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Repeat-PPM Super-Symbol Synchronization

Joseph Connelly∗

ABSTRACT. — To attain a wider range of data rates in pulse position modulation

(PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol

multiple times, forming a super-symbol. In addition to the slot and symbol synchro-

nization typically required for PPM, the receiver must also properly align the noisy

super-symbols.

We present a low-complexity approximation of the maximum-likelihood method for

performing super-symbol synchronization without use of synchronization sequences. We

provide simulation results demonstrating performance advantage when PPM symbols

are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally,

the results suggest that this super-symbol synchronization technique requires signal

levels below those required for reliable communication. This validates that the PPM

spreading approach proposed to CCSDS can work properly as part of the overall scheme.

I. Introduction

The prospective Consultative Committee for Space Data Systems (CCSDS) recommen-

dation for high photon efficiency (HPE) optical communications [1, 2] specifies trans-

mitting data through an optical channel using pulse position modulation (PPM). Pulse

position modulation is a technique for transmitting digital data, in which a period of

time is divided into M possible slots, and a binary sequence of length log2M is encoded

to a PPM symbol by transmitting a single pulse in exactly one of the M time slots,

where M is typically taken to be a power of two. In the case of HPE optical commu-

nications, this corresponds to emitting a laser pulse in one of the time slots. PPM is

known to approach the capacity of an optical channel under certain conditions [3] and

is well suited for HPE optical communications, as it requires lower average power than

other modulation techniques [4].
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Two significant synchronization problems arise when using PPM: (1) Slot synchroniza-

tion, in which the receiver attempts to determine the boundaries of the PPM slots.

(2) Symbol synchronization, in which the receiver attempts to determine which slots

begin PPM symbols. Slot and symbol synchronization have been extensively studied

(e.g., [5, 6, 7, 8, 9]), particularly for the optical channel.2 In this article, we describe

a solution for a different synchronization issue that can arise when PPM symbols are

sequentially repeated prior to transmission.

A. Repeat-PPM

Throughout this article, we assume the use of a detector that counts the number of

photons received in a duration of time, and we further assume that slot synchronization

has been obtained. The output of such a detector is well modeled as a memoryless

Poisson process with mean Kb in a noise slot and with mean Ks + Kb in a signal slot

[4]. We also assume symbol synchronization has been obtained so that the receiver can

correctly group together slots into noisy PPM symbols.

When the slot duration is increased by a factor of N and all other parameters are held

constant (e.g., intensity of the laser), both Ks and Kb are increased by a factor of N .

However, due to power constraints or other system limitations, the transmitter may not

be able to generate a pulse in the entire duration of the desired PPM time slot.

The same slot photon count distribution can be achieved by transmitting a PPM symbol

N times and collapsing the received super-symbol by summing the respective slot photon

counts of each corresponding symbol. Since the channel is memoryless, the slot photon

count of a collapsed super-symbol is a sum of N independent Poisson random variables,

each with the same mean. Hence, when a PPM symbol is transmitted N times, the slot

photon count of each collapsed super-symbol is itself a Poisson random variable with

mean NKb in a noise slot and with mean N(Ks +Kb) in a signal slot.

The proposed CCSDS recommendation for HPE optical communication uses repeat-

PPM in both the uplink (ground-to-space) and the downlink (space-to-ground) schemes

to achieve effective slot durations not otherwise possible due to the available pulse

durations of the lasers [1, 2]. This allows for a wider range of attainable data rates

without requiring the laser to accommodate a wide range of pulse durations.

However, repeat-PPM requires additional synchronization in order to operate effectively.

When slot and symbol synchronization are obtained, the receiver must also determine

when sequences of repeated PPM symbols begin so that the noisy super-symbols are

properly aligned with the transmitted sequence. In particular, when each PPM symbol

is sequentially repeated N times, the receiver must determine which noisy symbols

correspond to the beginnings of sequences of N -repeated PPM symbols. We refer to

2 Ryan Rogalin and Meera Srinivasan, “Maximum-likelihood synchronization for pulse position modu-

lation with inter-symbol guard times,” submitted to IEEE Global Communications Conference, 2016.
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this as super-symbol synchronization.

B. Overview

The remainder of the article is outlined as follows. In Section II, we further discuss

repeat-PPM and show that maximum-likelihood (ML) detection of repeat-PPM can fail

when super-symbol synchronization is lost. We also discuss a generalization of repeat-

PPM in which signals are spread by a pseudo-noise (PN) sequence. In Section III,

we introduce the system model and explicitly define the super-symbol synchronization

problem. In Section IV, we derive a technique for obtaining super-symbol synchroniza-

tion based on an approximation of the ML method. In Section V, we provide some

analysis of the estimator, suggesting that in some cases, PN spreading can improve

performance. In Section VI, we present simulation results of our super-symbol synchro-

nization method comparing repeating and spreading for the PPM orders and repeat

factors specified in the proposed CCSDS standards. In Section VII, we discuss the

role of super-symbol synchronization in the proposed CCSDS recommendation for HPE

optical communication.

