
IPN Progress Report 42-220 • February 15, 2020

Cracking Quantum Key Distribution:
Basis Estimation and Optimal Measurements

Matthew Thill∗, Sam Dolinar∗, and Dariush Divsalar∗

ABSTRACT. — In this report, we examine vulnerabilities in quantum key distribution

(QKD) schemes that may arise in practice. In particular, we assume a probability bias in

the distribution of states and bases used in a BB84-like protocol, and show how this can

allow an eavesdropper to estimate the states used in the protocol and to correspondingly

design a positive-operator valued measure (POVM) to estimate secret key bits for use

in an intercept-relay attack. We quantify the error in the state estimation and the

probability of correct key-bit detection with respect to the probability bias.

I. Introduction

Today’s world sees a constant demand for large amounts of sensitive data, which must

be communicated securely and protected from malicious eavesdroppers. An optimal

approach to encrypting data sent over a classical channel is to use a one-time pad (OTP),

originally discovered by Miller in 1882 [1], patented by Gilbert Vernam in 1919 [2] and

proven information-theoretically secure by Shannon in 1949 [3]. The OTP requires a

secret key of bit-length equal to that of the message communicated. Thus, there is an

inherent demand for efficient protocols to establish secret key bits between sender and

receiver with which an eavesdropper shares no mutual information.

Quantum key distribution (QKD) (thoroughly reviewed in [4]) exploits the principles

of quantum science to produce these secret bits. Two parties who share access to a

quantum channel, and typically an authenticated classical channel, attempt to establish

a secret key by exchanging, sharing, and measuring quantum states transmitted over the

channel. Any quantum correlations that are lost during the communication translate

directly to information leaked to the environment (or an eavesdropper), allowing the

∗Communications Architectures and Research Section

The research described in this publication was carried out by the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

c© 2020 California Institute of Technology. U.S. Government sponsorship acknowledged.

1



two parties “Alice” and “Bob” to detect the eavesdropper “Eve” if she gains too much

information about their established secret key. The authenticated classical channel

allows Alice and Bob to estimate this information loss. Furthermore, the no-cloning

theorem of quantum mechanics [5] ensures that any copy (or partial copy) that Eve

attempts to make of Alice and Bob’s shared state will perturb or damage the original,

again risking exposing Eve’s presence. In short, an effective eavesdropper needs to be

able to ascertain as much information as possible with few measurements.

The most popular QKD protocols, such as BB84 [6] (see Section II), involve Alice and

Bob transmitting and receiving one of several known states over the quantum channel,

and performing quantum measurements catered to these states. If Eve does not know

these states, she needs a practical method to learn them using as few measurements as

possible in order to have any hope of learning Alice and Bob’s secret key bits without

being detected. The process by which Eve learns Alice and Bob’s states is a version of

quantum tomography [7]. Past research has explored how to learn a quantum state with a

small number of measurements by exploiting techniques from fields such as compressive

sensing [8]. Learning the states is only the first step for Eve, who must use this knowledge

to inform how to best eavesdrop on the quantum channel and perform measurements

to learn Alice and Bob’s secret key bits. We will consider how Eve can perform these

tasks by exploiting imperfections, which could easily arise in practice in Alice and Bob’s

QKD scheme. In particular, we will quantify the accuracy with which Eve can estimate

Alice and Bob’s state as a function of the number of measurements she is able to make,

and how she can construct an optimal eavesdropping POVM based on this estimate.

An important point to mention, however, is that the more measurements Eve makes,

the more she perturbs Alice and Bob’s shared state and increases her likelihood of

being detected. For the time being, we will not consider this in our derivations, though

realistically, it would affect how much information Eve can ascertain about Alice and

Bob’s secret key.

II. The BB84 Protocol

The first practical QKD protocol was introduced by Bennett and Brassard in 1984 [6],

and as such is referred to as “BB84.” In this method, Alice establishes a secure key with

Bob by transmitting photons that she prepares in one of two orthonormal polarization

bases: either the horizontal/vertical polarizations, {|H〉, |V 〉}, or the rotated polariza-

tions of ±45 degrees, {| + 45〉, | − 45〉}. Here, we use the bra-ket notation [9] with the

convention that “|ψ〉” represents a column vector corresponding to a pure state ψ, and

“〈ψ|” is its conjugate transpose (a row vector). Explicitly, | ± 45〉 = 1√
2
(|H〉 ± |V 〉).

Alice randomly selects one of these two bases as well as a bit: 0 (corresponding to |H〉
or |+ 45〉) or 1 (corresponding to |V 〉 or | − 45〉). Bob randomly chooses one of the two

bases in which to measure the received photon, and interprets the corresponding bit as

a 0 or a 1. If Alice and Bob used the same basis and the photon is unperturbed, Bob
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will have correctly interpreted Alice’s bit. If they have used opposite bases, Bob has a

50% chance of having interpreted Alice’s bit correctly. Alice and Bob use an authenti-

cated classical channel to determine when their bases were compatible, a process called

“sifting,” and in doing so establish a secret key.

An eavesdropper, Eve, seeks to learn as much about the secret key bits as possible.

