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ABSTRACT. — Currently, instrumental phase dispersion is a large error term in the Delta-
Differential One-way Ranging (DDOR) error budget. This error arises from the difference in 
instrumental response to the spectral difference between the narrowband spacecraft signal 
and the broadband quasar signal. This error term can be reduced in modern transponders 
by implementing a pseudo-noise (PN) spread spectrum DOR signal instead of the classic 
sinusoidal DOR signal. This paper presents the methodology to post-process such PN 
spread spectrum signals and to generate DDOR observables for use in spacecraft 
navigation. This is now an operational capability in the Deep Space Network (DSN) and is 
expected to be used for support of CubeSat missions flying with Artemis I and carrying the 
Iris 2.2 radio.  

I. DDOR Background 

DDOR is a spacecraft-tracking technique used for deep space navigation. This technique 
uses Very Long Baseline Interferometry (VLBI) to observe spacecraft and extragalactic radio 
sources, e.g., quasars, at two stations and to measure the difference in time of signal arrival. 
During a typical DDOR measurement, an hour-long pass is scheduled concurrently at two 
(or more) stations. The spacecraft and quasars are observed alternately and recorded using 
the DSN’s Open Loop Receiver (OLR) [1]. Separate channels are used to record frequency 
slices centered at the received frequencies of the spacecraft tones. The quasar delay 
measurement is designed to closely match the spacecraft delay measurement so that 
common mode error cancellation provides high accuracy. The processing of each signal is 
also designed to have large common mode error cancellation. 

The recorded quasar data must first be brought together to a common site for cross-
correlation processing [2]. Next, the quasar data from each station are time-aligned and 
frequency-aligned to find the correlation peak, and then the cross-correlation phase 
refines the estimate of the difference in signal arrival time. The bandwidth synthesis 
technique is then used to form a group delay measurement from several discrete frequency 
channels [3]. The quasar group delay is the phase difference between two channels divided 



 2 

by the frequency difference between the same channels. Two quasar recordings spanning 
about 1,000 seconds in time and channels spanning about 40 MHz in frequency, are 
required to achieve sufficient accuracy. 

The spacecraft processing starts by extracting the phase of the spacecraft signal 
components as a function of time. This is similar to Doppler signal measurements in the 
DSN, but care is taken to process the signal components in a consistent manner, using 
coherent models when possible, so that high accuracy is achieved for the phase difference 
between signal components [4]. This first step can be performed at each station separately 
or at a central correlator. Next the phase values for each station must be differenced per 
channel at a central correlator. These channel phase differences are analogous to the 
quasar processing phase differences and are then used to form group delays in the same 
manner. 

The final output of the DDOR processing system is a group delay for each radio source 
observation compressed to the center time of the observation. The information content of 
these measurements is the angular offset between the spacecraft and the quasar. 
Observables are delivered to the DSN Tracking and Data Delivery Subsystem, where the 
data are made available and archived in TRK-2-34 format. 

This DDOR processing algorithm has roots in the late 1970s. Reference [5] covers the 
development of DDOR at the Jet Propulsion Laboratory (JPL) from an experimental 
technique in the 1970s to a key navigation measurement for all Mars landers and many 
other deep space missions starting in 2001. DDOR is now used to determine the positions 
of spacecraft and natural bodies with a radio beacon (e.g., Mars with a Mars orbiter) in the 
International Celestial Reference Frame [6] used for spacecraft navigation. As mission 
navigation requirements have become more and more stringent, the required accuracy of 
DDOR measurements has also increased. The processing software has been updated 
accordingly many times to provide the functionality and high accuracy documented in [1] 
and [5]. As navigation requirements continue to become more stringent, the technique 
will continue to require updates. 