II. Detecting Repeat-PPM

It is known (e.g., [10]) that the ML estimate of a PPM symbol in the presence of noise

is to choose the slot with the maximum photon count as the signal slot. In this section,

we show that when super-symbol synchronization is obtained, selecting the collapsed

super-symbol slot with the largest photon count is the ML estimate of a repeated PPM

symbol.

Suppose that the M -ary PPM symbol x ∈ {0, 1, . . . ,M − 1} is transmitted N times

through an optical channel and that the receiver has obtained slot and symbol synchro-

nization. For each i ∈ {0, 1, . . . , N −1} and j ∈ {0, 1, . . . ,M −1}, let ri,j be the number

of photons in the jth slot of the ith noisy symbol

ri = (ri,0, ri,1, . . . , ri,M−1).

When x is transmitted and super-symbol synchronization is obtained, the distribution

of ri,j is given by {
Poi (Ks +Kb) , if j = x

Poi (Kb) , if j 6= x

where Poi (λ) denotes a Poisson distribution with mean λ. The ML estimate of x is

given by

x̂ = arg max
y

P (r0, r1, . . . , rN−1 | y is transmitted).

Since the channel is memoryless, each slot is independently distributed given the M -ary

PPM symbol y is transmitted, so
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x̂ = arg max
y

N−1∏
i=0

M−1∏
j=0

P (ri,j | y is transmitted)

= arg max
y

N−1∏
i=0

e−(Ks+Kb)(Ks +Kb)
ri,y

ri,y!

M−1∏
j=0
j 6=y

e−KbK
ri,j
b

ri,j !

= arg max
y

N−1∏
i=0

e−(Ks+Kb)(Ks +Kb)
ri,y

ri,y!

(
e−KbK

ri,y
b

ri,y!

)−1 M−1∏
j=0

e−KbK
ri,j
b

ri,j !

= arg max
y

N−1∏
i=0

(
Ks

Kb
+ 1

)ri,y
= arg max

y

N−1∑
i=0

ri,y

which is precisely the collapsed super-symbol slot with the largest photon count.

A. Loss of Synchronization

When super-symbol synchronization is not obtained, the noisy super-symbols potentially

consist of noisy symbols with distinct signal slots, which can result in incorrect detection.

In the following example, a sequence of noisy symbols decodes differently depending on

the alignment of the super-symbols.

Suppose the 4-ary PPM sequence 0, 1, 3, 1 is transmitted with a repeat factor N = 2,

resulting in the transmitted PPM symbol sequence

0, 0, 1, 1, 3, 3, 1, 1

and the detector outputs a sequence of photon slot counts, which are grouped into noisy

PPM symbols as follows:

[0, 2, 1, 0] [3, 1, 0, 1] [3, 1, 2, 0] [0, 3, 2, 0] [0, 4, 0, 2] [1, 1, 0, 3] [2, 0, 0, 4] [1, 4, 1, 0] [0, 3, 2, 0].

The first symbol is, in fact, entirely noise. This could also be viewed as the receiver

starting synchronization in the middle of a sequence of symbols, in which case, [0, 2, 1, 0]

corresponds to a previously transmitted symbol.

The receiver knows four PPM symbols are sent with a repeat factor of 2 but does not

know how the super-symbols align. The receiver could form super-symbols in one of

two ways:

[0, 2, 1, 0] [3, 1, 0, 1]︸ ︷︷ ︸
[3, 3, 1, 1]

[3, 1, 2, 0] [0, 3, 2, 0]︸ ︷︷ ︸
[3, 4, 4, 0]

[0, 4, 0, 2] [1, 1, 0, 3]︸ ︷︷ ︸
[1, 5, 0, 5]

[2, 0, 0, 4] [1, 4, 1, 0]︸ ︷︷ ︸
[3, 4, 1, 4]

[0, 3, 2, 0]

or

[0, 2, 1, 0] [3, 1, 0, 1] [3, 1, 2, 0]︸ ︷︷ ︸
[6, 2, 2, 1]

[0, 3, 2, 0] [0, 4, 0, 2]︸ ︷︷ ︸
[0, 7, 2, 2]

[1, 1, 0, 3] [2, 0, 0, 4]︸ ︷︷ ︸
[3, 1, 0, 7]

[1, 4, 1, 0] [0, 3, 2, 0]︸ ︷︷ ︸
[1, 7, 3, 0]

.
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Using ML detection, the first sequence of super-symbols does not decode uniquely.

However, the super-symbols in the second case correctly yield the sequence 0, 1, 3, 1.

In general, when PPM symbols are repeated N times and super-symbol synchronization

is lost, the receiver begins detection on the nth repeat of a symbol, where the offset

n is an integer between 0 and N − 1. If the receiver does not account for the offset,

the super-symbols consist of (N − n) noisy symbols with a particular signal slot and n

symbols with a potentially disparate signal slot.