There are a number of attacks she can perform, the simplest of which is an intercept-

resend attack [4], in which she chooses one of Alice and Bob’s bases to measure in and

relays the resulting state to Bob. With luck, Alice and Bob will have both used the

same basis as Eve, in which case she will know their established bit. Alice and Bob

can choose to share some of their bits over the classical channel to confirm that they

match and to perform information reconciliation to correct bit-errors, such as with the

cascade protocol [10], and privacy amplification [11] to minimize information leaked to

Eve, though this will shrink the size of their secret key. If Eve has perturbed the photons

too much, Alice and Bob may choose to abort the protocol altogether, so it behooves

Eve to remain undetected.

In the following sections, we consider a somewhat more complicated regime than BB84

in which Alice and Bob have not restricted themselves to using only the {|H〉, |V 〉}
and {| + 45〉, | − 45〉} bases. We assume the role of an eavesdropper, Eve, with no a

priori knowledge of the states or the bases in which Alice and Bob are communicating,

and we examine how quickly Eve can learn these states using just simple projective

measurements provided that Alice and Bob have some small bias in the distribution

of their transmitted states. We begin with the single-basis case in Section III, where

Alice sends bits to Bob only encoded in the ‘0’ or ‘1’ element of one orthonormal basis.

We then extend our results in Section IV to a two-basis communication scheme such as

BB84. In Section IV-A, we show how Eve can further design a positive-operator valued

measure (POVM) to estimate which bit Alice has transmitted with as high a probability

of correct detection as possible.

The BB84 protocol as described here is an example of a prepare-and-measure QKD

scheme where Alice prepares a state on which Bob performs a measurement. It is worth

noting that there are alternative ways to implement these protocols using entangled

photon sources, such as BBM [12], the entanglement-based version of BB84. Our results

can be easily adapted to these entanglement-based alternatives, but for the sake of

simplicity, we will pose our discussion in the context of prepare-and-measure protocols.

III. Single Basis Estimation

We first consider the following simple scenario: Alice selects an element from the

orthonormal basis A = {|a0〉, |a1〉} ∈ C2×1, which she sends to Bob over a noise-

less channel. She selects element |ai〉 with probability pi, i = 0, 1, and she repeats

this process many times. This gives rise to Alice’s expected density operator of ρ =
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p0|a0〉〈a0| + p1|a1〉〈a1|, which is simply the diagonal matrix ρ =

[
p0 0

0 p1

]
when ex-

pressed with respect to the basis A.

An eavesdropper, Eve, would like to determine Alice’s basis A and the probabilities of its

two elements, perhaps with an eye toward performing intercept/resend attacks. We note

that the probabilities p0 and p1 are simply the singular values of ρ, and provided they

are not exactly equal to each other (which is the case if Alice lacks a perfectly unbiased

random number generator), their associated singular vectors are unique, and equal to

the basis elements |a0〉 and |a1〉. In this case, Eve needs only to determine the mixed

state ρ with respect to some basis, and perform a singular value decomposition. In the

case where p0 and p1 are each exactly equal to 1
2 , then ρ is the identity operator, and

Eve will not be able to learn the basis elements |a0〉 and |a1〉 using standard independent

projective measurements, as we consider in the next section.

If the distribution is biased so that p0 6= p1, then Eve has a hope of recovering the

basis elements and their probabilities. To do this, she chooses her own orthonormal

basis E = {|e0〉, |e1〉} with respect to which she will express ρ. Note that in this basis,

ρ will have the matrix form

[
〈e0|ρ|e0〉 〈e0|ρ|e1〉
〈e1|ρ|e0〉 〈e1|ρ|e1〉

]
=
[
|e0〉 |e1〉

]H
ρ
[
|e0〉 |e1〉

]
. Since

this matrix must be Hermitian with trace equal to 1, we may express it in the form[
x y + iz

y − iz 1− x

]
, with x, y, and z real. Eve is now tasked with estimating these three

parameters. It is well-known that a density operator can be determined with three types

of projective measurements on the Bloch (or Poincaré) Sphere [7, 13]. In the following

section, we examine how Eve can optimize her protocol by using an arbitrary number

of projective measurement types to estimate x, y, and z. Since Eve would like to avoid

being detected, we focus on the tradeoff between the estimation error and the total

number of measurements performed.

A. Estimation Using Projective Measurements

We first consider the regime in which Eve performs a series of projective measurements

to estimate x, y, and z. Each measurement will amount to Eve intercepting a state from

Alice and projecting it onto some orthonormal basis, which without loss of generality

can be expressed in the form {Ui|e0〉,Ui|e1〉}, i = 1, ..., NT . Here, each Ui is a unitary

matrix and NT is the number of different types of projective measurements that Eve

chooses between. Eve performs ni measurements with basis type i and records the

empirical fraction Xi of instances in which she measures Ui|e0〉. We can express this

vector as a linear combination of the original basis elements in E , writing Ui|e0〉 =

αi|e0〉+βi|e1〉, where |αi|2 + |βi|2 = 1. In this form, we may express the expected value
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of Xi as

E[Xi | ρ, E ,Ui] = 〈e0|UH
i ρUi|e0〉

= |αi|2〈e0|ρ|e0〉+ α∗i βi〈e0|ρ|e1〉+ β∗i αi〈e1|ρ|e0〉+ |βi|2〈e1|ρ|e1〉. (1)

Using the relations 〈e0|ρ|e0〉 = x, 〈e1|ρ|e1〉 = 1− x, 〈e0|ρ|e1〉 = y + iz, and 〈e1|ρ|e0〉 =

y − iz, we can rewrite all these equations in the matrix form
E[X1 | ρ, E ,U1] + |α1|2 − 1

...

