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Simulation of Multipath Reflections from
Planetary Bodies: Theory and Application to
the Lunar South Pole

Marc Sanchez Net∗

ABSTRACT. — This article describes a new simulation model to estimate multipath

reflections from planetary bodies in the solar system for which a digital elevation map

(DEM) is available, but its spatial resolution is significantly larger than the carrier

wavelength. To account for uncertainty in the terrain roughness within a DEM facet,

we assume that its surface can be modeled as a two-dimensional Gaussian random

process and derive its radar cross-section (RCS) under the high-frequency

approximation (Geometric Optics). Our solution extends the range of validity of these

approximations to low-incidence angles, shows that the RCS can be decomposed into a

coherent and non-coherent term, and obtains closed-form expressions for polygonal

facets with any number of sides.

Once the simulation model has been presented, we apply it to a downlink between a

rover on the lunar South Pole and a Deep Space Network (DSN) station. We show

that the model produces sensible results, increasing the amount of reflected power

when the elevation angle subtended by Earth in the lunar sky decreases. We also show

how the model can be coupled with orbital simulators to obtain a full characterization

of the multipath environment using the delay and Doppler spread.

I. Introduction

This article presents a new simulation model to estimate the radar cross-section (RCS)

of a planetary body for which a digital elevation map (DEM) of its surface is available.

It was originally developed to quantify the severity of multipath fading in links

between landed assets on the lunar South Pole and Earth. However, it is broadly
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applicable to any form of bistatic experiment in which a spacecraft (landed or in orbit)

transmits or receives signals reflected from the surface of planetary body.

Understanding the impact of multipath fading is critical for several missions currently

being developed at NASA. For instance, the Volatiles Investigating Polar Exploration

Rover (VIPER), currently in design phase, considers multipath fading to be one of the

primary sources of mission risk. Therefore, the channel models resulting from the

presented model will be used to quantify link performance, evaluate the need for

contingency operations, and ultimately, test the flight radio in an emulated multipath

environment prior to launch. Similarly, the same models will also be used to inform

the design of the Human Landing System, which is also expected to land on the lunar

South Pole in the coming years.

This article is broadly divided into four parts. First, we discuss how the surface DEM

is preprocessed so that it can be efficiently incorporated in our electromagnetic (EM)

wave simulation engine. Second, we describe the multipath fading model, including

the difference between coherent and non-coherent scattering, as well as models for

diffraction and shadowing effects. Third, we describe how the RCS of each facet in the

DEM is calculated using the Geometric Optics approximation. And finally, we

exemplify the results of the model using a notional lander located close to the lunar

South Pole and transmitting to a Deep Space Network (DSN) 34-meter antenna.

II. Preliminaries

This section introduces two topics. First, it summarizes our terrain model, including

its specification as an adaptive three-dimensional mesh for which visibility constraints

must be efficiently calculated. Second, it introduces the different coordinate reference

systems used in this article and explains how to transform between them. Note that

none of this material is the main focus of this article. Consequently, the explanation

provided is rather superficial and intended to provide just enough context to make the

results in Section IV understandable.

A. Terrain Model

We assume that a model of the surface of a planetary body is available in the form of

a DEM. This DEM defines a set of projected Cartesian coordinates that map points

on the surface (x, y) to altitudes z above the body’s reference ellipsoid. These points

are spaced uniformly with resolution ∆x and ∆y, respectively, which depends on the

capabilities of the altimeter used to collect the raw data from which the DEM is

produced, as well as the extent of the DEM. For instance, Figure 1 plots the terrain

altitude of part of the lunar southern hemisphere, extending from latitude −80◦ to the

South Pole, which is situated at coordinates (0, 0). The original data, available at [1],

is provided with a resolution of 20 m in both the x and y directions but has been

downsampled to 2 km for plotting purposes.
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Figure 1. Lunar South Pole DEM

A key question when working with a DEM is whether the available resolution is

sufficient to resolve the physical phenomena being studied. In our case, we are

interested in understanding reflections of EM waves from the surface, which implies

that the DEM resolution must be compared to the wavelength of the signal’s carrier

frequency. In that sense, an X-band (8.4 GHz) sinusoid has a wavelength of 3.57 cm,

which is at least two orders of magnitude smaller than the finest available resolution,

5 m. Therefore, the available lunar DEMs are electrically undersampled and

underestimate the roughness properties of the terrain.

To solve this limitation, we propose to use a terrain model that combines the DEM

with a stochastic representation of roughness. The basic idea is to partition the

surface into a collection of facets that determine the average altitude above the body’s

reference ellipsoid (see Section II.A.1 for details on how this is accomplished). Then

random roughness is added to this average altitude, modeled as a Gaussian stochastic

two-dimensional process with zero mean. Note that, implicitly, this assumes the DEM

to be error-free and to provide a perfect representation of the average terrain altitude.

While this is clearly not possible in real-life, this article we will neglect DEM errors for

simplicity.

Using an ideal DEM, we can express the terrain altitude for any given facet as

z(x, y) = z̄(x, y) + ζ(x, y) (1)

where z̄(x, y) is the average terrain altitude as provided by points in the DEM, and

ζ(x, y) is a Gaussian process with zero mean and a covariance and autocorrelation

matrix that are unknown but can be approximated from the terrain’s physical

properties. In particular, if we consider the surface to be isotropic, then the covariance

matrix is diagonal and defined by a single parameter, the roughness

root-mean-squared (rms) height, which we denote by s [2]. Similarly, the

autocorrelation function decays as the distance

ξ =
√

(x− x′)2 + (y − y′)2 (2)

between two points (x, y) and (x′, y′) increases. Several mathematical functions have

been used in the literature to model this decay, including exponential, Gaussian,
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Gaussian exponential, and power-law correlation functions [3]. In this article, however,

we will mostly restrict our analysis to (normalized) Gaussian correlation functions

ρ(ξ) = e−ξ
2/l2 , (3)

where l is a characteristic parameter that indicates the distance at which the

autocorrelation has decayed to a value of 1/e. Note that this is consistent with

previous works in the literature (e.g., [4, 2]). Note also that some studies have found

an exponential autocorrelation to be slightly more realistic in Earth soils [5], but we

do not adopt it here due to the fact it is not differentiable at ξ = 0, a fact that yields

the analytical results later presented intractable.