We remark that in the previous example, the collapsed super-symbols formed in the

second case have more distinctive maximum slot counts. The estimator described in

Section IV estimates the offset by determining which alignment yields the collapsed

super-symbols with the largest maximum slot counts. In the first case, summing the

maximum slot counts of each collapsed super-symbol yields 3 + 4 + 5 + 4 = 16, while

in the second case, the sum is 6 + 7 + 7 + 7 = 27. Using this technique for determining

the offset, the receiver would correctly choose the second case, which corresponds to an

offset of n = 1.

B. Pseudo-Noise Spreading

We study a generalization of repeat-PPM in which the PPM symbols are first spread

by a pseudo-noise sequence, then at the receiver, noisy super-symbols are “unspread”

by the same PN sequence. The receiver can decode a PN-spread sequence similarly to a

repeated sequence; however, the receiver must undo the PN-spreading when collapsing

super-symbols. PN spreading is equivalent to repeat-PPM followed by reordering the

slots.

When the M -ary PPM symbol x is spread by the M -ary PN sequence p0, p1, . . . , pN−1,

the sender transmits the PPM sequence

(x+ p0 mod M), (x+ p1 mod M), . . . , (x+ pN−1 mod M).

The special case where p0 = p1 = · · · = pN−1 = 0 is equivalent to repeat-PPM.

For each i ∈ {0, 1, . . . , N − 1} and j ∈ {0, 1, . . . ,M − 1}, let si,j be the number of

photons in the jth slot of the ith noisy symbol

si = (si,0, si,1, . . . , si,M−1).

When x is the repeated symbol and super-symbol synchronization is obtained, si,j is

distributed according to{
Poi (Ks +Kb) , if j = x+ pi mod M

Poi (Kb) , if j 6= x+ pi mod M.

It can be shown (similarly to ML detection of repeat-PPM) that the ML estimate of x

is given by

arg max
y

N−1∑
i=0

si,(y+pi mod M)
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which is precisely the collapsed super-symbol slot with the largest photon count, where

the noisy PPM symbols are unspread by mapping the jth slot count of the ith symbol

to the (j − pi mod M)th slot of the collapsed super-symbol. An example of spreading

and unspreading a PN symbol is given in Figure 1.

3

0 00 000 0 0 0 00 0 011 1 1 11 1 0

0 0 00 1 0 10 0 0 01 11

3 3

301 0 1 0 0 03

3

Figure 1. The 8-ary PPM symbol 5 is spread by the 8-ary PN sequence 0, 1, 4, and the spread sequence

5, 6, 1 is transmitted through an optical channel which produces the given noisy PPM symbols. The

receiver unspreads the noisy symbols as shown and can form the collapsed super-symbol

[2, 1, 1, 1, 0, 9, 0, 2]. By selecting the collapsed super-symbol slot with the largest photon count, the

noisy sequence correctly decodes to 5.

When the spreading is undone correctly, the resulting unspread super-symbol is the same

as if spreading were not used. However, when the receiver misaligns the super-symbols,

the spreading is not undone correctly, and the signal slots of the resulting “unspread”

super-symbol are still spread. This, in theory, makes it easier for the receiver to correctly

align super-symbols when spreading is used. This is further discussed in Sections IV-A

and V for the particular estimation technique used.

III. Super-Symbol Synchronization Model

An arbitrary M -ary PPM symbol sequence x = x0, x1, . . . , xB is spread by the M -ary

PN sequence p0, p1, . . . , pN−1, and the resulting N(B + 1) spread symbols are trans-

mitted through an optical channel. The PN sequence is known by both the sender

and receiver, and further discussion of selecting a PN sequence is given in Section V-B.

Throughout the remainder of this article, for all i ∈ Z, pi is assumed to be p(i mod N),

for simplicity of notation. E.g., p−1 = pN−1.

The jth repeat of a symbol is permuted by adding pj to the symbol mod M , so the

input to the channel is the sequence

(x0 + p0 mod M), (x0 + p1 mod M), . . . , (x0 + pN−1 mod M),

(x1 + p0 mod M), (x1 + p1 mod M), . . . , (x1 + pN−1 mod M),

...

(xB + p0 mod M), (xB + p1 mod M), . . . , (xB + pN−1 mod M).

We assume the detector outputs NB noisy PPM symbols s = (s0, s1, . . . , sNB−1), where

each noisy symbol is a sequence of photon slot counts si = (si,0, si,1, . . . , si,M−1). The

sender transmits N more symbols than the receiver detects; this corresponds to the

receiver potentially beginning synchronization in the middle of an arbitrary sequence of
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symbols. Throughout the remainder of this article, for all j ∈ Z, si,j is assumed to be

si,(j mod M), for simplicity of notation.

