
* Software Assurance and Assurance Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. © 2019 California Institute of
Technology. U.S. Government sponsorship acknowledged. 1

IPN Progress Report 42-218 • August 15, 2019

Opportunities for Optimization through
Parallelization of the Bundle Protocol
Consistent with the Recommendations in CCSDS 734.2-B-1 and
the Definitions of RFC-5050

Gerard J. Holzmann*

ABSTRACT. — We consider potential parallelization strategies for the Bundle Protocol, and
check if such efforts are consistent with (i.e., explicitly allow or disallow) the
recommendations and definitions given in two main reference documents for this
protocol. In this assessment, the text of the two guiding documents is taken as written and
not subject to change. The effort is not to look for ambiguities in either document, but
rather to see if they are consistent with (i.e., explicitly allow or disallow) specific
optimization strategies based on parallelization.

I. Introduction

The Bundle Protocol (BP) is a protocol defined to operate above the Transport Layer in the
traditional ISO/OSI model (cf. [1], Figure 1, p.41), which means that it can be used over any
type of lower layer protocol implementation at the Transport, Network, Data-link, and
Physical layers. The stated target is its use over unreliable and scarce data links, to support
functionality required for delay-tolerant network connections.

II. Optimization Approaches

There are two possible targets for optimization (e.g., through parallelization) of the bundle
protocol: (a) to improve end-to-end throughput, e.g., to allow data to be sent faster, for
instance by using parallel data streams (Section II.A), and (b) to send data at the same
rate, but to use less time at the transmitter and/or at the receiver to process the data
(Section II.B).

1 Reference [2], p. 1-1, states instead that “BP provides Network Layer service,” but this does not seem to refer to the

standard OSI terminology.

 2

The Seven Layers of the ISO/OSI Reference Model

The reference in [1] to BP’s place in the OSI hierarchy sets constraints on the types of
optimization that can be considered for each of these two cases. First, if the lower protocol
layers can only support single uni-directional transfers of data at low, and fixed, baud-rates
(e.g., Voyager–Earth) then opportunities for increasing throughput are quite limited.
If, however, the lower layers support the use of multiple simultaneous connections
(Section II.A) may be realized by splitting the transfer of bundles across simultaneous BP
sessions. This mode of transfer, which can be defined at a higher protocol layer, is
independent of the definition and recommended use of the BP itself.

The second option for optimization (Section II.B) may be implemented at the Transport or
Session Layers, and does not alter the behavior of either the BP protocol or the lower
protocol layers. By parallelizing the preprocessing and postprocessing of bundles, the real-
time requirements for sending and receiving bundle payloads can be reduced, and possibly
could help match higher transmission rates that may be available at the lower layers
(e.g., high-speed optical links).

Below I’ll compare these two possible options against the guiding documents to see if there
are any explicit statements or directions given there that may conflict with either
approach.

A. Parallel BP Sessions at the Transport Layer

This approach to maintain multiple independent and simultaneous BP sessions for
different parts of the bundle sequence, provided that the lower protocol layers can support
this, is orthogonal to the definition or recommended use of the BP protocol itself and is
therefore unlikely to conflict with its definitions. There is evidence in [2] that this use is
indeed compliant with the definitions and recommendations.

In reference [2], the following relevant statements can be found.

In Section 1.4.3 (and elsewhere), it is noted that “[The] application may register multiple
endpoints.” This capability is indeed useful if one were to use multiple independent BP
sessions.

In Section 1.4.3.2, in a note to the definition of a bundle protocol agent, BPA [emphasis
added]: “BPA functionality can be coded into individual nodes, as a shared library that is shared
by any number of bundle nodes on a single computer, as a daemon whose services are invoked via

Physical Link

End-User

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Transmit
Data

Receive
Data

 3

inter-process or network communication by one or more bundle nodes on one or more
computers, or in hardware.”