To illustrate the effect of l on the terrain, Figure 2 plots three randomly generated

square surfaces assuming s = 1 and l varying from 1 m to 15 m. Note that as l

increases, the surface tends to undulate more gently, since points further away are

increasingly autocorrelated.

(a) l = 1 m (b) l = 5 m

(c) l = 15 m

Figure 2. Random terrain with s = 1 and different correlation lengths

1. Terrain Meshing

Having described the statistical properties of ζ, we now focus our attention on the

average altitude z̄ from the DEM. In particular, we assume that the discrete points in

the DEM can be used as vertices in a three-dimensional mesh of polygons, also known

as facets.1 This mesh is constructed by means of a connectivity matrix with as many

1Technically, meshing can be applied to any set of points in any reference frame. Here, we explain the

concept assuming that the we are meshing the projected DEM data, but the same concepts apply to

all other Cartesian reference systems defined in Section II.B.
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rows as polygons in the mesh and as many columns as vertices in a polygon. Each

row, therefore, contains a set of numerical indices that identify the points in the DEM

to be used as vertices for the facet.

Several methods for triangulation and quadrangulation are available in the literature,

and a thorough understanding of how they work is well beyond the scope of this

article. In fact, for the purposes of this work, all meshes have been computed using

the well-known Delaunay triangulation [6] since it is readily available in MATLAB©.

Note that this triangulation is widely used in computational geometry because it tends

to avoid sliver triangles, it ensures that each point in the DEM is present at least once

in the mesh, and it can be efficiently computed using recursive algorithms.

In Section IV, we show that computing the EM field reflected off of a facet depends on

the angle of incidence and reflection of the arriving and departing waves. While these

angles are different for each point within a facet, it is common to approximate their

value to that of the center of the facet, which we compute as the barycenter of the

triangle. However, an additional complication arises when the transmitter (or receiver)

is very close to the mesh. In this case, facets close to the transmitter subtend very

large solid angles, rendering the barycenter approximation invalid. To solve this

problem, we utilize an adaptive meshing algorithm in which facets close the

transmitter are subdivided into finer triangles. Importantly, note that no new

information about the average height z̄ is being added in this process. Indeed, the

adaptive meshing algorithm simply uses linear interpolation to create new vertices

between the original points in the DEM.

To identify which facets in the original mesh should be subdivided, we approximate

the solid angle subtended by a polygon as the ratio between the facet area Afacet, and

the area of a sphere centered at the transmitter and with radius equal to the distance

to the facet’s barycenter, denoted dfacet. In other words, a facet will be recursively

subdivided into smaller facets as long as

Afacet

4πd2
facet

≤ ε. (4)

Here, ε is a constant that is adjusted so that facets are large enough that they can be

considered infinitely large from an electrical perspective. For instance, in our case, ε is

calibrated so that no triangle has a side less than 10λ, where λ is the wavelength of

the carrier frequency. Also, this method of subdividing the mesh is technically correct

only when the terrain is located in the far-field region of the transmitting antenna.

Depending on the diameter of the transmit antenna, and the operating frequency, this

might not be the case. However, in this article we must assume far-field operation

because, otherwise, the equations in Section IV cannot be solved analytically and we

would need to resort to numerical integration over the Moon’s surface to solve the

reflection problem, an approach computationally intractable with regular computers.

To exemplify how the adaptive mesh algorithm works, Figure 3 shows the result of

meshing the lunar surface around a landed spacecraft, which we assume to be located
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at the Shackleton crater rim (see red dot). As expected, the resulting mesh has

varying facet sizes, with smaller triangles just under the landing point. Additionally,

the transition regions between different triangle sizes roughly describe circles, which is

expected given that we used a sphere to identify facets that need to be subdivided.

Figure 3. Adaptive Mesh Example

2. Terrain Visibility

Once the terrain has been meshed, we wish to determine which facets are in view of

the transmitter and receiver, and thus are candidates for reflecting power. To that

end, and following the works of Ulaby et al. [4], we use a simplified single-bounce

model that neglects power contributions for double or higher order reflections. This

has been found to be a reasonable approximation for modeling similar phenomenal

(e.g., radar echos from the ocean waves [7]).

To estimate whether a facet reflects power between the transmitter and receiver, we

need to compute whether it is in direct line of sight (LoS) to both of them. Therefore,

the problem can be decomposed in three steps: First, determine a boolean index that

indicates if a facet is visible from the transmitter. Then repeat the same process but

with the receiver. Finally, compute the final visibility mask as the bit-wise and

boolean operation between the two previously calculated masks.

To estimate whether a facet is visible, we use a set of tools originally developed for

computational geometry and ray tracing, most notably the Möller-Trumbore

intersection algorithm [8], which provides an efficient procedure to calculate whether a

ray, line, or segment intersects with a triangle in three-dimensional space. In that

sense, let T denote one of the triangles in the mesh for which we want to calculate the

visibility from the transmitter. Then we can use the Möller-Trumbore algorithm to

estimate whether a segment delimited by T on one end and the transmitter on the

other end, intersects with any triangle other than T in the mesh.

