of a hard-
ware implementation of the algorithms, which may take advantage of certain structures to
reduce complexity. Nonetheless, it is sufficient for our purpose, which is to compare the
complexity of essentially similar algorithms.

The decoding algorithms are instances of solving a marginalize-product-of-functions (MPF)
problem by use of the sum-product algorithm (SPA) [6]. We briefly review the SPA and its
application to decoding parity-check codes. Let (, ,)x xx n1 f= , an element of a domain S,
()g x a global function acting on x, and

() ()g g x
|

i
S xx i

a =
! a=

|

the ith marginal function of g. Suppose the global function factors as

()N jj() (),g fx x
j J

=
!

%

where ()N j { , , }x xx n1 f3 is the argument of jf . The SPA provides an efficient way to com-
pute (or estimate) the marginals in a way that exploits the factorization of the global
function to efficiently avoid repetitive computation of intermediate values. The SPA can be
visualized as acting on a factor graph that represents Equation (2) with a variable node for
each xi, a factor node for each jf and an edge connecting xi to jf if xi is an argument of

jf , in which case we say xi and jf are neighbors. The algorithm proceeds by passing mes-
sages between nodes in the graph as follows.

(1)

(2)

4

Let
jx fi

n " be the message transmitted from variable node xi to function node jf and f xj i
n "

the message sent in the reverse direction. Let ()N j denote the neighbors of jf , and ()M i
denote the neighbors of xi. One message is sent for each realization of xi (simplifications
are used when xi is binary-valued, as described in Section III.B). The message computations
in the SPA may be expressed as follows:

j

j
.f xx

()\

()
| ()\

M

N
N

x f f x
l i j

f x j
x

x f
l j i

l
x)N(

i l i

j i

j i
l

n a n a

n a n

=

=

" "

" "

!

!a=

_ _

_ _ _

i i

i i i

%

%|

A cycle on the factor graph is a path obtained by traversing edges that closes on itself. The
SPA solves the MPF problem exactly when the underlying factor graph has no cycles — i.e,
it finds all the marginal functions exactly. We’ll see that maximum a posteriori (MAP) de-
coding a code may be cast as an MPF problem. In this case, the factor graph contains cycles.
Nonetheless, the SPA provides an efficient approximation to MAP decoding.

A. Decoding a Linear Code

Let C be an n-symbol code and | the characteristic function for C, that is,

,

,

C
otherwise

x
x

1

0

!
| =_ i)

Suppose | factors as

fx x ()Nj j
j

| =_ _i i%

where each fj is an indicator function on its arguments, evaluating to 1 if satisfied, 0 other-
wise. A codeword x is transmitted over a memoryless channel (|) (|)p p y xy x i i i=% , and we
receive the noisy version y. We desire to compute the probability, for each { , , }i n1 f! and

()qGF!a ,

(,) |

| |
|

| |
| .

C

C

P x p p

p y x

f p y x

y x y x

x

x

1

1

|

|

()
|

N

i
x

i i
i

n

x

j j
j

i i
i

n

x

x

x

x

1

1

i

i

i

a

|

= =

=

=

a

a

a

=

==

==

_ _

_ _

_ _

i i

i i

i i

%

% %

|

|

|

We see that this is an instance of Equations (1) and (2), and hence may be solved, or ap-
proximated, with the SPA. A factor graph representing the global function has a variable
node for each xi, and function nodes for each parity check fj and each channel likelihood
(|)p y xi i .

5

When applying the SPA to decoding a linear code, we will use the shorthand

r

q

ji f x

ij x f

j i

i j

n

n

=

=

"

"

and let ()N j denote the neighbors of fj, and ()M i denote the neighbors of xi excluding the
channel information (|)p y xi i . The SPA is implemented as follows:

1. Initialize

() ,

() |

Mr i j i

p y x

1

(|)

ji

p y x i i ii i

6 !a

n a a

=

= ="