This paper describes the PN DOR processing algorithm, which was added to the DSN DOR 
processing software in June 2020. This algorithm presents an opportunity to further 
improve DDOR accuracy. The PN DOR module was designed to match the interface for the 
processing of sinusoidal DOR signals. Delay observables for use by navigation are 
generated from PN DOR signals just as for sinusoidal DOR signals. The DSN now 
operationally supports PN spread spectrum PN DOR. The first flight with this capability is 
expected of several of the CubeSat missions flying with Artemis I and using the Iris 2.2 
radio [7]. 

II. PN DOR Motivation and Background 

The error budget for a DDOR measurement is based on many factors, including quasar 
signal level, spanned bandwidth, observation geometry, spacecraft transponder design, 
ground station receiver performance, and more. The Consultative Committee for Space 
Data Systems (CCSDS) DDOR Green Book [8] describes these trade-offs in great detail. 
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Using the current assumptions for an X-band DDOR measurement yields the error budget 
as shown in Figure 1. 

The leading term in this error budget is the instrumental dispersive phase term. This term 
is the error caused by a difference in the ground station instrumental phase response 
between the narrowband spacecraft signal and the wideband quasar signal. Currently, the 
spacecraft signal used in a DDOR measurement has a spectrum with discrete sinusoidal 
frequency components. The quasar signal, however, is a broadband, white-noise signal. 
The spacecraft and quasar signal components must be recorded in frequency channels that 
have the same center frequencies in order to cancel first order instrumental effects. But the 
channel bandwidths are currently different between the spacecraft and quasar signal. The 
spacecraft signal is recorded in narrow bandwidths, typically 50 kHz, but each quasar 
channel must be recorded using a wide channel bandwidth, typically 8 MHz, because the 
quasar flux (W/m2/Hz) is so low. The dispersive error is caused by the nonlinear 
instrumental phase effects over the quasar channel bandwidth as compared to the 
narrowband spacecraft signal. The Instrumental Dispersive Phase error term in Figure 1 of 
0.03 ns corresponds to a dispersive phase effect of 0.2° over a 38 MHz spanned bandwidth. 

The spectral difference can be greatly reduced by spreading the spacecraft signal with a PN 
sequence and shaping the spectrum with a shaping pulse. The more closely the spacecraft 
signal can match the quasar white-noise signal, the more the dispersive phase error is 
reduced.  

Figure 2 shows the X-Band DDOR error budget with the addition of PN spreading 
overlayed with the baseline error budget from Figure 1. The 90% reduction in dispersive 

 

Figure 1. Baseline X-Band DDOR error budget.  
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phase error corresponds to a 15% reduction in root sum square (RSS) error. Under favorable 
geometric conditions, reduction in the dispersive phase error can result in up to a 40% 
reduction in RSS error. At Ka-band, charged particle errors are reduced and quasar 
coordinate errors are expected to be reduced, so the dispersive phase error term could be 
even more limiting. As more and more missions use Ka-band, PN spreading will become 
even more critical for high-precision navigation. 

The PN spreading on the spacecraft signal is achieved by multiplying the sinusoidal DOR 
tone with a shaped PN sequence. The CCSDS-recommended PN code for DDOR is a Gold 
Code, which can be generated with a Linear Feedback Shift Register (LFSR). An example of 
an LFSR is shown in Figure 3. The feedback taps and the initial seeds can be varied during 
design, but a common standard is suggested in the CCSDS DDOR Green Book Annex A [8]. 

 

Figure 3. An example Gold Code LFSR. The feedback taps and initial values of the registers are generally 

programmable to generate different Gold Code sequences. 
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Figure 2. X-Band DDOR error budget with PN spreading (opaque bars) overlaid with the baseline X-Band 

DDOR error budget (transparent bars). 
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The output of an LFSR will be a binary sequence. If this sequence is transmitted as a square 
pulse sequence, then the resulting amplitude spectrum would follow a sinc(x) shape. To 
create a flat quasar-like spectrum, the sequence must be shaped by a shaping filter. The 
CCSDS DDOR Green Book-recommended shaping filter is a Square Root Raised Cosine 
(SRRC) Filter. The amplitude spectrum of an SRRC filter at a variety of roll-off factors is 
shown in Figure 4. 