For each n ∈ {0, 1, . . . , N − 1}, i ∈ {0, 1, . . . , NB − 1}, and j ∈ {0, 1, . . . ,M − 1}, when

the offset is equal to n and x is the symbol sequence, the distribution of si,j is given by Poi (Ks +Kb) , if j = xb i+nN c + p(i+n) mod M

Poi (Kb) , if j 6= xb i+nN c + p(i+n) mod M.

I.e., the noisy symbols correspond to the spread symbols as follows:

s0︸︷︷︸
x0+pn

, . . . , sN−n−1︸ ︷︷ ︸
x0+pN−1

, sN−n︸ ︷︷ ︸
x1+p0

, . . . , s2N−n−1︸ ︷︷ ︸
x1+pN−1

, . . . ,sBN−N−n︸ ︷︷ ︸
xB−1+p0

, . . . , sBN−n−1︸ ︷︷ ︸
xB−1+pN−1

, sBN−n︸ ︷︷ ︸
xB+p0

, . . . , sBN−1︸ ︷︷ ︸
xB+pn−1

.

The first N −n noisy PPM symbols correspond to the last (N −n) transmissions of x0,

the next N noisy PPM symbols correspond to the N transmissions of x1, the next N

noisy PPM symbols correspond to the N transmissions of x2, and so on, up to the last

n noisy PPM symbols, which correspond to the first n transmissions of xB .

For each i ∈ {0, 1, . . . , B}, j ∈ {0, 1, . . . ,M − 1}, and n ∈ {0, 1, . . . , N − 1}, let a
(n)
i,j

denote the jth slot count of the ith collapsed super-symbol formed from s when the

receiver assumes the offset is n:

a
(n)
i,j =



N−n−1∑
l=0

sl,j+p(l+n)
i = 0

Ni−n−1∑
l=Ni−n

sl,j+p(l+n)
i ∈ {1, . . . , B − 1}

BN−1∑
l=BN−n

sl,j+p(l+n)
i = B.

I.e., the super-symbols are formed as follows:

s0, . . . , sN−n−1︸ ︷︷ ︸
a
(n)
0

, sN−n, . . . , s2N−n−1︸ ︷︷ ︸
a
(n)
1

, . . . , sBN−N−n, . . . , sBN−n−1︸ ︷︷ ︸
a
(n)
B−1

, sBN−n, . . . , sBN−1︸ ︷︷ ︸
a
(n)
B

.

When the offset is equal to n, the collapsed super-symbols a
(n)
0 ,a

(n)
1 , . . . ,a

(n)
B are cor-

rectly aligned with the symbols x0, x1, . . . , xB . The pseudo-noise terms are correctly

accounted for, and a
(n)
i consists precisely of the symbols corresponding to xi. However,

when the offset is not equal to n, the PN terms are not correctly accounted for, and

a
(n)
i can consist of symbols corresponding to xi and xi−1.

A. Example: Repeating vs. Spreading

In the following example, the 4-ary PPM symbols 0, 2, 1 are each sequentially repeated

N = 3 times with and without PN spreading, where the PN sequence is 0, 1, 3. The

channel produces noisy symbols, as shown in Figure 2.

7



Both the PPM symbol sequence and the offset are unknown to the receiver, and the

receiver wishes to determine the offset (i.e., obtain super-symbol synchronization). In

order to do so, the receiver will form super-symbols, assuming the offset is equal to 0, 1,

and 2, as shown in Figures 3, 4, and 5, respectively. The receiver then forms an estimate

by choosing the offset that produces the “best” collapsed super-symbols. In particular,

the maximum slot photon count of each collapsed super-symbol will be summed, and

the offset with the largest sum will be selected.

When the receiver undoes the PN spreading and the offset is not correct, the signal

slots are still spread, since the incorrect pseudo-noise is subtracted off each term. In

the repeat case, the receiver produces the exact same super-symbols when the offset is

1 and 2. However, in the spread case, the receiver correctly chooses the offset to be

2. Using this estimation technique, PN spreading offers an advantage over repeating in

this case.

0

Repeat

0 0 0 2 2 2 1 1 1 0 2 11 3 3 1 2 0

ChannelChannel

Noisy Symbols Noisy Symbols
00 00 000 0 0 0 000 1 10 1 0 100 0 000 00 0 00 0 001 1 11 0 0 0 0 0 00 0 0 0

PN Spread

Figure 2. The 4-ary PPM symbols 0, 2, 1 are each sequentially repeated N = 3 times with and without

PN spreading, where the PN sequence is 0, 1, 3. When the repeated/spread sequences are transmitted,

the channel produces 6 noisy symbols which are offset by 2, i.e., the noisy symbols correspond to the

symbol sequences 0, 2, 2, 2, 1, 1 and 3, 2, 3, 1, 1, 2 for the repeat and spread case, respectively. In both

cases, no photons are detected in the 1st and 4th noisy symbols.