The main drawback of this terrain visibility algorithm is its exponential computational
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complexity. Indeed, the worst-case number of operations to determine the visibility of

one triangle is O(F ), where F is the total number of facets in the mesh. Therefore, the

worst-case complexity of the terrain visibility algorithm is O(F 2), resulting in several

minutes of computational effort even if the algorithm is parallelized.

To alleviate this problem, we use the well-known method of octrees to recursively

subdivide the terrain into octants. Each subdivision is characterized by a bounding

box that contains all points in the terrain within that subdivision. Therefore, to

estimate whether a triangle is visible or not, we first compute whether the ray

departing from the transmitter and arriving to the triangle T intersects with any of

the octree’s bounding boxes. For each box where an intersection is found, we then use

the Möller-Trumbore algorithm to calculate whether the ray intersects with any of the

triangles within the box. This results in an approximate computational complexity of

O(F logF ), which significantly reduces the computational time as compared to a naif

terrain visibility algorithm.

Figure 4 plots the result of running the terrain visibility procedure assuming a lander

on the Shackleton crater rim carries an antenna that is placed 50 meters above the

surface (see red dot). Points on the surface with direct LoS visibility are highlighted in

blue.

Figure 4. Terrain Visibility Example

B. Coordinate Reference Systems

Up to four different coordinate reference systems (CRSs) are necessary to explain the

complete sequence of steps required to estimate the RCS of an arbitrary surface.

1. Projected and Geographic CRS

DEMs are typically provided in a projected coordinate reference system that assigns a

set of Cartesian coordinates (x, y, z) to a physical location in a planetary body of
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interest. As an example, DEMs of polar regions use a stereographic projection applied

to a reference ellipsoid, which can be either a perfect sphere (as is the case for the

Moon) or an oblate spheroid (as is the case for Earth).

The physical locations in the projected CRS are transformed to geographic coordinates

via a smooth bijective mathematical transformation. Doing so results in a set of

spherical coordinates, typically expressed as latitude, longitude, and distance from the

center of the planetary body. This geographic CRS is body-fixed (i.e., if the body

rotates, so does the frame) and defined such that one axis goes through the axis of

rotation, another one lies on the equatorial plane and represents the prime meridian,

and the third one completes the right-hand side CRS. Also, transforming latitude,

longitude, and distance to equivalent Cartesian coordinates is simply a matter of

transforming from spherical to Cartesian coordinates, which is a well-known procedure.

Notwithstanding the complexity of defining and operating with projected and

geographic CRSs in planetary bodies, we will assume in this article that software tools

such as pyproj [9], MATLAB©, and SPICE [10] can be used to alleviate the effort.

Furthermore, while not all bodies in the solar system have well-defined body-fixed

CRSs, some of them are standardized by the International Astronomical Unit and are

readily available in these tools. This is the case, for instance, of the Moon, for which

the standard IAU MOON CRS has been defined.

2. Antenna and Facet-Local CRS

Once the different locations available in the DEM have been transformed to a

geographic CRS and expressed in Cartesian coordinates, it is convenient to perform

yet another change of reference frame to operate in an antenna-local reference frame,

placed at the transmitting spacecraft. This new CRS is defined as follows:

� The x-axis points from the transmitting spacecraft antenna towards the

receiving DSN station. For large distances, however, the exact location of a DSN

complex or antenna is not needed, and the center of Earth can be used.

� The z-axis is defined as the cross product between a unitary vector from the

center of the planetary body to the location of transmitting antenna (i.e.,

pointing towards zenith) and the x-axis.

� The y-axis completes the right-hand side CRS and is defined as the cross

product between the x-axis and the y-axis.

� The center of the CRS is placed at the transmitting antenna.

Transforming DEM coordinates from a projected CRS to this new antenna-local

reference frame is simply a matter of chaining transformations. In other words, we

first transform the projected Cartesian coordinates to spherical geographic

coordinates. We then transform from geographic spherical coordinates to geographic
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Cartesian coordinates. And finally, we transform from geographic Cartesian

coordinates to antenna-local Cartesian coordinates using the well-known

transformation matrix defined by the three axes previously specified.

Finally, some of the calculations presented later in Section IV can only be analytically

performed when working on a facet-local reference frame. Therefore, we now specify

how this reference frame is constructed assuming that all terrain coordinates are

already expressed in the antenna-local CRS. In this case, we define the facet-local CRS

as follows:

� The z-axis is equal to the facet normal.2

� The y-axis is defined as the cross product between the z-axis and the direction of

incidence of the ray departing from the transmitting antenna towards the facet

barycenter.

� The x-axis completes the right-hand side CRS and is defined as the cross

product between the y-axis and the z-axis.

� The center of the CRS is placed at the barycenter of the polygonal facet.

Note that, by definition, each facet has its own facet-local CRS. Also, transforming

from the antenna-local CRS to the facet-local CRS is immediate and can be achieved

using the rotation matrix defined by three unitary vectors previously defined.

III. Multipath Fading Model

This section describes the multipath fading model assumed in this article. To initiate

the discussion, let us consider an arbitrary terrain mesh that generates a large number

of reflections, one per facet. The total expected scattered power by the surface at any

given position in space, can be approximated by adding the power contribution of each

individual facet.

Let 〈Pi〉 denote the expected power scattered by the i-th facet in the terrain.3 Then,

using the bistatic radar Equation [2], we know that

〈Pi〉 = Pt
Gt,iGr,iλ

2

(4π)3R2
1,iR

2
2,i

〈σi〉 (5)

2While terrain normals can be computed in different ways (e.g., at the center of each facet, at each

vertex, etc.), the normal of a polygonal facet has a well-defined unique direction. Furthermore, we

assume it always points outward from the planetary body, i.e., in the zenith direction.