 

Figure 4. Output spectrum of a square root raised cosine (SRRC) filter. Each different colored line 

represents a different SRRC roll-off factor, β. 

 

The design of the Gold Code and SRRC Filter are explained in detail in the CCSDS DDOR 
Green Book Annex A [8]. A prototype design was tested on the Iris transponder 
engineering model at JPL in 2018. The design was finalized, and PN DOR capability is now 
operational in the flight model Iris 2.2. Acceptance Testing was successfully completed for 
Iris 2.2 at the DSN Test Facility, DTF-21, in 2020 [7]. The design process and results for this 
implementation are described in Reference [9]. The transponder design parameters are 
needed for successful post-processing and must be documented prior to the pass. 

III. PN DOR Post-Processing Overview 

The post-processing of a PN DOR signal is similar to conventional DOR signals but with 
the addition of code that despreads the PN signal. Also different from normal DOR 
processing is that two phase outputs are generated, one for the underlying DOR tone phase 
(as in current DOR measurements) and then another for the PN correlation phase. In a 
PN DOR measurement, the PN phase is used for ambiguity resolution. This post-processing 
flow is briefly illustrated in Figure 5. 
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Figure 5. PN DOR Post-Processing Flow Chart. 

 

The following sections describe each step in further detail. One important topic to consider 
is the runtime performance of the post-processing script. Typically, conventional DOR 
measurements record the spacecraft data with narrowband (50 kHz) channels, which are 
very quick to process. For PN DOR, however, the spacecraft data are recorded in much 
wider channels (similar to quasar signal bandwidths). Special consideration has been 
added to each step to reduce runtime where possible. 

One consequence of using wider channel bandwidths for PN DOR is that the size of the 
recorded data is much larger than when using narrowband channels. This will cause 
significantly increased download times if the raw data are sent to a central correlator for 
processing. This is further exaggerated at Ka-band when 32 MHz channels are used. For 
example, 30 minutes of spacecraft data (2 PN DOR channels recorded at 32 MHz, 2-bit 
complex samples) will result in approximately 30 GB of data per antenna. If transmitted at 
10 MB/s, it would take approximately 45 minutes to download the data. If instead the data 
are processed at the antenna first, the output phase time series is less than 30 MB, and the 
download times are reduced to only a few seconds. Figure 6 shows an example of this 
procedure. 

 

Figure 6. PN DOR processing at each station separately, with the final observable at a central correlator to 

reduce transmitted file sizes. 
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The first step is to build a PN and DOR phase model from the carrier signal. This assumes 
that the signals’ frequencies are coherent. Under this assumption, the PN Code phase and 
DOR tone phase are directly related to carrier phase. Because the carrier signal is typically 
the strongest signal, a high-fidelity model can be built from the carrier phase. This process 
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is called carrier-rate aiding and is the current process used for most conventional DOR 
signals.1 

First, a phase-locked loop (PLL) is run on the carrier signal. The design of such a PLL is left 
outside the scope of this manuscript. The output of the PLL is the phase of the carrier as 
measured in the baseband channel. A radio frequency (RF) phase model is needed, 
however, so the channel center phase must be recorded as well. Typically, this information 
is found in the headers of the recorded (OLR) data files. Because the channel frequency will 
be at approximately 8 GHz at X-band (32 GHz at Ka-band), special care is needed to avoid 
issues with storing large numbers. For example, the down-conversion frequencies are 
typically common between channels and may cancel to a large extent.  

The carrier RF phase can be converted to a model phase for the PN Code and the DOR tone 
by simply multiplying the carrier phase by a constant multiplier. A common DOR tone 
multiplier at X-band is 1/440, for example, but decimal numbers can be used as well. This 
multiplier will vary for each transponder and should be measured before flight. Likewise, 
the PN Code Multiplier is the multiplier between the carrier phase and the PN code phase. 
It is important to note, however, that the PN Code Multiplier will convert phase to chips, 
whereas the DOR Tone Multiplier will yield cycles. In summary, Equations (1) and (2) 
show how a model can be built from the measured carrier phase. 