11 10 0 1 00 1

0 00 0 00 0 001 1 10 0 0 0 001 0 0 0 00

00 00 000 0 0 0 000 1 10 1 0 100 0 00

0 00 00 0 0 0 000 1 0 1 0 00 0 0001 0 1

0 11 0 0 1 0

Figure 3. When the assumed offset is 0, the receiver assumes the first noisy symbol is the beginning of

a super-symbol. In both the repeat case and the spread case, the super-symbol sum is 1 + 1 = 2.

0

1 0 0 0 0 00 10 0 2 0

00 00 000 0 0 0 000 1 10 1 0 100 0 00

0 0 0 00 0 10 110 1

0 00 0 00 0 001 1 11 0 0 0 0 0 00 0 0 00 0 00 0 0 0 0 0 00 0 001 1 01 010000

Figure 4. When the assumed offset is 1, the repeat case produces super-symbols whose sum is

1 + 2 + 1 = 4, and the spread sum is 1 + 1 + 1 = 3.
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0

1 0 00 0 00 2 00 1 0 0 00 2 00 1 0

0 0 00 0 0 00 0 0 000 0 0 00 00 0 00 0 001 1 10 0 0 0 00

1 0 00

01 01 0 1 010 0 001 0

00 00 000 0 0 0 000 1 10 1 0 100 0 0

Figure 5. When the assumed offset is 2, the repeat case and the spread case produce the exact same

collapsed super-symbols, and the sum is 1 + 2 + 1 = 4.

IV. ML Estimate of the Offset

Given a sequence of spread PPM symbols, the receiver wishes to determine the value of

the offset. Let X = {0, 1, . . . ,M − 1}B+1 denote the set of possible symbol sequences.

We assume each sequence x ∈ X is equally likely to be transmitted, and we use the

system model described in Section III.

The ML estimate of the offset is given by:

arg max
n

P (s0, s1, . . . , sNB−1 | offset = n)

= arg max
n

1

MB+1

∑
x∈X

P (s0, s1, . . . , sNB−1
∣∣ x, offset = n)

= arg max
n

∑
x∈X

NB−1∏
i=0

M−1∏
j=0

P (si,j
∣∣ x, Offset = n)

= arg max
n

∑
x∈X

NB−1∏
i=0

e−Ks M−1∏
j=0

e−Kb

si,j !
K
si,j
b

 (1 +Ks/Kb)
si,(xb i+nN c+p(i+n))

= arg max
n

∑
x∈X

NB−1∏
i=0

(1 +Ks/Kb)
si,(xb i+nN c+p(i+n))

= arg max
n

∑
x∈X

(1 +Ks/Kb)

NB−1∑
i=0

si,(xb i+nN c+p(i+n))
.

For each x ∈ X , we have

NB−1∑
i=0

si,(xb i+nN c+p(i+n))

=

N−n−1∑
j=0

sj,(x0+p(j+n))

+

B−1∑
i=1

(i+1)N−n−1∑
j=iN−n

sj,(xi+p(j+n))

+

 BN−1∑
j=BN−n

sj,(xB+p(j+n))


=

B∑
i=0

a
(n)
i,xi

which is the sum of the collapsed super-symbol photon slot counts corresponding to the

symbol sequence x when the offset is assumed to be n. Hence the ML estimate of the

9



offset is given by

arg max
n

∑
x∈X

(1 +Ks/Kb)

B∑
i=0

a
(n)
i,xi .

In the proposed CCSDS standard for HPE optical communication, an M -ary PPM

encoder produces codeword blocks of B = 15120/ log2M PPM symbols. For each

block of B symbols, there are MB = M15120/ log2M = 215120 possible sequence of

symbols. In these cases, summing over every possible sequence of symbols is not feasible.

However, we can approximate this by only considering the symbol sequence that yields

the maximum term. In particular, we use the approximation

∑
x∈X

(1 +Ks/Kb)

B∑
i=0

a
(n)
i,xi ≈ max

x∈X
(1 +Ks/Kb)

B∑
i=0

a
(n)
i,xi . (1)

We have

max
x∈X

B∑
i=0

a
(n)
i,xi

=

B∑
i=0

max
j

a
(n)
i,j

and since (1 +Ks/Kb) > 1, this approximated ML estimate in (1) can be written as

ôffset = arg max
n

B∑
i=0

max
j

a
(n)
i,j .

We refer to this as the super-symbol-sum estimate. This estimator forms super-symbols

assuming the offset is n, then sums the maximum photon slot count in each collapsed

super-symbol. The estimator then selects the offset that produces the largest such

sum. We note that this is precisely the estimator used in the example in Section III-A.

Additionally, the receiver requires no knowledge of the average signal or background

photon count to form this estimate.

Our results in Section VI suggest that this super-symbol synchronization method out-

performs other aspects of the communication system in which it will potentially be used.

However, some other synchronization technique may be able to achieve similar perfor-

mance with lower runtime or with a smaller block size B. Since the ML estimate is

not feasible to compute in many cases, considering other approximations or estimation

techniques may be of interest for future work.