3In this article, we use 〈·〉 to denote the sample expectation operator over realizations of the rough

terrain surface. This is consistent with previous works in the field (e.g., [4]). However, we

acknowledge that other authors use 〈·〉 to denote expectation over time instead.
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where

� Pt is the transmitter power,

� Gt,i is the gain of the transmitting antenna over the i-th facet,

� Gr,i is the gain of the transmitting antenna over the i-th facet,

� λ is the carrier wavelength,

� R1,i is the distance between the transmitter and the i -th facet barycenter (see

Figure 8),

� R2,i is the distance between the i -th facet barycenter and the receiver (see

Figure 8),

� 〈σi〉 is the expected value for the RCS of the i -th facet in the polarization of the

receiving antenna.4

Note that, in reality, all these quantities vary within any given facet. However, if the

facets are small enough, we can approximate their values as constants and assume that

their value can be estimated at each facet’s barycenter. Furthermore, note also that

the facet RCS is a random variable for which we need to estimate its expected value.

Indeed, this follows simply from the fact that the facet RCS depends on the terrain,

which has a random roughness component.

In the literature, it is common to decompose the RCS of a facet in its coherent and

non-coherent components [4, 7]. This emphasizes the fact that, should you have a

perfect description of the average reflecting surface (i.e., you knew z̄(x, y) with perfect

precision), you could in theory calculate the reflected power from the coherent

reflections using the method from Section III.A. However, from a practical standpoint,

it might be more realistic to consider 〈σi〉 simply indicative of non-coherent reflected

power, especially when operating at large carrier frequencies. Indeed, at

centimeter-level wavelengths, errors of the input DEM, the location of the transmit

and/or receive antennas, or the location of each facet’s electrical center (which

technically need not be equal to its barycenter), might be large enough to cause

significant phase changes in the reflected fields. These changes, when added together,

will result in uniformly distributed random phase variations of the total reflected field,

which are akin to the variations resulting from the modeled terrain roughness.

Notwithstanding the challenges associated with modeling the phase of reflected

electric fields from the lunar surface, we now proceed to derive the theoretical split

between coherently and non-coherently reflected power, assuming no errors or

4As shown in Section IV, the proposed model for a facet RCS is polarimetric, i.e., it takes into

consideration changes in polarization due to the reflection from the terrain. However, in this section

we do not explicitly denote polarization effects to reduce clutter in the equations.
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uncertainty other than terrain roughness. In that sense, we first observe that a facet’s

expected RCS can be estimated as [4]

〈σi〉 = 4πR2
2

〈|Es,i|2〉
|Ei|2

, (6)

where Ei is the amplitude of the incident field at the i-th facet which, again, we

assume constant for simplicity. Consequently, we can decompose the facet RCS as

follows:

〈σi〉 ∝ 〈|Es,i|〉2︸ ︷︷ ︸
Coherent scattering

+ Var{Es,i}︸ ︷︷ ︸
Non-coherent scattering

. (7)

Here, the first term is known as coherent scattering because the resulting electric fields

add coherently (i.e., in amplitude and phase). On the other hand, the second term is

known as non-coherent scattering because the resulting electric fields have phases that

are randomly distributed. Therefore, in general,

〈σi〉 = σcohi + σncohi , (8)

where

σcohi =〈|Es,i|〉2 (9)

σncohi =Var{Es,i}. (10)

and, consequently, we can divide the scattered power contribution of any given facet

into two terms:

P cohi =Pt
Gt,iGr,iλ

2

(4π)3R2
1,iR

2
2,i

σcohi (11)

Pncohi =Pt
Gt,iGr,iλ

2

(4π)3R2
1,iR

2
2,i

σncohi (12)

Note that, at this point, this split between coherent and non-coherent power is solely

due to terrain roughness. Any other errors in the model, when compared to real life,

will likely cause the coherent power term to decrease and the non-coherent power term

to increase, up to a point where all reflected power might be considered non-coherent.

Ultimately, however, the degree to which a reflection is coherent or non-coherent will

need to be ascertained from actual empirical measurements.

A. Coherently Scattered Electric Field

For completeness, we now show how to estimate the phase of the coherent reflected

fields from each facet of the DEM. In particular, let us assume that the transmitter

sends an ideal unmodulated tone at carrier frequency fc. In this case, the complex

baseband representation of the received signal can be expressed as [11]

ri(t) = Cie
−jφi(t) (13)
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where

� Ci is the amplitude of the i-th ray and, by definition, is equal to Ci =
√
P cohi ;

� φi(t) is the phase of the i-th ray, which depends on its time delay and Doppler

shift.

Furthermore, it is easily shown that the phase of the i-th ray can be expressed as [11]

φ(t) = 2π [(fc + fi) τi − fit] (14)

where fi represents the Doppler shift experienced5 and τi is its propagation delay.

Therefore, we can estimate the total coherently scattered electric field as

Ecohs =

F∑
i=1

√
P cohi e−jφi(t) (15)

where F is the total number of reflecting facts. Similarly, the total coherently

scattered power is

P cohs =
∣∣Ecohs

∣∣2 . (16)

B. Non-Coherently Scattered Electric Field

The phase of the non-coherently scattered electric field is assumed to be random and

uniformly distributed. This results in

Encohs =

F∑
i=1

√
Pncohi e−jϕi(t) =

F∑
i=1

√
Pncohi cosϕi + j

F∑
i=1

√
Pncohi sinϕi, (17)

where ϕi(t) ∼ Uniform(0, 2π). Note that both the in-phase and quadrature

components of this complex signal are the sum of a large number of these random

variables. Therefore, we can invoke the Central Limit Theorem6 and conclude that

EncohsI =

F∑
i=1

√
Pncohi cosϕi ∼ N (0, b0) (18)

EncohsQ =

F∑
i=1

√
Pncohi sinϕi ∼ N (0, b0) , (19)

5In this paper, we approximate the Doppler shift using the bistatic equation provided in [12], which

requires working on a reference frame fixed to the reflection point (i.e., the Moon). Consequently,

both the transmitter and receiver have translational velocities due to the relative motion of the Earth

and the Moon, as well as any speed imparted by the moving rover. Finally, a third velocity

component is generated from the rotation of the transmit and receive antennas around their local

azimuth and elevation axis when active tracking is engaged. However, these components are expected

to be very small and are thus neglected for simplicity.