 𝜙!"#(𝑡) = 𝑀𝑈𝐿𝑇!"# ∗ 𝜙$%&&'(&(𝑡) (1) 

 𝜙)*(𝑡) = 𝑀𝑈𝐿𝑇)* ∗ 𝜙$%&&'(&(𝑡) (2) 

 

B. Step 2: Integrate Recorded Signal 

The model DOR Tone phase can be used now to counter-rotate the raw recorded data to 
near 0 Hz. This allows for integration over multiple seconds to detect weaker signals. This is 
performed as in Equation (3), where 𝑉(𝑡) are the raw recorded voltage values, and 𝑉,(𝑡) are 
the counter-rotated voltage values.  

 𝑉,(𝑡) = 𝑉(𝑡)𝑒(,-'∗/∗0!"#) (3) 

With the model phase removed, the counter-rotate signal, 𝑉,(𝑡), will contain the PN 
modulation near 0 Hz. Because the PN sequence repeats the same sequence over and over 
again, the code can be compressed and averaged into one sequence length. 
Mathematically, this is equivalent to taking the modulo of the PN phase model in 
Equation (2) by the code length NPN as shown in Equation (4). 

 𝜙.)*(𝑡) = /𝑀𝑈𝐿𝑇)* ∗ 𝜙$%&&'(&(𝑡)0		𝑚𝑜𝑑		𝑁)*  (4) 

The resulting phase will be in the interval (0, NPN). At this point, it is convenient to 
downsample the data into discrete phase bins for simpler processing in future steps. One 

 
1 When the carrier and the PN DOR signals are not coherent (or when the carrier is fully suppressed), it is possible to utilize a 

Costas loop to recover the phase of the PN DOR signal directly. However, this technique is not explored in this 
manuscript. 



 8 

method for this operation is to bin the data into phase bins and average the complex 
values into one datapoint per bin. For example, average all of the data points with phase 
between 0.00 and 0.25 chips into one value. This will greatly reduce the amount of 
processing for future steps. For example, an 8 MHz file integrated for 2 seconds will have 
16 million complex numbers to process, but when reduced to a code length of 8,191 chips 
(as recommended for X-band) and with 4 bins per chip, there will be only approximately 
32,800 complex numbers to process. The number of bins can be varied as desired but must 
be at least two per chip to satisfy the Nyquist theorem. Because the raw data are averaged 
per bin, the per-bin signal-to-noise ratio (SNR) is greatly increased during this process 
while the overall SNR remains approximately unchanged. Figure 7 shows an example of 
how the raw datapoints may be compressed in this manner. Initially, from the raw data no 
discernible PN sequence is apparent, but after binning the data, the waveform becomes 
more apparent. 

Note that for the following examples, the recorded I/Q voltage samples (i.e., In-Phase and 
Quadrature elements) have been shown on separate charts for illustration. The I (In-Phase) 
samples are shown on the left, and the Q (Quadrature) samples are shown on the right. In 
practice, it is convenient to work with complex samples instead of treating the I and Q 
values separately. 

 

Figure 7. Example of averaging the counter-rotated data (blue dots) into binned data (magenta curve). 

The In-Phase values are shown on the left chart and the Quadrature values on the right chart. 

 

C. Step 3: Correlate Against the Model Code 

The binned data are now ready to be correlated against a reference PN code. This reference 
code must match the transmitted code and should be created using the circuit shown in 
Figure 3. The output binary sequence must also be filtered with the same SRRC filter to 
maximize SNR. One last consideration is that the reference sequence should be binned at 
the same rate as the binned data. If 4 bins per chip were used previously, then the same 
should be applied to the reference signal as well.  
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Figure 8 shows an example of the reference PN signal aligned with the binned data from 
Figure 7. At this stage in the processing, the difference in amplitude between the In-Phase 
values and Quadrature values shows the underlying DOR tone phase, which will be 
measured in Step 4. In Figure 8, the reference PN sequence has been scaled to the same 
amplitude as the binned values for visual comparison. In practice, both values should be 
correlated against the same reference PN values with no scaling. 