Further, in the definition of application agents [AA, emphasis added]: “AAs may perform
arbitrarily complex application functions, perhaps even offering multiplexed DTN [delay tolerant
network] communication services to a number of other applications. As with the BPA, the way
AA performs its functions is wholly an implementation matter […]”

In Section 2.4 [emphasis added]: The Bundle Protocol as specified in this document does not
provide the following services: (a) in-order delivery of bundles, (b) complete delivery of sequences of
bundles.

In Section 3.3, potentially supporting the identification of a reassembly requirement for
separate bundle streams that are transmitted over independent connections with Extended
Class of Service tags to identify “special handling of bundles.”

And quite explicitly in Section 4.1.2 [emphasis added]: The BP node shall be implemented
such that virtually any number of transactions may be conducted concurrently in various
stages of transmission or reception at a single BP node.

NOTE – To clarify: the implementation needs to be able to accept a primitive,
and thereupon initiate a new transaction prior to the completion of previously
initiated transactions. The requirement for concurrent transaction support
therefore does not necessarily imply that the implementation needs to be able to
begin initial transmission of data for one transaction while initial transmission
of file data for one or more other transactions is still in progress. (But neither is
support for this functional model precluded.)

In RFC-5050 [1], we find the following relevant observations.

Section 3.1 (p. 5), it is noted that “Multiple instances of the same bundle […] might exist
concurrently in different parts of a network.” This reference, though, more likely refers to a
single sequential bundle sequence where component parts have reached different points
along the chain towards the destination.

A more explicit statement that the use of parallel BP sessions is foreseen and compliant
with the intent of the BP definition occurs in Section 3.1 (p. 9) [emphasis added]: “A
transmission is a sustained effort by a node’s bundle protocol agent to cause a bundle to be sent
to all nodes in the minimum reception group of some endpoint (which may be the bundle’s
destination or may be some intermediate forwarding endpoint) in response to a transmission
request issued by the node’s application agent. Any number of transmissions may be
concurrently undertaken by the bundle protocol agent of a given node.”

A potential counter-point appears in Section 8 (p. 45) which states: “The bundle protocol has
been designed with the notion that it will be run over networks with scarce resources. […] to send
bundles over such constrained environments […].” This implies that the availability of high-
bandwidth connections that could support parallel data transfer sessions, though still with
high latency, is not anticipated, but of course also not prohibited or excluded from
consideration.

 4

Another counter-point, also in Section 3.2 (pp. 9–10), is that the underlying architecture
and implementation of bundle nodes are not required to support parallel sessions.
Therefore, the option for parallel bundle transfer sessions would only exist between nodes
along a forwarding chain that could support this capability. Such capabilities are not
required for conformance to the BP protocol and therefore cannot be assumed.

Finally, still in [1], Section 5.4, Step 5 (p. 28) notes: “To keep from possibly invalidating
bundle security, the sequencing of the blocks in a forwarded bundle must not be changed as it
transits a node; received blocks must be transmitted in the same relative order as that in which
they were received.” This requirement, though, is likely intended to maintain the integrity of
block transfers within individual sessions, and does not necessarily apply to the order of
block transfers across parallel sessions.

B. Optimization of Preprocessing and Postprocessing of Bundles at the Network Layer

This second point where parallelization strategies can be used is in the preparation and/or
the postprocessing of the bundle format at the Session Layer. Input, at the sender’s side of
the protocol, is the payload to be transmitted, which needs to be partitioned in blocks and
formatted into bundle blocks. An example of the data format is given in Section 4.5 of [1]
on pp. 17–18. This means setting the required flags and where necessary computing and
filling in all required fields. The preprocessing can also include an encoding step for the
payload itself.

Typically, in communication protocols, the preprocessing phase is rarely a bottleneck,
compared to postprocessing at the receiver. Nonetheless, it seems clear that each of these
steps can be parallelized in a way that is invisible to both the upper and the lower protocol
layers. For instance, while one bundle is in the process of being transmitted, the next
bundle(s) can be prepared in parallel.