6Technically, we need to invoke the Lyapunov Central Limit Theorem, which applies to a collection of

random variables that are independent but not necessarily identically distributed.
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where b0 denotes the variance of the normal distribution and is equal to

2b0 =

F∑
i=1

Pncohi . (20)

Finally, we can combine this result with the coherently scattered electric field to yield

Es = Ecohs + Encohs = EsI + jEsQ (21)

with

EsI =<{Ecohs }+ EncohsI ∼ N (µ̃I , b0) (22)

EsQ =={Ecohs }+ EncohsQ ∼ N (µ̃Q, b0) (23)

where µ̃I and µ̃Q are the real and imaginary parts of the total coherently scattered

electric field, respectively. Note that, in reality, µ̃I , µ̃Q, and b0 are not static

parameters and instead vary over time as the Earth-Moon system rotates. However,

our notation does not reflect this fact to reduce clutter. Note also that if we accept the

premise that all reflected power given by Equation (6) is non-coherent, then

µ̃I =0 (24)

µ̃Q =0 (25)

2b0 =
Ptλ

2

(4π)3

F∑
i=1

Gt,iGr,i
R2

1,iR
2
2,i

〈σi〉. (26)

C. Rician Multipath Model

In multipath fading models, it is common to assume that there is a direct line of sight

ray, as well as reflections from the environment. Let

Elos(t) =
√
Plose

−jφlos(t) (27)

denote the electric field received from this direct line of sight ray. Then the received

total electric field can be estimated as

Erx = Elos + Es = Erx,I + jErx,Q (28)

with

Erx,I =<{Elos + Ecohs }+ EncohsI ∼ N (µI , b0) (29)

Erx,Q =={Elos + Ecohs }+ EncohsQ ∼ N (µQ, b0) . (30)

In other words, the average power of the total received field is set by the coherent sum

of the LoS ray and the set of coherently scattered rays. Non-coherent scattering, on

the other hand, creates random variations around that average power, yielding a total

signal envelope that is Rician distributed. In other words,

α(t) = |Erx| =
√
|Erx,I |2 + |Erx,Q|2 (31)
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has a probability density function equal to

pα(x) =
2x (K + 1)

Ωp
exp

{
−K − (K + 1)x2

Ωp

}
I0

(
2x

√
K (K + 1)

Ωp

)
(32)

where

K =
µ2
I + µ2

Q

2b0
(33)

Ωp =µ2
I + µ2

Q + 2b0. (34)

In this notation, K is equal to the ratio of coherent vs. non-coherent power, also

known as the Rice Factor, while Ωp is equal to the average envelope power.

To exemplify the behavior of this multipath fading model, consider a lander on the

lunar surface trying to communicate with a relay satellite orbiting around the Moon.7

Figure 5 shows a possible realization of the communication link as the relay satellite

rises above the horizon (elevation angle of 0◦) and flies over the lander (elevation angle

of 90◦). It can be clearly observed that at low elevation angles, there is large signal

distortion both from the coherent and non-coherent reflection.8 Furthermore, the sum

of the LoS and coherent reflection sets the average received power, while non-coherent

scattering causes rapid variations around the mean. Finally, as the satellite increases

its elevation with respect to the local terrain, the effects of multipath fading become

decreasingly noticeable until, eventually, the received signal varies only due to changes

in the free space losses.

Figure 5. Multipath Fading Model Example

7All values in this example are fictional and have been optimized for illustration purposes. They

should not be used for decision-making purposes.

8It is known that at grazing angles, coherent reflection tends to dominate, a detail obviated here for

simplicity.
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D. Diffraction

Diffraction refers to physical phenomena that allow EM waves to propagate close to

and around obstacles. It can be explained by Huygens’s principle, which states that all

points on a wavefront can be viewed as point sources of secondary waves [13].

Diffraction effects are particularly noticeable when obstacles block the first Fresnel

Zone between a transmitter and receiver [13].

Several models have been developed to account for diffraction loss. The simplest one,

known as knife-edge diffraction, is well-known in the literature and models the

obstacle as a perfectly opaque half-plane of infinite width. In the context of the Moon,

this model has been used to predict the diffraction caused by the lunar limb occulting

distant light sources such as stars [14]. Additionally, several studies conducted during

the Apollo era considered diffraction from two landed assets by using a solution to the

diffraction problem that assumes a perfect sphere [15, 16], which in turn is based on

earlier studies for diffraction over convex surfaces [17, 18]. More recently, the

development of the Geometric Theory of Diffraction (GTD) and the Unified Theory of

Diffraction (UTD) has vastly advanced our ability to understand and model diffraction

effects for complex geometries [19, 20].