A. Pseudo-Noise and Correlation

The study of pseudo-noise sequences has led to the development of sequences with good

autocorrelation properties [11]. That is, the sequence is highly correlated with itself but

not with shifted versions of itself. If we use a good PN sequence to spread the repeated

PPM messages, then the noisy PPM symbols will be uncorrelated with one another.

Additionally, when a misaligned PN sequence is used to unspread a super-symbol, the

resulting symbols will still be uncorrelated with one another.
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When n is not equal to the offset, the collapsed super-symbol a
(n)
i is a sum of relatively

uncorrelated noisy PPM symbols, since the spreading is not undone correctly. When

n is equal to the offset, a
(n)
i is a sum of highly correlated noisy PPM symbols, since

the spreading is undone correctly. Generally speaking, the maximum slot count of a

collapsed super-symbol which is a sum of uncorrelated symbols should be smaller than

the maximum slot count of a sum of highly correlated symbols. This is good from

a super-symbol synchronization perspective, since ideally the term
∑B
i=0 maxj a

(n)
i,j is

large for n equal to the offset but and is small for n not equal to the offset.

On the other hand, if spreading is not used, then when n is not equal to the offset, a
(n)
i

is a sum of noisy PPM symbols that are still somewhat correlated with one another,

which, in general, will cause
∑B
i=0 maxj a

(n)
i,j to be larger than when spreading is used.

V. Justifying Results

In this section, we attempt to provide some analytic justification for the simulation

results in Section VI.

If we assume the offset is equally likely to take on any value in {0, 1, . . . , N − 1}, then

by a symmetry argument, the probability the super-symbol-sum estimate is incorrect is

given by

PPNe = P (ôffset 6= 0 | offset = 0)

= P

(
N−1⋃
n=1

{
B∑
i=0

max
j

a
(n)
i,j >

B∑
i=0

max
j

a
(0)
i,j

} ∣∣∣∣∣ offset = 0

)
.

Generally speaking, errors occur when max
j

a
(n)
i,j is large when n is not equal to the

offset and max
j

a
(n)
i,j is small when n is equal to the offset. Ideally, PN spreading helps

to prevent the former, since as discussed in Section IV-A, incorrectly unspread symbols

are less correlated with one another.

When the offset is 0, the received noisy symbols correspond to the spread symbol se-

quence in the following way:

s0, . . . , sN−1︸ ︷︷ ︸
x0

, sN , . . . , s2N−1︸ ︷︷ ︸
x1

, . . . , sBN−N , . . . , sBN−1︸ ︷︷ ︸
xB−1

.

For each n ∈ {0, 1, . . . , N − 1}, the super-symbols align with the noisy symbols accord-

ingly:

s0, . . . , sN−n−1︸ ︷︷ ︸
a
(n)
0

, sN−n, . . . , s2N−n−1︸ ︷︷ ︸
a
(n)
1

, . . . , sBN−N−n, . . . , sBN−n−1︸ ︷︷ ︸
a
(n)
B−1

, sBN−n, . . . , sBN−1︸ ︷︷ ︸
a
(n)
B

.

When B � 0, the contributions from a
(n)
0 and a

(n)
B to the estimator sum become

negligible, so we focus on the contributions from a
(n)
1 , . . . ,a

(n)
B−1.
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For each i ∈ {1, 2, . . . , B − 1} and n ∈ {0, 1, . . . , N − 1}, the super-symbol a
(n)
i consists

of the last n noisy symbols corresponding to xi−1 followed by the first (N − n) noisy

symbols corresponding to xi. However, the super-symbols do not correctly account for

the pseudo-noise. Hence, for each j ∈ {0, 1, . . . ,M −1}, given x is the symbol sequence,

the distribution of a
(n)
i,j is given by

n−1∑
l=0

{
Poi (Ks +Kb) , if j + pl = xi−1 + p(l−n) mod M

Poi (Kb) , if j + pl 6= xi−1 + p(l−n) mod M

+

N−1∑
l=n

{
Poi (Ks +Kb) , if j + pl = xi + p(l−n) mod M

Poi (Kb) , if j + pl 6= xi + p(l−n) mod M

where Poi (λ) + Poi (σ) denotes a sum of independent Poisson random variables with

mean λ and σ, respectively. The particular distribution of a
(n)
i,j depends on the particular

pseudo-noise sequence chosen. Each collapsed slot count a
(n)
i,j is a sum of some signal

slot counts and some noise slot counts.

For a “good” PN sequence, the signal slots corresponding to xi and xi−1 are evenly

distributed over all of the collapsed slots when n 6= 0. We discuss this further in

Section V-B.

We also note that a
(0)
i,j is distributed according to

{
Poi (N(Ks +Kb)) , if j = xi

Poi (NKb) , if j 6= xi

which is independent of the PN sequence. Because of this, we expect

B−1∑
i=0

max
j

a
(0)
i,j

to have the same distribution regardless of the PN sequence. This agrees with the earlier

example, where the repeated and spread sequence yielded the same super-symbols when

the offset was correct. Additionally, since the spreading is correctly undone in this case,

the PN sequence itself should not matter.