Similarly, while one bundle is being received, bundles received earlier can (continue to) be
postprocessed in parallel. If, for example, postprocessing takes N times as long as basic data
reception, the postprocessing can either be deferred until the data transmission session is
completed, or it can be postprocessed and delivered in real-time by using N or more
parallel streams to accomplish this.

Since the BP protocol does not require in sequence delivery, or even delivery of all parts of
a payload, there is no additional requirement on how the payloads for bundle sequences
are prepared, postprocessed, partitioned, or reassembled.

Both preprocessing and postprocessing can be separated from the raw machinery for
transmission (which is the delivery to and retrieval from the lower protocol layers) and
encoded in either software (using parallel threads of execution) or in hardware (e.g., using
FPGAs or ASICs).

It would be more difficult, and likely not fruitful, to attempt to parallelize the preparation
of a single bundle block for transmission, or the processing of a single block after
reception, since many of the steps required are either inherently sequential, or require only
minimal computation that could benefit from parallelization, e.g., filling in length fields,
cf. Figure 5 in RFC-5050 [1], reproduced on the next page.

 5

Primary Bundle Block

+----------------+----------------+----------------+----------------+
| Version | Proc. Flags (*) |
+----------------+----------------+----------------+----------------+
| Block length (*) |
+----------------+----------------+---------------------------------+
| Destination scheme offset (*) | Destination SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Source scheme offset (*) | Source SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Report-to scheme offset (*) | Report-to SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Custodian scheme offset (*) | Custodian SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Creation Timestamp time (*) |
+---------------------------------+---------------------------------+
| Creation Timestamp sequence number (*) |
+---------------------------------+---------------------------------+
| Lifetime (*) |
+----------------+----------------+----------------+----------------+
| Dictionary length (*) |
+----------------+----------------+----------------+----------------+
| Dictionary byte array (variable) |
+----------------+----------------+---------------------------------+
| [Fragment offset (*)] |
+----------------+----------------+---------------------------------+
| [Total application data unit length (*)] |
+----------------+----------------+---------------------------------+

Bundle Payload Block
+----------------+----------------+----------------+----------------+
| Block type | Proc. Flags (*)| Block length(*) |
+----------------+----------------+----------------+----------------+
/ Bundle Payload (variable) /
+---+

Reproduced from RFC-5050 [1], Section 4.5, p. 18

III. Conclusions

We conclude that parallelization of bundle protocol sessions is not inconsistent with
either RFC-5050 [1] or CCSDS-734.2-B-1 [2], but that it does rely on matching capabilities
in nodes along the forwarding chain, which cannot be presumed.

We also conclude that parallelization of the preparation of payload data at the sender, or
its postprocessing at the receiver is independent of the BP protocol itself, and invisible to
the protocol layers above and below the BP protocol. This approach, therefore, is not
inconsistent with the recommendations of CCSDS 734.2-B-1 [2] or the definitions in
RFC-5050 [1].

 6 JPL CL#19-2391

Acknowledgements

This study was performed by Gerard Holzmann, a JPL and Caltech affiliate with deep
expertise in the field of software reliability and analysis. The study was initiated by Peter
Shames, Manager of JPL Data System Standards Program, and reviewed for accuracy by
Scott Burleigh, the lead editor for the creation of the DTN standard in CCSDS. The study
was carried out for the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. It was funded by the
NASA Space Communications and Navigation (SCaN) Standards Office as part of the JPL
Data System Standards Program.

References

[1] RFC 5050, Bundle Protocol Specification, Request for Comments, K. Scott and
S. Burleigh, Network Working Group, November 2007.

[2] Recommended Standard CCSDS 734.2-B-1, Bundle Protocol Specification, Blue Book,
The Consultative Committee for Space Data Systems (CCSDS), September 2015.