_
_

i
i

2. Data to parity

\
() |q p y x r

()M
ij i i li

l i
a a a= =

! j
_ _i i%

3. Parity to data

jr f q xx
|

()
()\

N
N

ji
x

j lj l
l j ix ()N j i

a =
!a=

_ _ _i i i%|

4. Parity check

			
		

|

() , .

max

terminate if else repeat from step

x p y x r

x 1 2

()M
i i i li

l i
a a

|

= =

=

!
a

t

t _ _i i%

Each step is evaluated for each ()qGF!a . Note that in Equation (5), the estimates are
invariant to a scaling of the collection of messages { (), ()}r qGFlj !a a by a non-negative
multiplicative constant. It follows that scaling each message ()qij a in Equation (3) by a
multiplicative constant does not change the outcome of the algorithm. Hence, we may,
without loss of generality, assume ()q 1

ij
a =a

| . Under this assumption, we may interpret
the qij as assigning probabilities () ()q P xij ia a= = , in which case the parity-to-data message
represents () (|)r P f xji j ia a= = , where ()P fj denotes the probability that parity check fj is
satisfied. This is a convenient intuitive interpretation.

B. Codes Over GF(2)

When the code is over the binary field, the algorithm may be simplified by passing messag-
es corresponding to log-likelihood ratios (LLRs). This simplification is described in Appen-
dix A. The resulting algorithm is as follows.

(3)

(4)

(5)

6

1. Initialize

ji

()
(|)

(|)
log

L r

L y
p y x

p y x

0

1

0
i

i i

i i

=

=
=

=

_
e

i
o

2. Data to parity

liL q L y L r
()\M

ij i
l i j

= +
!

_ _ _i i i|

3. Parity to data

() () | () |)sgnL r L q L q
()\ ()\N N

ji kj kj
k j i k j i

1
z z=

! !

-_ _di in% |

4. Parity check

li,

,

() , .

otherwise

terminate if else repeat from step

x
L y L r

x

1

0

0

1 2

()M
i

i l i 2

|

=
+

=

!t

t

_ _i i* |

Let E denote the collection of edges between variable nodes and check nodes (exclud-
ing channel likelihood nodes). Table 1 summarizes the decoding complexity of the GF(2)
algorithm. We assess no cost to evaluating the parity check used as a stopping rule, as this
duplicates computations in the data-to-parity step. We also assess no cost to multiplications
by a power of two, that require a simple bit-shift, or to evaluating the product of the sign
bits in the parity-to-data binary step.

(6)

(7)

	 (6) Data to parity	 	 | |E2

	 (7) Parity to data	 | |E2 	 | | ()E n k2 - -

		 | |E2 	 | | ()E n k4 - -

Table 1. GF(2) decoding algorithm complexity, operations per iteration.

Table Lookup +

Operation Count

Step

C. Codes Over GF(q)

The application of the SPA to decoding a code over GF()q was described in [2]. However,
this straightforward application had complexity that grows as ()O q2 . An alternative algo-
rithm, based on using a fast-Hadamard transform (FHT), was later developed, see, e.g., [4],
reducing the complexity to (())logO q q . More recent developments in [5] allow a wider
range of trade-offs in the performance/complexity space. As these do not gain in both
performance and complexity over the FHT algorithm, we take the FHT algorithm as our

7

baseline and use it to tabulate decoding complexity. Let ()H qGFjl ! be the element of the
jth row and l th column of the parity check matrix. The FHT algorithm is described in de-
tail in Appendix B, and summarized as follows:

1. Initialize

|

r

r p y x

1

(|)

ji

p y x i i ii i

a

a a

=

= ="

_
_ _

i
i i

2. Data to parity

|q p y x r
()\M

ij i i li
l i

a a a= =
! j

_ _ _i i i%

3. Permute

q q Hlj lj jl
1a a= -l _ `i j

4. Transform

Q q 1
()

lj lj
GF q

T

a b= -
:

!

a b

b

l l_ _ _i i i|

5. Parity to data

R Q
()\N

ji lj
l j i

b b=
!

l l_ _i i%

6. Transform

r R
2
1

1
()

ji m ji
GF q

T

a b- = -
:

!b

a b
l l_ _ _i i i|

7. Permute

jijir r H jia a= l_ _i i

8. Parity check

|

() , .

max

terminate if else

x p y x r

x 1 2

()M
i i i li

l i
a a

|

= =

=

!
a

t

t _ _i i%

(9)

(10)

(11)

(8)

8

Table 2 summarizes the decoding complexity of the FHT GF()q algorithm. We assess no
cost to the parity check or multiplications by a power of two that require a simple bit-shift.
We see that the GF()q algorithm costs on the order of ()logq q2 more operations per itera-
tion than the binary algorithm.