E[XNT
| ρ, E ,UNT

] + |αNT
|2 − 1



=


|α1|2 − |β1|2 2 Re(α∗1β1) −2 Im(α∗1β1)

...
...

...

|αNT
|2 − |βNT

|2 2 Re(α∗NT
βNT

) −2 Im(α∗NT
βNT

)

 ·

x

y

z

 . (2)

We will express this compactly as w = Av, where

w :=


E[X1 | ρ, E ,U1] + |α1|2 − 1

...

E[XNT
| ρ, E ,UNT

] + |αNT
|2 − 1

 , v :=


x

y

z

 ,

A :=


|α1|2 − |β1|2 2 Re(α∗1β1) −2 Im(α∗1β1)

...
...

...

|αNT
|2 − |βNT

|2 2 Re(α∗NT
βNT

) −2 Im(α∗NT
βNT

)

 .

At this point, it becomes clear that we need at least NT = 3 distinct measurement types

to unambiguously recover v, but we would like to quantify the error in our estimation

with respect to both NT and the number of projective measurements ni performed

in each basis. To this end, let us fix a constant number of measurements per basis:

ni = M for i = 1, ..., NT . In this case, each Xi corresponds to the fraction of the M

measurements whose outcome is the ‘0’ basis element. If we let ŵ denote the vector[
X1 + |α1|2 − 1, . . . , XNT

+ |αNT
|2 − 1

]T
, an estimate for w, then we could estimate

v as

v̂ =


x̂

ŷ

ẑ

 = A+ŵ,

where A+ denotes the Moore-Penrose pseudoinverse of A. An estimate for the density

operator ρ is then reconstructed as ρ̂ =

[
x̂ ŷ + iẑ

ŷ − iẑ 1− x̂

]
. As previously mentioned, the

estimated basis element probabilities p̂0 and p̂1 are the eigenvalues of ρ̂, which can be

expressed in terms of x̂, ŷ, and ẑ as

p̂0, p̂1 =
1

2

(
1±

√
1− 4[x̂(1− x̂)− ŷ2 − ẑ2]

)
. (3)
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The estimated basis elements are the normalized eigenvectors associated with p̂0 and

p̂1, which are

|âk〉 =

[
−(ŷ + iẑ)

x̂− p̂k

]
/
√
ŷ2 + ẑ2 + (x̂− p̂k)2, k = 0, 1. (4)

The following theorem characterizes the first and second order statistics of v̂:

Theorem 1. For NT ≥ 3, the estimator v̂ = A+ŵ is an unbiased estimator for v

(that is, E[v̂ | ρ, E , {Ui}] = v). If the basis E is chosen uniformly at random on the

complex unit sphere, then the expected covariance matrix of v̂ conditioned on {αi}, {βi},
and ρ is Rρ,{αi},{βi} = 1

M

(
1
6 + 1

3p0p1
) (

ATA
)−1

, where M is the number of projective

measurements per basis type.

Proof. The fact that v̂ is unbiased follows from the fact that ŵ is clearly an unbiased

estimator for w, so

E[v̂ | ρ, E , {Ui}] = A+E[ŵ | ρ, E , {Ui}] = A+w = v.

By requiring that E be uniformly randomly chosen on the complex unit sphere, we in

particular demand that |e0〉 ∈ C2×1 have a distribution equivalent to selecting the real

and imaginary components as a random real vector

[
Re (|e0〉)
Im (|e0〉)

]
∈ R4×1 by selecting a

vector n according to the multivariate normal distribution n ∼ N (04×1, I4×4), and then

setting

[
Re (|e0〉)
Im (|e0〉)

]
=

n

||n||2
.

Note that the Xi are independent binomial random variables scaled by M , with the

distribution M ·Xi ∼ B
(
M, 〈e0|UH

i ρUi|e0〉
)
.

By decomposing Ui|e0〉 in the basis A, we can write

〈e0|UH
i ρUi|e0〉 = p1 + (p0 − p1) |〈a0|Ui|e0〉|2 . (5)

The statistics of the squared inner product can be derived by defining |a0,i〉 := UH
i |a0〉,

and for convenience, expressing this as a real unit vector a0,i :=

[
Re (|a0,i〉)
Im (|a0,i〉)

]
. We also

express |e0〉 as the real vector e0 :=

[
Re (|e0〉)
Im (|e0〉)

]
. We then note that

|〈a0|Ui|e0〉|2 = |〈a0,i|e0〉|2 = eT0
(
a0,ia

T
0,i + Ma0,ia

T
0,iM

T
)
e0 (6)

= eT0 Φe0, (7)

where M :=

[
02×2 I2×2

−I2×2 02×2

]
and Φ := a0,ia

T
0,i + Ma0,ia

T
0,iM

T is the projection onto

the space spanned by {a0,i,Ma0,i}, which is quickly verified to be a 2-dimensional

orthonormal set.
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Since e0 ∈ R4×1 is uniformly distributed on the unit sphere, then eT0 Φe0 will be dis-

tributed as
Z2

1+Z
2
2

Z2
1+Z

2
2+Z

2
3+Z

2
4

, where Zi ∼ N (0, 1) for each i. Since Z2
1 + Z2

2 ∼ χ2(2) and

Z2
3 + Z2

4 ∼ χ2(2), we have that eT0 Φe0 ∼ Beta(1, 1), which has mean 1/2 and variance

1/12, making its first two moments

E[eT0 Φe0] =
1

2
, (8)