A. Special Case: N=2

Now suppose the repeat factor is N = 2. Then a
(1)
i,j is distributed according to


Poi (2(Ks +Kb)) , if j = xi + p0 − p1 = xi−1 + p1 − p0

Poi (Ks + 2Kb) ,
if j = xi + p0 − p1 6= xi−1 + p1 − p0,
or j = xi−1 + p1 − p0 6= xi + p0 − p1

Poi (2Kb) , if xi−1 + p1 − p0 6= j 6= xi + p0 − p1.

12



For all integers n ≥ 0, let F (λ, n) =
∑n
k=0

e−λλk

k! , i.e., F (λ, n) is the cumulative distri-

bution function of a Poisson random variable with mean λ. Then

P

(
max
j

a
(1)
i,j ≤ n

)
= P

(
a
(1)
i,0 ≤ n, a

(1)
i,1 ≤ n, . . . , a

(1)
i,M−1 ≤ n

)
=

1

M
P
(
a
(1)
i,0 ≤ n, a

(1)
i,1 ≤ n, . . . , a

(1)
i,M−1 ≤ n | xi + p0 − p1 = xi−1 + p1 − p0

)
+
M − 1

M
P
(
a
(1)
i,0 ≤ n, a

(1)
i,1 ≤ n, . . . , a

(1)
i,M−1 ≤ n | xi + p0 − p1 6= xi−1 + p1 − p0

)
=

1

M
F (2(Ks +Kb), n)F (2Kb, n)M−1

+
M − 1

M
F (Ks + 2Kb, n)2 F (2Kb, n)M−2

which is independent of the PN sequence p0, p1. Hence the distributions of both max
j

a
(1)
i,j

and max
j

a
(0)
i,j are independent of the PN sequence, so we expect both

B−1∑
i=0

max
j

a
(0)
i,j and

B−1∑
i=0

max
j

a
(1)
i,j

to also be independent of the PN sequence. Therefore when the repeat factor is 2, we

do not expect PN spreading to offer improvements over repeating.

B. Good PN Sequences

When the offset is 0, the distribution of a
(n)
i,j is given by

N−1∑
l=n

{
Poi (Ks +Kb) j = xi + p(l−n) − pl mod M

Poi (Kb) j 6= xi + p(l−n) − pl mod M

+

n−1∑
l=0

{
Poi (Ks +Kb) j = xi−1 + p(l−n) − pl mod M

Poi (Kb) j 6= xi−1 + p(l−n) − pl mod M,

and the distribution of a
(0)
i,j is independent of the PN sequence. When n > 0, we want

to select a PN sequence which distributes the signal slots of xi and xi−1 evenly over

{0, 1, . . . ,M −1}, since this will, on average, result in smaller values of max
j

a
(n)
i,j . When

signal slots are less spread, max
j

a
(n)
i,j will tend to be larger.

If

(p(l−n) − pl) = (p(m−n) − pm) mod M

for some distinct l,m ∈ {0, 1, . . . , n − 1}, then some collapsed slot count consists of a

sum of multiple signal slot counts. Hence when p0 = p1 = · · · = pN−1, the (N − n)

signal slots from xi are all in the same super-symbol slot and the n signal slots from

xi−1 are all in the same super-symbol slot. In fact, in this case, the distribution of a
(n)
i,j

13



is given by 
Poi (N(Ks +Kb)) , if j = xi = xi−1

Poi ((N − n)Ks +NKb) , if j = xi 6= xi−1

Poi (nKs +NKb) , if j = xi−1 6= xi

Poi (NKb) , if xi−1 6= j 6= xi.

Ideally, we have

(p(l−n) − pl) 6= (p(m−n) − pm) mod M

for all n ∈ {1, 2, . . . , N − 1} and all distinct l,m ∈ {0, 1, . . . , n − 1}, since then the

all of the signal slots corresponding to xi are in distinct collapsed slots and all of the

signal slots corresponding to xi−1 are in distinct collapsed slots, which on average causes

max
j
a
(n)
i,j to be smaller than when signal slots are not spread. When M < N − 1, it is

not possible to spread the signal slots into distinct collapsed slots, but we would like

the sequence to evenly distribute the signal slots over the collapsed slots.

Optimizing the PN sequence in this way for general M and N appears to be a non-trivial

task. However as an example, when N = 4 and M ≥ 4, we can select

(p0, p1, p2, p3) = (0, 1, 3, 2).

Then

(p1 − p0, p2 − p1, p3 − p2) = (1, 2,M − 1)

(p2 − p0, p3 − p1) = (3, 1)

so the signal slots are completely spread over the collapsed slots.

However, for the proposed CCSDS scheme, selecting p0, p1, . . . , pN−1 to be a “good”

PN sequence appears to be sufficient.