	 (8) Data to parity	 | |Eq2 		

	 (9) Transform		 (()) | |Elogq q 12 -

	 (10) Parity to data	 (| | ())Eq n k2 - - 	

	 (11) Transform		 (()) | |Elogq q 12 -

		 (| | ())E n k q4 - - 	 | | (())E logq q 12 2 -

Table 2. FHT GF(q) decoding algorithm complexity, operations per iteration.

× and ÷ +

Operation Count

Step

IV. Performance

We consider nine candidate rate / /k n 1 2= short-block LDPC codes: the nine combinations
of blocklengths { }, ,k 64 128 256!l and fields { }, ,q 2 16 256! . The design and description of
these codes is addressed in [7]. Figure 2 illustrates Pw as a function of /E Nb 0 for the codes
and Table 3 summarizes the parameters for the codes relevant to our discussion. In all cases,
decoding iterations were terminated after 50 iterations (when not terminated by the stop-

Figure 2. Word-error rate Pw  versus Eb   /N 0 for rate k/n = 1/2 codes with k ′! {64,128,256}

and q ! {2,16,256}. Each curve is labeled (k ′,q  ).

100

1 2 3 4 5

10–1

10–2

10–3

10–4

P w

Eb/N0, dB

(k′, q) = (64, 2)

(64, 16)

(128, 2)

(64, 256)(256, 2)

(128, 16)
(128, 256)

(256, 16)

(256, 256)

9

ping rule). The value of /E Nb 0 at which the codes achieve P 10w
4= - , which we take to be

our target word-error rate (WER), is listed. Throughout, we refer to this as the code thresh-

old, denoted (/)E N *
b 0 .

Figure 3 illustrates the code family performances with respect to the sphere-packing bound
(SPB) [8]. We see that for a fixed blocklength, the codes become more power efficient
with increasing q. For comparison, we also illustrate the thresholds for the current CCSDS

Table 3. Code comparisons: |E| = number of edges in factor graph of the code, (Eb   /N 0 )* = Eb   /N 0 @ Pw = 10–4, Itera-

tions = average number of decoding iterations at (Eb   /N 0 )*, Operations/bit = average operations per bit at (Eb   /N 0 )*.

	
q

	
(,)n k q

	
(,)n kl l

	
| | /E kl

	
(/)E Nb 0

) 		

	 2	 (128,64)	 ·	 8 	 4.7	 1.8	 85

	 2	 (256,128)	 ·	 8	 4.0	 2.7	 127

	 2	 (512,256)	 ·	 8	 3.3	 4.1	 193

	 16	 (32,16)	 (128,64)	 1.25	 4.1	 1.9	 372

	 16	 (64,32)	 (256,128)	 1.125	 3.3	 2.7	 475

	 16	 (128,64)	 (512,256)	 1.1875	 2.7	 4.1	 763

	 256	 (16,8)	 (128,64)	 0.5	 3.6	 1.6	 3635

	 256	 (32,16)	 (256,128)	 0.5	 2.9	 2.6	 5907

	 256	 (64,32)	 (512,256)	 0.5	 2.4	 3.7	 8406

Iterations Operations/bit

100 101 102 103 104 105

12

10

8

6

4

2

0

(E
b/

N
0)*

, d
B

Information Block Size, k′, bits

TED

k/n = 56/63 SPB

k/n = 1/2 LDPC

k/n = 1/2 SPB

k/n = 56/63 eBCH

SEC

q = 2

q = 16

q = 256

Figure 3. The sphere-packing bound on the minimum required Eb   /N 0, in dB, to achieve Pw = 10–4 for k/n = 1/2 and

k/n = 56/63 codes, compared to the Eb   /N 0 at which specific codes achieve Pw = 10–4. Illustrated are the three classes of

short-block LDPC codes considered in this article, as well as several CCSDS standards: the eBCH code in triple-error-

detect (TED) and single-error-correct (SEC) modes, and the AR4JA LDPC codes of length k = 1024, 4096, and 16384.