E
[(

eT0 Φe0

)2]
=

1

12
+

(
1

2

)2

=
1

3
. (9)

Now, returning to the statistics of Xi, we have that

E[Xi | ρ, |e0〉,Ui] = p1 + (p0 − p1)eT0 Φe0, (10)

var [Xi | ρ, |e0〉,Ui] =
1

M

(
〈e0|UH

i ρUi|e0〉
(
1− 〈e0|UH

i ρUi|e0〉
))

(11)

=
1

M

(
p1 + (p0 − p1)eT0 Φe0

) (
p0 + (p1 − p0)eT0 Φe0

)
(12)

=
1

M

(
p0p1 + (p0 − p1)2eT0 Φe0 − (p0 − p1)2

(
eT0 Φe0

)2)
. (13)

Averaging these over our uniform distribution on the basis E , we obtain

E[Xi | ρ, αi, βi] = p1 + (p0 − p1)/2 (14)

=
1

2
, (15)

var [Xi | ρ, αi, βi] =
1

M

(
p0p1 + (p0 − p1)2/2− (p0 − p1)2/3

)
(16)

=
1

M

(
p0p1 + (p0 − p1)2/6

)
(17)

=
1

M

(
1

6
+

1

3
p0p1

)
. (18)

Both of these are independent of αi and βi, so to be concise we may just consider

expectations conditioned on ρ.

We can now derive the conditional expected covariance matrix as

Rρ,{αi},{βi} = E
[
(v̂ − v)(v̂ − v)T | ρ, {αi}, {βi}

]
= A+E

[
(ŵ −w)(ŵ −w)H | ρ, {αi}, {βi}

] (
A+
)T

= A+E
[
(X− E[X | ρ])(X− E[X | ρ])T | ρ

] (
A+
)T
,

where X :=
[
X1, ..., XNT

]T
. Since the Xi are independent,

E
[
(X− E[X | ρ])(X− E[X | ρ])T | ρ

]
will be a diagonal matrix, with diagonal entries

given by var [Xi | ρ]. It follows that

Rρ,{αi},{βi} =
1

M

(
1

6
+

1

3
p0p1

)
A+

(
A+
)T

=
1

M

(
1

6
+

1

3
p0p1

)(
ATA

)−1
. (19)
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Corollary 1. The conditional expected covariance matrix satisfies

1

6M

(
ATA

)−1
4 Rρ,{αi},{βi} 4

1

4M

(
ATA

)−1
,

where the lower bound is achieved if p0 = 0 or 1 and the upper bound is achieved

when p0 = p1 = 1
2 . In particular, if ρ is chosen according to a distribution such that

E[p0] = E[p1] = 1
2 , then if we average over ρ, the expected covariance matrix is

R{αi},{βi} =
1

4M

(
1− 4

3
var[p0]

)(
ATA

)−1
.

Proof. This follows directly from the fact that (ATA)−1 is positive semidefinite, and

the fact that 1
6 ≤

(
1
6 + 1

3p0p1
)
≤ 1

4 as p0 varies over the interval [0, 1] and p1 = 1− p0.

The lower bound is achieved when p0 = 0 or 1 and the upper bound is achieved when

p0 = 1/2.

In general, we will be considering scenarios in which p0 and p1 are both nearly 1/2, and

in this case, we should expect the conditional covariance matrix to nearly achieve its

upper bound:

Rρ,{αi},{βi} ≈
1

4M

(
ATA

)−1
for p0 ≈ p1 ≈

1

2
. (20)

B. Estimation Error

We can analyze the error in our estimate for the density operator ρ by noting that

ρ̂− ρ =

[
∆x ∆y + i∆z

∆y − i∆z −∆x

]
, (21)

where ∆x = x̂−x, ∆y = ŷ−y, and ∆z = ẑ−z. Let us consider the trace norm (nuclear

norm) of our estimation error,

||ρ̂− ρ||1 := Tr

(√
(ρ̂− ρ)H(ρ̂− ρ)

)
= 2
√

(∆x)2 + (∆y)2 + (∆z)2 = 2||v̂ − v||2. (22)

Corollary 2. The expected value of the estimation error trace norm is

E(||ρ̂− ρ||21 | ρ, {αi}, {βi}) =
4

M

(
1

6
+

1

3
p0p1

)
Tr
(
(ATA)−1

)
,

which can take any value in the interval
[
2
3

1
MTr

(
(ATA)−1

)
, 1
MTr

(
(ATA)−1

)]
, and is

roughly equal to its upper bound when p0 ≈ p1 ≈ 1
2 .
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Proof. We can use Theorem 1 to find the expected error as

E(||ρ̂− ρ||21 | ρ, {αi}, {βi})

= 4 (var(x̂ | ρ, {αi}, {βi}) + var(ŷ | ρ, {αi}, {βi}) + var(ẑ | ρ, {αi}, {βi})) (23)

=
4

M

(
1

6
+

1

3
p0p1

)
Tr
(
(ATA)−1

)
(24)

≈ 1

M
Tr
(
(ATA)−1

) (
for p0 ≈ p1 ≈

1

2

)
. (25)

The upper and lower bounds on the expected error come from varying p0 between 0 and

1 (keeping p0 + p1 = 1) in Equation (24).