 

Figure 8. Comparison of the reference PN sequence (black curve) aligned to the binned data (magenta curve). 

The In-Phase values are shown on the left chart and the Quadrature values on the right chart. The reference PN 

sequence has been scaled to the same amplitude as the binned data for comparison. 

 

Now, the binned data can be correlated against the reference sequence. This could be done 
with element-wise correlation, but the processing time can be greatly reduced by using the 
correlation theorem and fast Fourier transforms (FFTs) as shown in Equation (5). In this 
equation, ⋆ denotes the correlation operation and ℱ.  denotes the complex conjugate of the 
Fourier transform. 

 𝑃𝑁2(%34&(5 ⋆ 𝑃𝑁&(6(&(78( =	ℱ,9 9ℱ(𝑃𝑁2(%34&(5).................... ∙ ℱ/𝑃𝑁&(6(&(78(0; (5) 

Because element-wise correlation uses O(N2) number of operations whereas an FTT only 
uses O(N log N) operations, there can be a significant improvement for large datasets. 
Additionally, because the FFT of the reference signal does not change between integration 
times, the FFT only needs to be computed once for the reference PN sequence instead of at 
each integration time. Both of these considerations result in a much-reduced runtime 
when using FFTs instead of element-wise correlation. 

The output of the correlation routine will be a series of complex amplitudes versus the 
number of lags. The lag resolution is related to the downsampling parameter used earlier, 
e.g., a 4´ downsampling factor yields a lag resolution of 0.25 chips. Figure 9 shows an 
example of the correlation output for all lags. 
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Figure 9. Correlation values between the reference PN sequence and the binned data. 

 

The PN DOR code phase can be estimated by finding the peak in the correlation output. To 
improve precision, it is necessary to interpolate between lags. Quadratic interpolation is 
suitable for estimating the peak between lags. The DOR tone phase can also be initially 
estimated from the correlation results by using Equation (6). Here, Q corresponds to the 
Quadrature-phase value at the peak, and I corresponds to the In-Phase value at the peak. 
Figure 10 shows a close-up of the peak in this correlation result. 

 𝜙,!"# = tan,9 9:
;
; (6) 

The PN correlation SNR, SNRPN, can be computed at this point as well. The SNRPN is 
computed as the ratio between the peak of the correlation amplitudes and the standard 
deviation of the correlation amplitudes as shown in Equation (7). This SNRPN provides a 
measure of how strong the underlying recorded PN signal is and how robust the 
correlation results are. Monte Carlo analysis shows that for a SNRPN greater than 7.0 dB, the 
correct PN chip phase can be successfully identified at least 99% of the time. 

 

Figure 10. Correlation values near the peak between the reference PN sequence and the binned data. 
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 𝑆𝑁𝑅)* = 10	𝑙𝑜𝑔9< 9
2%=(>2?)
3@5(>2?)

; (7) 

Another consideration is that the standard deviation of the PN correlation amplitudes has 
a lower bound based on the cross-correlation properties of the underlying PN sequence. 
This creates an upper bound on SNRPN. The cross-correlation properties for Gold Codes 
(which are recommended for PN DOR) are given in Equation (8), where N is the number of 
bits in the Gold Code generator circuit. 

 𝑠𝑡𝑑(𝐴𝑚𝑝) ≥ I2
(*A9)/- 𝑓𝑜𝑟	𝑁	𝑜𝑑𝑑
2(*A-)/- 𝑓𝑜𝑟	𝑁	𝑒𝑣𝑒𝑛

 (8) 

The corresponding upper bound on SNRPN is simply the code length, equal to max(Amp) 
with no added noise, divided by std(Amp) from Equation (8). A few maximum values for 
SNRPN are tabulated in Table 1. 