10

standard short-blocklength code for uplink, an extended Bose–Chaudhuri–Hocquenghem
(eBCH) code with (,) (),n k 63 562 = [9], and the thresholds for the CCSDS standard AR4JA
rate /1 2= binary LDPC codes of length , ,k 1024 4096 16384=l [10]. There are two thresholds
for the eBCH code corresponding to two manners of decoding: single-error correction (SEC)
and triple-error detection (TED). We see that large gains over the eBCH code are available at
comparable blocklengths, ranging from 3. to 9> dB, depending on the pair of codes and
decoders selected. These gains come at a cost in complexity. We examine the complexity/
performance trade-off in the next section.

V. Complexity/Performance Trade-Offs

Figure 4 illustrates the code threshold versus complexity, measured in operations/bit, group-
ing codes according to GF(q) (we also include the k 1024=l AR4JA code for comparison).
We see that for a given threshold, the complexity increases with order q. With no block-
length constraint, the codes over GF(2) are the most power efficient at a fixed complexity.
As we see from the SPB in Figure 3, the binary AR4JA codes are within .1 0. dB of the SPB
at blocklengths greater than 1024. . For k 1024$, we expect the performance/complexity
trade-off to favor binary codes.

102 103 104

5

4.5

4

3.5

64

128

256

1024

256

128

64

128

256

3

2.5

2

1.5

(E
b  /

N
0   )

*,
dB

Complexity, Operations per bit

k’ = 64

q = 16

q = 2

q = 256

Figure 4. Complexity, measured as average operations/bit, versus decoding threshold in dB. All codes are

k/n = 1/2, codes grouped by order q, and labeled with k ′. A linear fit to each group is shown.

11

At short blocklengths, a linear fit in the log-log domain among each family GF(q) gives
slopes of , / { . , . , . }threshold dB ops./bit,dB 0 3 0 4 0 3.D D - - - for { }, ,q 2 16 256! in the plot-
ted range. Hence, it costs roughly an increase in complexity by a factor of 2.0 for each 1 dB
decrease in threshold. The threshold is bounded by 0.0 dB for any k, so we do not mean to
imply this behavior extends indefinitely, we merely capture the trade-off at small k. This
increase in complexity is due almost entirely to an increased number of iterations, which
may be seen as the inevitable cost of approaching the SPB. Table 4 summarizes the per-
formance/complexity trade-offs for the codes over GF(16) and GF(256) relative to binary
codes. For these codes, the codes over GF(16) are 4. times as complex to decode and pro-
vide .0 6. dB gain relative to binary codes of the same blocklength. The codes over GF(256)
are 44. times as complex to decode and provide .1 0. dB gain relative to binary codes of
the same blocklength.

VI. Conclusions

LDPC codes are promising candidates for applications with short blocklength constraints.
The code thresholds may be improved by constructing codes over nonbinary fields, but at
a cost in complexity. For a set of candidate codes with { }, ,k 64 128 256!l , we see that codes
over GF(16) are 4. times as complex to decode in return for a 0.6 dB gain in performance
and codes over GF(256) are 44. times as complex to decode in return for .1 0. dB gain in
performance, all relative to codes over GF(2) at the same blocklength. This provides a quan-
titative trade-off in selecting a class of codes for a standard.

Acknowledgments

Thanks to Dariush Divsalar for providing the code design and description, and to Kenneth
Andrews for discussions on decoding algorithms and a careful review of the article.