Notwithstanding the superior performance of UTD to correctly model diffraction

effects, we will assume in this article that diffraction can be quantified using classical

theory of diffraction over a parabolic cylinder according to the idealized geometry

shown in Figure 6. In Figure 6, ht denotes the altitude of the transmitting antenna

ht

Spacecraft L1 L2
Earth

d1 d2

h
θ ψ

Shadow

Figure 6. Idealized Diffraction Geometry

above the terrain, h is the clearance distance between the LoS ray and the terrain

obstruction,9 d1 and d2 denote the distances from the transmit and receive antennas

to the top of the obstruction, L1 and L2 represent the projection d1 and d2 onto the

LoS ray, and θ represents the elevation angle of Earth above the terrain.10 Using the

results from [18], Crysdale showed that the diffraction loss in dB over a cylinder can

be approximated as [21]

LD = LK + LA, (35)

9Note that to be consistent with the theory of knife-edge diffraction, h takes negative values when the

obstruction does not intersect the LoS ray as shown in Figure 6.

10We defined elevation angle as the angular difference between Earth and the surface, as seen from the

transmit antenna.
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where LK is the diffraction loss predicted from knife-edge theory. LA represents an

excess loss equal to

LA ≈ −20 log10 |1 +mΨ(m)| . (36)

Here, m = f1/3ψ, f is the carrier frequency, ψ is defined as in Figure 6, and Ψ(m) is

an indefinite integral involving the Airy functions:

Ψ(m) = 2j−1/3

∞�

0

Ai(u)ej
−1/3um

Ai(u)− jBi(u)
du+ 2j

∞�

0

Ai(u)ejum

Ai(u) + jBi(u)
du (37)

Fortunately, in the case of d2 � d1, ψ tends to zero and τΨ(τ) is known to also tend

to zero. Consequently, LD ≈ 0, so we can approximate the diffraction loss as follows:

LD ≈
1

2

∣∣( 1
2 − C(ν))− j( 1

2 − S(ν))
∣∣2 , (38)

where ν is the well-known Fresnel-Kirchhoff parameter

ν = h

√
2(L1 + L2)

λL1L2
≈ d1 sin θ

√
2

λd1 cos θ
≈
√

2d1

λ
θ, (39)

and C(ν) and S(ν) denote the complex Fresnel integrals. The first approximation

follows from the fact that L2 � L1, while the second one is only applicable when θ is

small.

Figure 7 plots the estimated diffraction loss as a function of the elevation angle and

the distance d1 between the transmitting antenna and the ground obstacle for an

S-band carrier. As expected, as obstacles get closer, the elevation angle that Earth

needs to clear to avoid diffraction losses increases. Alternatively, when the elevation

angle is very high, the diffraction loss converges to zero.

Figure 7. Diffraction Loss

Finally, once the diffraction loss has been calculated, the power received from the

direct LoS ray is adjusted as follows:

Prx = Plos + LD. (40)
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Note that in this section we have neglected reflection effects, including any diffraction

loss incurred by the multipath rays. We have also simplified the problem by not

properly estimating the phase of the diffracted field or depolarization resulting from

the diffraction process. Similarly, we have obviated the possibility of multiple

diffraction edges, a problem well studied in the literature.

E. Shadowing

Models to calculate the reflected field off of a surface at high incidence angles

oftentimes include self-shadowing effects. In essence, these effects model the loss in

total received reflected power due impediments caused by the surface roughness.

These impediments block scattered rays as they travel from the original reflection

point towards the receiver and thus act as natural blockages that reduce the effect of

multipath fading.

Modeling of shadowing effects is typically achieved using constants that decrease the

terrain RCS [22]:

σw = σSinSout, (41)

where σ is the terrain RCS without shadowing, Sin captures shadowing of the incident

radiation, and Sout models shadowing of the scattered radiation. Several options for

the values of Sin and Sout are available in the literature (see [4, 22]) depending on the

terrain. Nevertheless, for the purposes of this article, we will ignore shadowing effects.

Instead, we rely on the terrain visibility calculations (see section II.A.2) to determine

which facets are occulted by the terrain, and ignore the power contributed from those

facets. This, in turn, will provide worst-case estimates of the reflected power by the

terrain.

IV. Facet Reflection Model

Section III shows that in order to build a multipath fading model, it is necessary to

estimate RCS of a rough reflecting surface and separate the coherent and non-coherent

scattering components. In this section, we show how to carry such a computation. We

note that our analysis is only valid at high carrier frequency (S, X, and Ka-band) and

implicitly assumes that the EM wave has infinitesimal small wavelength, at least

compared to the terrain features. This simplification, also known as Geometric Optics

(GO), allows us to treat the incident and reflected EM waves as rays that are incident

onto and reflected by the lunar surface.

To facilitate the analysis, we first consider a simplified scenario in which the facet is

horizontally oriented, i.e., it lies in the xy plane, which is defined arbitrarily. Then we

show how to modify the obtained results to consider the case of an arbitrarily oriented

facet, where the orientation is defined by the facet normal in the antenna-local

reference frame as described in Section II.B.2.
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Before we proceed with the facet RCS derivations, we note that in this section we use

normal font to denote scalar, possibly complex magnitudes. Vectorial magnitudes, on

the other hand, are denoted in bold (e.g., a vs. a), and unitary vectors are denoted

using hat notation (e.g., â).

A. RCS of a Horizontally-Oriented Rough Facet

Let us consider a single facet that is horizontally oriented (i.e., ẑ = 0) and assume we

are working in its facet-local CRS such that the facet lies in the xy plane. Following

the conventions from [4], Figure 8 shows an incident ray on the facet barycenter (in

blue) and a scattered ray (in red) towards the receiver.

x̂ ŷ

ẑ = n̂

R1 R2

φs

φi

θsθi v̂s

ĥs k̂s

v̂i

ĥi

k̂i

Figure 8. Bistatic Coordinate Reference System with Incident (blue) and Reflected (red) Waves

The different variables required for the analysis of the scattered ray shown in Figure 8

are defined using the Forward Scatter Alignment (FSA) convention:

� n̂ denotes the normal to the facet calculated at its barycenter.