Table 1. Maximum SNR for a Variety of Gold Code Lengths. 

N (bits) Code Length (chips) Max SNRPN (dB) 

11 2047 15.049 

12 4095 15.050 

13 8191 18.061 

14 16383 18.062 

15 32767 21.072 
 

D. Step 4: Despread PN and Measure Phase 

With the PN code phase and DOR tone phase estimated from the PN correlation, the 
recorded signal can now be despread. First, the binned signal from Figure 8 is counter-
rotated by the initial estimated DOR tone phase from Equation (6). This places all of the PN 
signal on the I-axis and only noise on the Q-axis. This is shown in Figure 11. The reference 
PN signal is also shown for comparison. 

 

Figure 11. The counter-rotated binned data (magenta curve) places the signal onto the In-Phase axis (left chart) 

so that only noise remains on the Quadrature axis (right chart). The reference PN signal (black curve) is shown 

for comparison. 
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Next, this counter-rotated signal can be multiplied by the reference PN signal to despread 
the signal. Mathematically, this is achieved by multiplying the binned and reference 
signals at each time from Figure 11. The result of this multiplication is a despread signal 
with a direct current (DC) component and high frequency terms. The phase of the DC 
component is used to refine the DOR tone phase previously estimated during the PN 
correlation. An example of the resulting despread signal is shown in Figure 12. 

The phase of the DC component is measured as the arctangent using the average I-value 
and the average Q-value within an integration time as in Equation (9). This measured DC 
phase should be near 0 since an earlier counter-rotation was performed, and so the final 
DOR phase measurement for the channel is the combination of the earlier estimate and 
this measured DC phase as in Equation (10). 

 𝜙!$ = tan,9 O:$%&
;$%&

P (9) 

 𝜙!"# = 𝜙,!"# + 𝜙!$  (10) 

The SNR of this measurement can also be estimated as in normal DOR tone observations. 
The SNR is estimated as the average of the I-values within an integration time divided by 
the standard deviation of the Q-values within the same integration time, all normalized by 
number of points as in Equation (11). This formulation assumes that the counter-rotation 
performed earlier places all of the signal on the I-axis and thus the Q-axis contains only 
noise. If there is a significant signal left on the Q-axis, then this equation will result in an 
erroneous SNR. 

 𝑆𝑁𝑅!"# = 10	𝑙𝑜𝑔9< O
2(%7(;)

3@5(:)∗C9 *⁄
P (11) 

The SNR of the DOR tone is inversely proportional to the standard deviation of the 
resulting phase measurement. This relationship is shown in Equation (12). This SNR value 
is the voltage SNR and can be multiplied by 2 to convert to the ratio of received power to 

 

Figure 12. Example of the resulting despread PN data (green curve) and the corresponding average values (black 

line). The In-Phase values are shown on the left chart and the Quadrature values on the right chart. 
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noise spectral density, Px/N0, in dB. The ratio of received power to noise spectral density, 
Px/N0, is hereafter, for the sake of convenience, referred to as the received power. The 
justification for this abbreviation is that Px/N0 is proportional to the received power when 
the noise spectral density is constant. 

 𝜎0,!"# =
9

-/∗F*#!"#
 (12) 

IV. Performance Assessment 

The performance of the algorithm described in the previous section was tested using a 
Monte Carlo analysis. A software simulator generated data at a specified Px/N0, and these 
data were then processed through the PN DOR software. The measured phase was 
compared to the truth phase to assess the performance of the simulation. 

First, data were simulated for a variety of Px/N0 levels for the recommended X-band 
configuration (13-bit Gold Code generated at 7.1 Mcps). The results from this assessment 
are shown in Figure 13. For recording the DOR tone phase, both Classic DOR (sinusoidal 
tones) and PN DOR yield the same performance, which follows the theoretical relationship 
shown in Equation (12). The phase sigma on the PN code phase followed a similar 
relationship but with a constant bias. 