Table 4. Increase in complexity (multiplicative increase in operations/bit) and threshold gain (dB shift

in threshold) at Pw = 10–4 for GF(16) and GF(256) codes relative to GF(2) codes.

	 kl 	 Complexity Increase	 Threshold Gain, dB	 Complexity Increase	 Threshold Gain, dB

	 64	 4.4	 0.6	 43	 1.0

	 128	 3.7	 0.7	 47	 1.1

	 256	 4.0	 0.6	 44	 0.9

GF(16) GF(256)

12

References

[1]	 L. Costantini, B. Matuz, G. Liva, E. Paolini, and M. Chiani, “On the Performance of
Moderate-Length Non-Binary LDPC Codes for Space Communications,’’ Proceedings of

the IEEE Fifth Advanced Satellite Multimedia Systems Conference (ASMA) and 11th Signal

Processing for Space Communications Workshop (SPSC), pp. 122–126, Cagliari, Italy, Sep-
tember 13–15, 2010.

[2]	 M. Davey and D. MacKay, “Low-Density Parity Check Codes Over GF(q),’’ IEEE Com-

munications Letters, vol. 2, no. 6, pp. 165–167, June 1998.

[3]	 T. K. Moon, Error Correction Coding, New Jersey: John Wiley & Sons, 2005.

[4]	 L. Barnault and D. Declercq, “Fast Decoding Algorithms for LDPC Codes Over GF(2q),’’
Proceedings of the IEEE 2003 Information Theory Workshop, pp. 70–73, Paris, France,
March 2003.

[5]	 A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-Complexity Decod-
ing for Non-Binary LDPC Codes in High Order Fields,’’ IEEE Transactions on Communi-

cations, vol. 58, no. 5, pp. 1365–1375, May 2010.

[6]	 F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product Algo-
rithm,’’ IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, February
2001.

[7]	 B.-Y. Chang, D. Divsalar, and L. Dolecek, “Non-Binary Protograph-Based LDPC Codes
for Short Block-Lengths,’’ 2012 IEEE Information Theory Workshop (ITW), pp. 282–286,
Lausanne, Switzerland, September 3–7, 2012.

[8]	 S. Dolinar, D. Divsalar, and F. Pollara, “Code Performance as a Function of Block Size,’’
The Telecommunications and Mission Operations Progress Report, vol. 42-133, Jet Propul-
sion Laboratory, Pasadena, California, pp. 1–23, May 15, 1998.
http://ipnpr.jpl.nasa.gov/progress_report/42-133/133K.pdf

[9]	 Consultative Committee for Space Data Systems (CCSDS), Telecommand Synchronization

and Channel Coding, 231.0-B-2, Blue Book, Issue 2, September 2010.
http://public.ccsds.org/publications/BlueBooks.aspx

[10]	Consultative Committee for Space Data Systems (CCSDS), Synchronization and Channel

Coding, 131.0-B-2, Blue Book, Issue 2, August 2011.
http://public.ccsds.org/publications/BlueBooks.aspx

13

Appendix A

Decoding Codes Over GF(2)

When the functions jf represent binary parity checks, the parity-to-data message may be
simplified. Let (, ,)z zz m1 f= be m independent bits, and () ()p P z1 1i i= = . Then

() () .has even parityP pz 2
1
2
1

1 2 1i
i

m

1

= + -
=
_ i%

The proof is straightforward by induction on m. Recall that if we interpret ()qij a as assign-
ing probabilities ()P xi a= , we can write our parity-to-data message as

j |

() .

has even parity

r P f x

P

q

x

1 1

1

2
1
2
1

1 2 1

()\

()\

N

N

ji i

j i

kj
k j i

= =

= -

= - -
!