� k̂i and k̂s denote the unit vectors of incidence and reflection. Because we are

assuming planar waves, these vectors also correspond to the direction of

propagation of the incident and reflected EM wave.

� ĥi and v̂i denote the horizontal and vertical polarization vectors of the incident

wave.11 By the FSA convention, they are defined as ĥi = n̂×k̂i

|n̂×k̂i| and

v̂i = ĥi × k̂i.

11Some references call ĥ the perpendicular polarization and v̂ the parallel polarization because the v̂

always lies in the plane of incidence and ĥ is always perpendicular to it.
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� ĥs and v̂s denote the horizontal and vertical polarization vectors of the reflected

wave. By the FSA convention, they are defined as ĥs = n̂×k̂s

|n̂×k̂s| and v̂s = ĥs× k̂s.

� θi and θs are the polar angles of the incident and reflected waves.

� φi and φs are the azimuthal angles of the incident and reflected waves.

� R1 and R2 denote the distance from the transmitter to the surface (more

precisely, the facet’s barycenter) and from the surface to the receiver.

To determine the reflected EM field from the incident field, we start our discussion

from the Stratton-Chu Equation [4]. It states that under the far field approximation,

the scattered field can be estimated by solving the following integral equation:

Es =
−jk
4πR2

e−jkR2 k̂s ×
�
F

[
n̂×Ef − ηsk̂s × (n̂×Hf )

]
ejkr̂·k̂sdS, (42)

where Ef and Hf denote the electric and magnetic fields on the facet F , ηs is the

intrinsic impedance of the medium in which Es is scattered,12 k is the wavenumber of

the scattering medium, r is the position of a point in the facet, and the symbol F on

the integral limits is used to denote that we are summing over the entire facet. A full

derivation of this equation can be found in [4], Appendix 12J, or in [22], Appendix A.

Also, we note that Equation (42) is only valid in the far-field (see Appendix I) and

that, for the rest of this article, we will assume the incident and scattering medium to

be free space so that k = 2π
λ (see Appendix II).

Note that Equation (42) is particularly difficult to solve analytically because the

independent variable that we are trying to isolate, i.e., scattered field Es, appears on

both sides of Equation (42). Indeed, the surface field Ef is the superposition of the

incident field Ei and the scattered field Es on the surface. Therefore, without any

simplifications, Equation (42) can only be solved numerically.

1. Planar Wave Approximation

Because we are interested in estimating the scattered reflected field at large distances,

we can start simplifying the problem by assuming that both the incident and scattered

waves are planar. Under this assumption, the incident wave can be expressed as 13

Ei = E0âe
−jkk̂i·r. (43)

Here, E0 is the amplitude of the wave at the point of scattering, and â is the unitary

incident wave polarization vector that can be written as

â =
(
αhĥi + αvv̂i

)
, (44)

12ηs equals η1, the vacuum impedance, when calculating the reflected wave. Alternatively, ηs equals η2,

the impedance of the terrain, when estimating the transmitted wave.

13All EM fields in this article obviate the time harmonic term ejωt for simplicity. Therefore, they are

assumed to be complex magnitudes.
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where αh and αv are the normalized incident wave polarization coefficients. Note that

any desired polarization can be recovered by simply adjusting the values of αh and αv.

For instance, a vertically polarized wave is obtained by letting αh = 0 and αv = 1,

while a right-hand side polarized wave is obtained when αh = 1√
2

and αv = j√
2
.

2. Tangent-Plane Approximation

Next, let us assume that an approximate solution to Equation (42) can be obtained by

the using tangent-plane approximation (also known as Kirchhoff approximation),

which states that the total field on the surface is equal to the incident field plus the

reflected field by an infinite tangent plane at the point of reflection [4].14 In other

words,

Ef (r) = Ei(r) + Es(r), (45)

where r denotes a point on the surface and Es(r) can be computed using the theory of

oblique incidence. After some algebraic manipulation, omitted here for brevity and

available in [4], pp. 927-928, it can be shown that this approximation leads to

n̂×Ef =
[
(1 +R⊥)

(
â · t̂

) (
n̂× t̂

)
−
(
1−R‖

) (
n̂ · k̂i

)(
â · d̂

)
t̂
]
E0e

−jkk̂i·r (46)

n̂×Hf =−
[
(1−R⊥)

(
n̂ · k̂i

) (
â · t̂

)
t̂+

(
1 +R‖

) (
â · d̂

) (
n̂× t̂

)] E0

η1
e−jkk̂i·r, (47)

where
(
k̂i, t̂, d̂

)
form a right-hand side coordinate system at the point of reflection

such that t̂ = k̂i×n̂
|k̂i×n̂| is tangential to the surface and d̂ = k̂i × t̂ completes the

right-hand CRS. Furthermore, R⊥ and R‖ are the Fresnel reflection coefficients for the

horizontal and vertical polarization, respectively, calculated as follows:

R‖ = +
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

(48)

R⊥ =− η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, (49)

where θi is the polar angle of incidence, θt is the polar angle of transmission, and η1

and η2 are the intrinsic impedance of the vacuum and the terrain, respectively. Also,

θi can be calculated by solving Snell’s law

ε1 sin θi = ε2 sin θt, (50)

with ε1 = 1, the relative permittivity of the vacuum, and ε2 equal to the possibly

complex relative permittivity of the planetary body of interest.15 Note that if ε2 is

14Some authors consider that the surface fields Ef and Hf should only be equal to the reflected fields

by an infinite tangent plane and neglect the incident field (see, for instance, [7]). For a brief discussion

on the choice of surface fields, see [3], section 2.4.3.2.