 

Figure 13. Phase measurement uncertainty for the DOR tone phase (left) and for the PN code phase (right) versus 

received power. The Classic DOR performance (blue line) is shown for reference against the PN DOR performance 

(orange line). 

 

The same Monte Carlo analysis was repeated for a few other PN configurations, varying the 
Gold Code length, chip rate, and in one case, different Gold Code polynomials (denoted as 
Code 2). Each of these other configurations performed at a similar level as the baseline 
X-band configuration as shown in the phase sigma results in Figure 14. Although, because 
the PN code phase performance was the same in terms of PN chips, a higher chip rate 
results in better time resolution but at the cost of an increased recording sample rate and 
bandwidth. 
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Figure 14. Comparison of DOR tone phase sigma levels (left) and PN code phase sigma levels (right) versus 

received power for a variety of PN code configurations. 

 

The best fit line plotted on the DOR Tone Phase Sigma (left plot) of Figure 14 is given by 
Equation (13), which is equivalent to the theoretical relationship in Equation (12). 

 𝜎!,#$% =
&

'(∗*+,/./
 (13) 

The best fit line plotted on the PN Code Phase Sigma (right plot) of Figure 14 is given by 
Equation (14). 

 𝜎!,+. =
0.203

'(∗*+,/./
 (14) 

Below a received power of 20 dB-Hz, the probability of successfully detecting the correct 
PN code phase drops below 100%. This effect is responsible for the noisy behavior visible 
in Figure 14. The probability of successfully detecting the PN code phase for a variety of 
code lengths, chip rates, and in one case, a pair of different Gold Code Polynomials 
(denoted as Code 2), is shown in Figure 15. Shorter PN code lengths increase the 
probability of detecting the PN code successfully at lower powers but also result in a 
reduction in ambiguity resolution capabilities. The chip rate or polynomial pair selection 
does not significantly affect the probability of detecting the PN Code. 

Next, a Monte Carlo analysis was performed to assess how the recording sample size 
impacts the signal level. Typically, DDOR quasar data are recorded with 2-bit samples, 
so PN data should be recorded at the same sample size to maintain common error 
cancellation. Other options typically include 1-bit, 4-bit, 8-bit, and 16-bit sample sizes. 
Table 2 shows how each of these options compare to the 16-bit sampling option. A large 
decrease in power is observed with 1-bit sampling whereas 4-bit sampling provides almost 
as much power as 16-bit sampling. 
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Figure 15. Probability of successfully detecting the PN code versus received power for a variety of PN code 

configurations. 

 

Table 2. Equivalent reduction in power level for different recording sample sizes. 

Sample Size (bits) Drop in Power Level (dB) 

1-bit  -1.92 dB 

2-bit -0.53 dB 

4-bit -0.03 dB 

8-bit -0.02 dB 

16-bit 0.00 dB 

 

In summary, the highest performance is achieved with higher chip rates, shorter code 
lengths, and larger recording sample sizes. This results in the most precise PN Code Phase 
measurement and highest probability of successfully detecting the PN code. The cost of 
this configuration is increased data sizes during recording and reduced ambiguity 
resolution capabilities. Since ambiguity resolution is critical to a successful DOR 
observable, there is a trade-off that requires moving towards lower chip rates and longer 
code lengths. For reference, the CCSDS-recommended PN configurations for PN DOR are 
13 bits and approximately 7.2 Mcps for X-band, and 15 bits and approximately 28.8 Mcps 
for Ka-band.  

Last, a simulation was created to measure the reduction in phase dispersion error when 
using PN DOR. In this simulation, an artificial phase dispersion was applied across the 
8 MHz channel bandwidth. Five different phase dispersion effects were tested. First was a 
quadratic effect, and the others were realistic phase dispersion effects as measured by a 
previous JPL study [10]. The quadratic effect was included as a worst-case estimate because 
the largest phase dispersions are towards the edges of the bandpass where the PN spreading 
is weighted the least. Each of the five phase dispersions cases were scaled to produce a 
phase dispersion error of 0.2° using Classic DOR. The resulting shape for each case is shown 
in Figure 16, with each case offset by 1° for visual comparison. 
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Figure 16. Phase dispersion effects tested. Each channel is offset 1° for visual comparison. The realistic 

channels were measured using quasar data [10] but scaled to yield a 0.2° phase dispersion error. 