_ _
_

_

i i
i
i%

This representation facilitates transforming the algorithm to operate in the log-domain,
which replaces the product involved in computing rji and yields an algorithm more ame-
nable to numerical computation. Define the log-likelihood ratios (LLRs):

ji

ji

ji

(|)

(|)

()

()

()

()
.

log

log

log

L y
p y x

p y x

L r
r

r

L q
q

q

1

0

1

0

1

0

i
i i

i i

ij
ij

ij

=
=

=

=

=

_

_

_

i

i

i

Note that tanh logp1 2 p
p

2
1 1

=-
-a k, and, since tanh is an odd function, (() | | /)tanh sgn x x 2 =

() (| | /)sgn tanhx x 2 . Hence,

()/ ()/

((() | (|)/)

() (| () | /)

() (| () | /)

tanh tanh

sgn

sgn tanh

sgn log tanh

L r L q

r L q L q

L q L q

L q L q

2 2

2

2

2

)\

)\

)\)\

)\)\

N(

N(

N(N(

N(N(

ji kj

ji kj kj

kj kj

kj kj

k j i

k j i

k j i k j i

k j i k j i

1

1

1 1
5

=
!

!

! !

! !

-

-

- -

tanhL 2=

tanh2=

.tanh log2 5=

_ _

_ d

_ d

_ d

i i

i n

i n

i n

%

%

% %

% |

Defining

() ,log tanhx
x
25z = a k

we have

14

ji() () (| () |)sgnL r L q L q
()\ ()\N N

kj kj
k j i k j i

1z z=
! !

-_ di n% |

The function z may be precomputed and tabulated in numerical implementation. Since
() ()x x1z z=- , a single table suffices for z and its inverse.

Transforming the data-to-checks message to a form amenable to computation requires no
such contortions:

,L q L y L r
()/M

ij i li
l i j

= +
!

_ _ _i i i|

The resulting log-domain algorithm is summarized in Section III.B.

15

Appendix B

Decoding Codes over GF(q )

In applying the SPA algorithm to decoding codes over GF()q , Equation (3) may be evaluat-
ed efficiently with no modifications. However, an efficient implementation of Equation (4)
is not as straightforward. Efficient methods to evaluate this step have been explored and
we assume the use of the fast-Hadamard-transform (FHT) decoding algorithm, see, e.g., [4],
which we review here for completeness.

We can think of the edge between parity node j and variable node i as carrying the la-
bel jiH that defines a permutation of the messages along that edge. Define the permuted
messages:

jl

jl

ji

lj

.

q P H x

P x H

q H

r r H

lj l

l

jl

ji jl

1

1

1

a a

a

a

a a

= =

= =

=

=

-

-

-

l

l

_ _
`
`

_ `

i i
j

j
i j

Consider parity check j . Let w H xi ji i= . Then the parity-to-data message may be expressed
as

jir P w

w q w

0

01
|

()\

() ()\

N

N N

l

k lj l

l j i

k j l j iw w()N j i

a a= + =

=

!

! !a=
,=

l

l

_ d

d _

i n

n i%

|

||

where ()1 $ evaluates to 1 when its argument is satisfied, and 0 otherwise. For | () | { },N j 1 2! ,
the computation is trivial. Suppose | () |N j 3= , and the neighbors are ,1 2. Then

r w w q w q w

q w w

01
,

ji j j
w w

j
w

j

j j

1 2 1 1 2 2

1 1 2 1

1 2

1 2

1

a a

a

a

= + + =

- -

-

q=

q qU=

l l l

l l

l l

_ _ _

_ _

_

_i i i

i i

i

i|

|

a convolution of the input messages. For ()N j 3> , the convolutions nest, yielding

Ur q
)\N(

lji
l j i

ja a= -
!

l l_ b _i l i

which may be computed more efficiently in the transform domain. Define the transform
pair:

16

,

Q q

q Q

1

1
2

1

lj lj

lj m lj

T

T

a b

a b

= -

= -

:

:

a b

b

a b

b

_ _ _

_ _ _

i i i

i i i

|

|

where T:a b is the dot-product of the binary-vector representations of the elements in

()GF 2m . Then

ji .

R Q

R 1
2

1

()\N
ji lj

m ji

l j i

T

b b

a b

=

- -
:

!

a b

b
r =

l l

l l

_ _

_ _ _

i i

i i i

%

|

Finally, permute to obtain ji() ()r r Hji jia a= l . A summary of the resulting FHT-LDPC GF(q) is
given in Section III.C.

JPL CL#13-4621