In this form, it becomes apparent that the best strategy to minimize Eve’s estimation

error of ρ is for her to minimize Tr
(
(ATA)−1

)
. To this end, we state the following fact:

Lemma 1. For any choice of the NT unitary matrices Ui used to construct the matrix

A, we have Tr
(
ATA

)
= NT .

Proof. This follows from essentially a direct calculation. Considering each pair (αi, βi)

associated to the matrix Ui, we can write αi = |αi|ei arg(αi) and βi = |βi|ei arg(βi).

Noting that |αi|2 + |βi|2 = 1, and defining ϕi := arg(βi)− arg(αi), we can express A in

the form

A =


2|α1|2 − 1 2|α1|

√
1− |α1|2 cosϕ1 −2|α1|

√
1− |α1|2 sinϕ1

...
...

...

2|αNT
|2 − 1 2|αNT

|
√

1− |αNT
|2 cosϕNT

−2|αNT
|
√

1− |αNT
|2 sinϕNT

 .
(26)

It follows that the diagonal elements of ATA are

diag(ATA)

=

(∑
i

(2|αi|2 − 1)2,
∑
i

4|αi|2(1− |αi|2) cos2 ϕi,
∑
i

4|αi|2(1− |αi|2) sin2 ϕi

)
.

We can thus compute

Tr
(
ATA

)
=
∑
i

(2|αi|2 − 1)2 + 4|αi|2(1− |αi|2) =
∑
i

1 = NT . (27)

As a result, we can derive a lower bound on Tr
(
(ATA)−1

)
, which we state in the

following theorem:

Theorem 2. For any choice of the NT unitary rotations {Ui}, the resulting matrix

A satisfies Tr
(
(ATA)−1

)
≥ 9

NT
. As a result, we find that for p0 and p1 close to 1

2 ,

E(||ρ̂− ρ||21 | ρ, {αi}, {βi}) is approximately lower bounded by 9
M ·NT

.
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Proof. This can be concisely shown with the Cauchy-Schwartz inequality applied to the

Frobenius inner product and norm: Setting M =
√

ATA, we have∣∣〈M,M−1〉F
∣∣ ≤ ||M||F · ||M−1||F , (28)

where 〈B,C〉F = Tr
(
BHC

)
and ||B||F =

√
〈B,B〉F . Since M is real and symmetric, we

have that
∣∣〈M,M−1〉F

∣∣ = Tr (I3×3) = 3, ||M||F =
√

Tr (ATA) =
√
NT , and ||M||F =√

Tr ((ATA)−1), yielding the inequality. The rest follows from Equation (25).

Since it is convenient to express our error bounds in terms of the matrix A, whose

components are functions of the sets {αi} and {βi}, we briefly describe how to design

the measurement matrices Ui, which will give rise to A. Assuming the reference basis

E = {|e0〉, |e1〉} has been selected, we may simply set

Ui = αi|e0〉〈e0|+ eiγiβ∗i |e0〉〈e1|+ βi|e1〉〈e0| − eiγiα∗i |e1〉〈e1|, (29)

for any γi ∈ [0, 2π).

C. Minimizing Error in ρ̂

We now discuss a practical construction of a set of projective measurements that comes

close to the lower bound in Theorem 2. We first define the equally spaced angles

ϕk :=
2π(k − 1)

NT
, k = 1, ..., NT . (30)

To define our projective measurement types, it is enough to specify αk and βk for each

k = 1, ..., NT . Notice that, from Equation (26), we may without loss of generality take

the αk to be real. Once they are fixed, βk is completely determined by αk and ϕk. To

this end, notice that if we set

αk := ±

√
2 +
√

2

4
,

βk :=

(√
1− α2

k

)
eiϕk , k = 1, ..., NT , (31)

then the expression for the matrix A in Equation (26) reduces to the much simpler form

A =
1√
2


1 cosϕ1 − sinϕ1

...
...

...

1 cosϕNT
− sinϕNT

 . (32)

Then considering the matrix ATA, the off-diagonal terms will be either 1
2

∑
k cosϕk,

− 1
2

∑
k sinϕk, or − 1

2

∑
k sinϕk cosϕk = − 1

4

∑
k sin(2ϕk). Since the ϕk are the argu-

ments of the (NT )th roots of unity, we have∑
k

cosϕk =
∑
k

sinϕk = 0.
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If NT is odd, then the ordered set (2ϕk)NT

k=1 is a permutation of the angles {ϕk} modulo

2π. If NT is even, then (2ϕk)NT

k=1 contains each of the arguments of the (NT /2)th roots

of unity with multiplicity 2. In either case, we have∑
k

sin(2ϕk) = 0.

This establishes that ATA is a diagonal matrix, and a quick calculation shows that its

diagonal terms are 1
2

∑
k 1 = NT

2 , 1
2

∑
k cos2 ϕk = NT

4 , and 1
2

∑
k sin2 ϕk = NT

4 . As a

result, we have in this case

Tr
(
(ATA)−1

)
=

2

NT
+

4

NT
+

4

NT
=

10

NT
,

which is within 1
NT

of the lower bound in Theorem 2.

Remark: We may also set αk = ±
√

2−
√
2

4 in Equation (31) for each k, which will

reverse the sign of the first column of A, but will keep ATA equal to the same diagonal

matrix.