 

The spacecraft DOR signal will measure the phase dispersion at the center of the channel, 
which is 0.2° for all cases. The quasar signal will measure the average phase dispersion 
across the entire channel bandwidth, which is 0.0° for all cases. The difference between 
these two measurements is the DDOR phase dispersion error. The PN DOR signal measures 
the phase dispersion across the channel bandwidth weighted by the shape of the PN DOR 
spectrum. The PN DOR spectrum shape depends on the shaping filter frequency response, 
H(f ). The CCSDS recommends that a Square Root Raised Cosine filter be used, and the 
frequency response of such a filer is given in Equation (15). This frequency response 
depends on the PN Chip rate, R, and the roll-off factor, b. 

 𝐻(𝑓) = 	

⎩
⎪
⎨

⎪
⎧ 1 𝑓𝑜𝑟 90	 ≤ |𝑓| ≤ #(9,G)

-
;

Z9
-
[1 + sin ^ /

#G
9#
-
− |𝑓|;`a 𝑓𝑜𝑟 9#(9,G)

-
≤ |𝑓| ≤ #(9AG)

-
;

0 𝑓𝑜𝑟 9|𝑓| > #(9AG)
-

;

 (15) 

The resulting phase dispersion error using a weighted average formulation can be predicted 
using Equation (16). Because the received signal is filtered once by the transmitter and 
then correlated against a reference signal that is also filtered once, the resulting phase 
dispersion error depends on H(f )2. At low roll-off factors (i.e., near 0), the spectrum is flat 
and nearly all of the phase dispersion is measured, but higher roll-off factors (i.e., near 1) 
may produce an unsatisfactory reduction in the error. 
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 𝜙.5'3?(&3'H7 =
∫ J(6)'0()*+,-*)./(6)	56
01	345
61	345

∫ J(6)'01	345
61	345 	56

 (16) 

Data were simulated for each phase dispersion case and for a range of PN chip rates and 
roll-off factors such that the total spanned bandwidth of the PN signal was equal to the full 
channel bandwidth of 8 MHz. This condition is satisfied for all combinations where 
𝑅(𝛽 + 1) = 8	𝑀𝐻𝑧. The simulated data were processed using the PN DOR algorithm, and 
the results of the simulations are shown in Figure 17. The theoretical error calculated using 
Equation (16) is also shown for each case. Note that the Classic DOR phase dispersion error 
for each case is 0.2° and that at the CCSDS-recommended chip rate (7.2 Mcps), the error is 
reduced to less than 0.02° for the realistic dispersion curves. 

 

Figure 17. Comparison of the phase dispersion error for each phase dispersion case. The simulated results are 

shown with markers, and the theoretical values are shown as lines. 

 

In summary, the PN DOR reduction in phase dispersion error varies with the shape of the 
underlying channel phase dispersion. But in all cases, the error is further reduced at higher 
chip rates because the PN DOR spectrum is flatter for a greater portion of the channel 
bandwidth. The CCSDS-recommended parameters for PN DOR specify that the chip rate 
be at least 90% of the channel bandwidth, and this results in an approximately 90% 
reduction in the phase dispersion error for realistic phase dispersion assumptions. 

V. Summary 

As mission navigation requirements become more stringent, increased DDOR accuracy 
may be required. One novel approach of reducing the DDOR error is the use of spread 
spectrum PN DOR. This improves common mode error cancellation for the dominant term 
in the DDOR error budget. PN DOR functionality can be supported in modern digital 
transponders and has been implemented in Iris 2.2. 
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