VI. Simulation Results

In the CCSDS proposed recommendation, a serially-concatenated convolutionally-coded

M -ary PPM encoder produces codewords consisting of B = 15120/ log2M PPM sym-

bols. The PPM symbols are either repeated or spread by a factor of N and transmitted

through an optical channel. The receiver uses the estimator described in Section IV with

either repeating or spreading to estimate the offset, which is assumed to be uniform over

{0, 1, . . . , N − 1}. We use the M -ary PN sequence described in [1].

In Figures 6 to 20, the performance of the repeat and spread estimators versus Ks/M are

plotted for PPM orders M ∈ {2, 4, 8, 16, 32, 64, 128, 256}, repeat factors N ∈ {2, 4, 8, 16,

32}, and Kb ∈ {0, 0.01, 1}. When repeating (or spreading) by a factor of N and super-

symbol synchronization is attained, the effective M -ary PPM optical channel is a mem-

oryless Poisson process with NKs average received signal photons and NKb average

14



received background photons. The soft-decision capacity of such a channel is derived in

terms of bits per PPM symbol in [4].

In the proposed scheme, prior to mapping binary symbols to PPM symbols, the binary

symbols are convolutionally encoded at a rate of either R = 1/3, 1/2, or 2/3 [1] as shown

in Table 1. When more than one rate is allowed for a particular PPM order, we compare

the super-symbol synchronization performance to the lower rate code, since lower signal

levels are needed for reliable communication at lower rates. For each PPM order, repeat

factor, and Kb level, the capacity-bounded bit error rate is plotted alongside the super-

symbol synchronization performance plots.

PPM Order, M Allowed Code Rate(s), R

4 2/3

8 2/3

16 2/3, 1/2

32 1/2

64 1/2

128 1/2, 1/3

256 1/2, 1/3

Table 1. Allowed rates of convolutional encoder for particular PPM orders, given in [1]. In Figures 6 to

20, the bit error rates correspond to the capacity bounds when the code rates are the values in this

table.
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Figure 6. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error rate,

for repeat/spread factor N = 2, Kb = 0, and convolutional code rates specified in Table 1.
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Figure 7. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error rate,

for repeat/spread factor N = 4, Kb = 0, and convolutional code rates specified in Table 1.
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Figure 8. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error rate,

for repeat/spread factor N = 8, Kb = 0, and convolutional code rates specified in Table 1.
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Figure 9. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error rate,

for repeat/spread factor N = 16, Kb = 0, and convolutional code rates specified in Table 1.
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Figure 10. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 32, Kb = 0, and convolutional code rates specified in Table 1.
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Figure 11. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 2, Kb = 0.01, and convolutional code rates specified in Table 1.
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Figure 12. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 4, Kb = 0.01, and convolutional code rates specified in Table 1.
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Figure 13. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 8, Kb = 0.01, and convolutional code rates specified in Table 1.
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Figure 14. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 16, Kb = 0.01, and convolutional code rates specified in Table 1.
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Figure 15. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 32, Kb = 0.01, and convolutional code rates specified in Table 1.
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Figure 16. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 2, Kb = 1, and convolutional code rates specified in Table 1.

20



−35 −30 −25 −20 −15 −10 −5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

K
s
 / M (dB−signal−photons per slot)

S
u
p
e
r−

S
y
m

 S
y
n
c
 E

rr
o
r 

R
a
te

B
it
 E

rr
o
r 

R
a
te

 

 

4−PPM

8−PPM

16−PPM

32−PPM

64−PPM

128−PPM

256−PPM

Sync, Spreading
Sync, Repeating
Repeat−PPM Capacity

Figure 17. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 4, Kb = 1, and convolutional code rates specified in Table 1.
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Figure 18. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 8, Kb = 1, and convolutional code rates specified in Table 1.
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Figure 19. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 16, Kb = 1, and convolutional code rates specified in Table 1.
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Figure 20. Super-symbol synchronization performance and repeat-PPM capacity-bounded bit error

rate, for repeat/spread factor N = 32, Kb = 1, and convolutional code rates specified in Table 1.

22



VII. Conclusions

The simulation results demonstrate that when the receiver has obtained slot and symbol

synchronization and PPM symbols are spread, the receiver can reliably obtain super-

symbol synchronization at the signal levels needed for reliable communication at the

code rates specified in the proposed CCSDS standard. The super-symbol synchroniza-

tion technique presented in this report requires neither a priori knowledge of the signal

and noise levels nor explicit synchronization sequences. Additionally, the runtime of the

given technique is O(BMN2), where the M -ary PPM symbols are spread by a factor

of N and the receiver uses NB noisy symbols to obtain super-symbol synchronization.

For fixed PPM order and spread factor, super-symbol synchronization performance can

be improved by increasing the number of noisy symbols considered (i.e., increasing

B). The runtime of our technique increases linearly with B, and the tradeoff between

runtime and performance of this (or other super-symbol synchronization) techniques

may be of interest for future studies. Particularly, for a fixed runtime, what techniques

maximize super-symbol synchronization performance?
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