In Figure 1, we fix p0 = .501 and compare the expected estimation error using the

deterministic A described above to the empirical estimation error obtained by randomly

choosing our measurement matrices. In the deterministic construction, we choose the

reference basis E = {|e0〉, |e1〉} uniformly at random and then build the measurement

matrices Ui using Equation (29), setting γi equal to 0 for each i. As we can see, there

is a noticeable drop in the expected estimation error using our construction for a small

number of measurement types (particularly NT = 3) compared to the mean estimation

error averaged over 1000 randomly chosen sets of measurement matrices {Ui}NT
i=1.
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Figure 1. Convergence of the estimate ρ̂ to the true density operator ρ with respect to the number of

samples M for each of NT different measurement types. The basis probability bias is fixed to

p0 = .501. (a) Each of the NT measurement-defining unitary matrices Ui is chosen randomly, to

estimate ρ̂. This process is repeated 1000 times and the mean squared trace norm error is plotted.

(b) The unitary measurement matrices are chosen deterministically according to the method in Section

III-C, and the expected squared trace norm error is plotted.
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In Figure 2, we instead fix the number of samples M per measurement type, and plot the

convergence of our estimation error with respect to p0 for our deterministic construction

of A. We see that when NT is small, adding extra measurement types yields a significant

drop in expected estimation error (as seen when increasing NT from 3 to 6).

IV. Multiple Basis Estimation

We now shift our attention to the case where Alice randomly communicates to Bob in

one of two bases, as in the BB84 protocol, and examine how Eve can learn about Alice’s

bases with a series of projective measurements. Let the first basis be A = {|a0〉, |a1〉},
and without loss of generality the second basis can be expressed as B = {U|a0〉,U|a1〉},
where U is a unitary transformation. Alice transmits an element from basis A with

probability qa and an element from B with probability qb = 1 − qa. For each basis,

we assume Alice transmits the ‘0’ element with probability p0 and the ‘1’ element with

probability p1 = 1− p0. This yields the mixed density operator

Ψ := qaρA + qbUρAUH , (33)

where ρA := p0|a0〉〈a0| + p1|a1〉〈a1|. Since the bases A and B live in 2-dimensional

Hilbert spaces, we can express ρA and Ψ in the form
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Figure 2. Convergence of the estimate ρ̂ to the true density operator ρ with respect to the probability

bias, indicated by p0, for the deterministic measurement construction of Section III-C. The number of

samples M per measurement type is fixed to 100,000, and the expected squared trace norm error is

plotted for varying numbers NT of measurement types.
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ρA =

[
x w

w∗ 1− x

]
, (34)

Ψ =

[
x̃ w̃

w̃∗ 1− x̃

]
, (35)

where x and x̃ are real, and w and w̃ are complex. For convenience, we will define

λ := qa
qb

so that we may write Ψ = qb[λρA + UρAUH ]. We may also express U in the

the form

U =

[
a b

−eiϕb∗ eiϕa∗

]
, (36)

with a and b complex numbers satisfying |a|2 + |b|2 = 1. This allows us to express the

relationship between the parameters (x,w) and (x̃, w̃) from Equation (33) in the form

of the homogeneous equation

1

qb


x̃

w̃

w̃∗

 = M ·


x

w

w∗

+ c, (37)

where

M =


|a|2 − |b|2 + λ ab∗ a∗b

−2e−iϕab e−iϕa2 + λ −eiϕb2

−2eiϕa∗b∗ −eiϕb∗2 eiϕa∗2 + λ

 , c =


|b|2

e−iϕab

eiϕa∗b∗

 . (38)

We are now equipped to prove the following theorem:

Theorem 3. Assume Eve has knowledge of the probability bias λ = qa
qb

and of the basis

transformation U. Then Eve can recover the the operator ρA from Ψ provided that

either λ 6= 1 or |a| cos(θ − ϕ/2) 6= 0, where a and ϕ appear in U as in Equation (36)

and θ is the argument of a.

Proof. Eve can recover x and w, the defining parameters of ρA, from x̃ and w̃ (which

define Ψ) from Equation (37) provided that the matrix M is invertible. We can compute

the determinant of M to be

det(M) = λ3 + β(λ2 + λ) + 1, (39)

where β = 4|a|2 cos2(θ − ϕ/2) − 1 and a = |a|eiθ. Note that λ > 0 (by assumption)

and −1 ≤ β ≤ 3. M will be noninvertible only when its determinant is zero, which

corresponds to when β = −(λ3+1)
λ2+λ . We claim that −(λ

3+1)
λ2+λ ≤ −1 for λ > 0. This is

equivalent to the function f(λ) = λ3−λ2−λ+1 being nonnegative for λ > 0. Examining

the derivative f ′(λ) reveals a single local minimum for f(λ) in this domain at λ = 1,

at which point f(1) = 0. Thus, f(λ) ≥ 0 (and −(λ
3+1)

λ2+λ ≤ −1) for λ > 0. Based on the

13



range in which β lies, we now see that M can only be noninvertible when β = −1, which

corresponds to when |a| cos(θ − ϕ/2) = 0. In this case, the determinant of M becomes

exactly the function f(λ), and as we just discussed, it will only be zero if λ = 1.

Theorem 3 implies, in particular, that Eve can recover ρA from Ψ as long as the prob-

abilities of Alice selecting basis A and B are not exactly 1/2, provided she knows the

ratio qa
qb

and the unitary relationship U between the two bases. This will be the case

if Eve has some knowledge of a bias in Alice’s random number generator, and perhaps

knows that the two bases are related by an angular rotation of 45 degrees. Eve can

use the techniques discussed in Section III to estimate Ψ with projective measurements,

and to retrieve the basis A from ρA.

A. Optimal Probability of Detection with a POVM

Ultimately, Eve would like to design a protocol to estimate the actual information bits

(‘0’ or ‘1’) communicated by Alice to Bob. Ideally, she could use this POVM in an attack

such as intercept-resend and relay the resulting state to Bob in a relatively unperturbed

form, or transmit an alternative state that would maximize her likelihood of remaining

undetected. To this end, we will write out explicitly the density operators corresponding

to whether a ‘0’ or ‘1’ was transmitted in either basis:

ψi := qa|ai〉〈ai|+ qbU|ai〉〈ai|UH , i = 0, 1. (40)

Eve would like to construct a POVM {F0, F1} to estimate which bit is sent. The

probability that Eve estimates a ‘0’ given the state ψ0 was transmitted is then Tr (ψ0F0),

and the total probability of correct bit-estimation is

Pc = p0Tr (ψ0F0) + p1Tr (ψ1F1) . (41)

It behooves Eve to maximize this over all choices of POVMs. {F0, F1}.

In two-dimensions, a POVM can be expressed in the form

F0 = λ1f1f
H
1 + λ2f2f

H
2 , (42)

F1 = (1− λ1)f1f
H
1 + (1− λ2)f2f

H
2 , (43)

where {f1, f2} ⊂ C2 is an orthonormal basis and 0 ≤ λi ≤ 1 for i = 1, 2. For notational

convenience, we will write in vector form ai := |ai〉 for i = 0, 1.

Lemma 2. Given a POVM {F0, F1} expressed as in Equations (42) and (43), we have

Tr (ψ0F0) = (λ1 − λ2)(qa|fH1 a0|2 + qb|fH1 Ua0|2) + λ2, (44)

Tr (ψ1F1) = Tr (ψ0F0) + 1− λ1 − λ2. (45)

As a result, the probability of correct bit estimation is Pc = Tr ((ψ0 − p1I2)F0) + p1,

where I2 is the 2× 2 identity matrix.

14



Proof. Equation (44) can be derived algebraically:

Tr (ψ0F0) = qaa
H
0 F0a0 + qba

H
0 UHF0Ua0

= qaλ1|fH1 a0|2 + qaλ2|fH2 a0|2 + qbλ1|fH1 Ua0|2 + qbλ2|fH2 Ua0|2

= qaλ1|fH1 a0|2 + qaλ2(||a0||22 − |fH1 a0|2) + qbλ1|fH1 Ua0|2

+ qbλ2(||Ua0||22 − |fH1 Ua0|2)

= (λ1 − λ2)(qa|fH1 a0|2 + qb|fH1 Ua0|2) + λ2,

where the second equality follows from Equation (42), the third equality follows from

the fact that {f1, f2} is an orthonormal basis, and the fourth equality follows from the

fact that ||a0||22 = ||Ua0||22 = 1. Mimicking this argument using ψ1 and F1, and starting

with Equation (43), we get

Tr (ψ1F1) = (λ2 − λ1)(qa|fH1 a1|2 + qb|fH1 Ua1|2) + (1− λ2)

= (λ2 − λ1)(qa(1− |fH1 a0|2) + qb(1− |fH1 Ua0|2)) + (1− λ2)

= (λ2 − λ1) + (λ1 − λ2)(qa|fH1 a0|2 + qb|fH1 Ua0|2) + (1− λ2)

= Tr (ψ0F0) + 1− λ1 − λ2.

Now we obtain the final expression for Pc as follows:

Pc = p0Tr (ψ0F0) + p1Tr (ψ1F1)

= p0Tr (ψ0F0) + p1(Tr (ψ0F0) + 1− λ1 − λ2)

= Tr (ψ0F0) + p1(1− λ1 − λ2)

= Tr (ψ0F0) + p1(1− Tr (F0))

= Tr ((ψ0 − p1I2)F0) + p1.

We are now in a position to find the optimal probability of correct detection for a

POVM:

Theorem 4. The optimal probability of correct detection maximized over all POVMs

{F0, F1} is given by Pc = max{p0, p1, ||ψ0||2, ||ψ1||2}, where ||ψi||2 = max||f ||2=1 fHψif

is the maximum singular value of ψi. These are equal for ψ0 and ψ1 by construction.

Proof. For a given POVM {F0, F1}, Lemma 2 gives us

Pc = Tr ((ψ0 − p1I2)F0) + p1

= Tr (ψ0F0)− p1Tr (F0) + p1

= (λ1 − λ2)(qa|fH1 a0|2 + qb|fH1 Ua0|2) + λ2 − p1(λ1 + λ2) + p1.

We consider maximizing Pc by varying λ1 and λ2 for a fixed f1, and to this end we set

χ := qa|fH1 a0|2 + qb|fH1 Ua0|2,
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so that

Pc = (λ1 − λ2)χ+ λ2 − p1(λ1 + λ2) + p1

= λ1(χ− p1) + λ2(p0 − χ).

In this form, we see that it is optimal to choose

λ1 =

0, χ < p1

1, χ ≥ p1
, (46)

λ2 =

0, χ > p0

1, χ ≤ p0
. (47)

For these choices of λ1 and λ2, we see that

• If p0 > p1: Pc =


1− χ, χ < p1

p0, p1 ≤ χ ≤ p0
χ, χ > p0

.

• If p1 > p0: Pc =


1− χ, χ < p0

p1, p0 ≤ χ ≤ p1
χ, χ > p1

.

We quickly verify that the optimal probability of correct detection for a fixed f1 is

Pc = max{1− χ, max(p0, p1), χ}.

Rewriting χ as fH1 ψ0f1, and 1− χ as fH1 (I2 − ψ0)f1 = fH1 ψ1f1, we see that the optimal

POVM will select f1 to maximize max{fH1 ψ0f1, fH1 ψ1f1}, which will lead to a probability

of correct detection of Pc = max{p0, p1, ||ψ0||2, ||ψ1||2} as in the theorem statement.

The final comment that ||ψ0||2 and ||ψ1||2 are equal can be seen as follows: For any

choice of orthonormal basis {f1, f2}, we have

fH1 ψ0f1 = qa|fH1 a0|2 + qb|fH1 Ua0|2

= qa(1− |fH1 a1|2) + qb(1− |fH1 Ua1|2)

= qa|fH2 a1|2 + qb|fH2 Ua1|2

= fH2 ψ1f2,

where the second equality follows from the fact that {a0, a1} and {Ua0, Ua1} are

orthonormal bases, and the third equality follows from {f1, f2} being orthonormal.

Thus, the maximal singular values of ψ0 and ψ1 agree.

Figure 3 shows the distribution of values of the maximum achievable Pc for various fixed

p0 and qa, obtained by selecting the orthonormal bases A and B uniformly at random.
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We see clearly that for p0 > qa, the maximum value of Pc ranges between p0 and 1,

and likewise, for qa > p0 it will range between qa and 1. Interchanging the values of

p0 and qa seems to leave the distributions almost unchanged, though in Tables 1 and 2

we notice that the mean maximum achievable value of Pc is empirically higher in our

simulations when fixing p0 to 0.501 and varying qa than when fixing qa to the same

value and varying p0.
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Figure 3. The empirical cumulative distribution functions of the maximum achievable Pc, obtained by

fixing p0 and qa and selecting the two bases A and B uniformly at random. (a) The basis probability qa

is set to .501, and the cumulative distribution function (cdf) is plotted for several p0. (b) The bit

probability p0 is set to .501, and the cdf is plotted for several qa.

p0 = 0.501 p0 = 0.55 p0 = 0.6 p0 = 0.65 p0 = 0.7

0.83262 0.83332 0.83453 0.8378 0.84411

Table 1. Empirical mean values of maximum achievable Pc for qa = 0.501, averaged over 100,000 trials.

qa = 0.501 qa = 0.55 qa = 0.6 qa = 0.65 qa = 0.7

0.8333 0.83637 0.84361 0.85605 0.8711

Table 2. Empirical mean values of maximum achievable Pc for p0 = 0.501, averaged over 100,000 trials.

In Figure 4, we plot the maximum achievable Pc when the basis A is fixed to be the

standard basis and B is a rotation of the standard basis by π/4. This scenario models

a typical set of bases that might be used in a QKD scheme. In Figure 4(a), we can see

clearly regions in which the maximum Pc is equal to p0 (for low qa) and in which it

grows as the maximum singular value of the ψi (for high qa). In the regime of Figure

4(b), we see that the maximum Pc is governed by the singular values of the ψi for low

p0 (which are determined by the fixed value of qa for each curve), and reaches a point

at which it grows linearly, where it is equal to p0.
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Figure 4. The maximum probability of correct bit estimation Pc with a POVM, where basis A is the

standard basis and B is the same with a rotation of π/4. In (a), Pc is plotted with respect to p0 for

several different qa, and in (b) it is plotted with respect to qa for several different choices of p0.

V. Conclusion and Future Directions

In this report, we have evaluated how effectively an eavesdropper can exploit imper-

fections in a BB84-like protocol for QKD. Specifically, we focused on bias in a random

number generator used by Alice in selecting between two orthonormal bases and be-

tween the basis elements therein. We showed how Eve can design a system of projective

measurements to achieve a low-error estimate of the density operator of Alice’s trans-

mitted states, and derived bounds and an approximation for the expected covariance of

her estimate conditioned on the choice of measurements. This led to an approximate

lower bound on the trace norm of this error in terms of the number of types of projective

measurements and the number of samples for each type. We designed a specific set of

projective measurements that would enable Eve to achieve this bound. Finally, we gave

conditions under which Eve can learn both bases in the BB84 protocol, and derived the

optimal probability of correct key-bit estimation with a POVM.

Our analysis served mostly to identify vulnerabilities in a standard “prepare and mea-

sure” scheme between Alice and Bob, and there is some work required to frame it in

the context of other QKD approaches. Future investigation could also entail incorpo-

rating other effects, such as noisy state transmissions or imperfect basis rotations, into

our error calculations. The problem of extracting multiple sets of orthonormal states

from a statistical mixture is interesting in its own right. It would be useful to derive

conditions under which more than two bases could be estimated, and approaches Eve

can take to overcome imperfect knowledge of the relationship between two bases (for

instance, if the rotation matrix U is unknown in Section IV).

Finally, it remains to quantify how easily Eve’s ability to estimate these states can

be overcome through methods employed by Alice and Bob, such as privacy amplifica-

tion and decoy states [14, 15], and the tradeoff between Eve’s estimation error and her

probability of detection by Alice and Bob using these methods.
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