15In this article, we assume that the planetary body has a single layer of soil with homogeneous

dielectric properties. In practice, this is a good approximation when the depth of this homogeneous

layer of regolith is on the order of the carrier wavelength, which is very short at high frequencies (tens

of centimeters at most).
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complex, the transmission angle θt will also be a complex number. This provides the

necessary phase matching at the facet interface so that the boundary conditions

between the vacuum and the terrain are satisfied [2]. Note also that substituting

Equations (46) and (47) into Equation (42) yields a result in which Es no longer

appears on both sides of (42), so we have indeed simplified the Stratton-Chu equation.

However, it unfortunately remains too complicated to solve analytically, so further

approximations are required.

3. Stationary-Phase Approximation

Several approaches to further simplify Equation (42) are available in the literature.

They are known as the Small Perturbation Model (SPM), the GO model, and the

Physical Optics (PO) model [4, 22]. Their range of validity has been studied in depth

in the literature (see, for instance, [22]) and depends on how rough the surface is

compared to the carrier wavelength. Additionally, extensions to bridge the SPM, GO,

and PO models into a unified theory of reflection are now available in what is known

as the Integral Equation Model and its variants [2, 22].

For the purposes of this article, however, we will focus only on the GO model, also

known as the stationary-phase approximation. The rationale behind this choice is

twofold: first, it is conceptually easy to understand and numerically efficient to

implement; and second, it is applicable at the range of frequencies of interest (X-band,

Ka-band, even S-band in some cases), where the wavelength is very short, and thus,

from an electrical standpoint, the surface undulations can be considered smooth.

Note, however, that the classical GO model presented by Ulaby et al. in [4] and

adopted by many authors is not applicable at high incidence and reflection angles.

Therefore, in what follows we extend the theoretical results so that reflection at

grazing angles is well characterized.

The basic principle of the GO model is simple: Consider EM waves as rays of infinite

frequency (or zero wavelength) that can only reflect specularly off of a surface.

Consequently, any power received at an antenna from a rough surface will arrive from

terrain corners for which the conditions of specular reflection are valid (thus neglecting

other effects such as diffraction). To express this notion mathematically while

simplifying the notation, let us express Equations (46) and (47) as

n̂×Ef =weE0e
−jkk̂i·r (51)

n̂×Hf =wh
E0

η1
e−jkk̂i·r, (52)

where we and wh are the vectors resulting from performing all dot and cross-product

operations. Now, the Stratton-Chu integral equation can be rewritten as

Es =
−jk
4πR2

e−jkR2E0k̂s ×
�
F

[
we − k̂s ×wh

]
ejq·rdS, (53)
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with

q = k
(
k̂s − k̂i

)
. (54)

Furthermore, the condition that only specular reflection contributes to reflected power

can be encoded mathematically by having a constant phase on the integrand of

Equation (53). To see that this is the case, let a point on the surface have coordinates

r = [x, y, z(x, y)]T so that

Q = q · r = qxx+ qyy + qzz(x, y). (55)

Then, the phase is said to be stationary if

∂Q

∂x
= qx + qz

∂z

∂x
= 0 (56)

∂Q

∂y
= qy + qz

∂z

∂y
= 0, (57)

where ∂z
∂x and ∂z

∂y denote the surface slopes at the point of interest and they are

non-zero because we have assumed a rough surface (i.e., in this section, ∂z̄
∂x = ∂z̄

∂y = 0

but ∂ζ
∂x 6= 0 and ∂ζ

∂y 6= 0). Rearranging the terms in these equations yields

∂z

∂x
= −qx

qz
(58)

∂z

∂y
= −qx

qz
. (59)

Consequently, the local normal at a point of reflection must be equal to 16

n̂GO =

∂r
∂x ×

∂r
∂y∣∣∣∂r∂x × ∂r
∂y

∣∣∣ =
− ∂z
∂x x̂−

∂z
∂y ŷ + ∂z

∂z ẑ√(
∂z
∂x

)2
+
(
∂z
∂y

)2

+
(
∂z
∂z

)2 =

=
qxx̂+ qyŷ + qzẑ

qz

√(
qx
qz

)2

+
(
qy
qz

)2

+ 1

=
k̂s − k̂i∣∣∣k̂s − k̂i∣∣∣ .

(60)

Note that except for the trivial case where the surface is perfectly flat, n̂GO is in

general not equal to the facet normal n̂. Indeed, n̂ represents the normal of the

average height of the facet z̄, assumed to be zero in this section (hence n̂ = ẑ).

Alternatively, n̂GO is the normal of a specific set of points within the rough facet for

which the terrain slopes orient the surface just in the right way for the conditions of

specular reflection to be satisfied.

Next, we assume that the facet is small enough so that the incidence and reflection

angles at any point on the facet can be approximated by those calculated from its

barycenter. Consequently, for any given facet, the vectors q and n̂GO will be constant

16Appendix IV proves that the conditions for specular reflection between the incident and reflected rays

are always satisfied with n̂GO defined as in Equation (60).
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and, by extension, so will the vectors we and wh. As a result, the Stratton-Chu

equation simplifies to

Es =
−jk
4πR2

e−jkR2E0

[
k̂s ×

(
we − k̂s ×wh

)]�
F

ejq·rdS. (61)

In other words, we have shown that for any given facet, the scattered field under the

Kirchhoff and GO approximation can be written as

Es = KE0Ip, (62)

where

K =
−jk
4πR2

e−jkR2 (63)

I =

�
F

ejq·rdS (64)

p =k̂s ×
(
we − k̂s ×wh

)
. (65)

Finally, observe that the polarization of the scattered wave will be defined by p, the

only vectorial magnitude in Equation (62). Therefore, if we want to express Es with

respect to the scattered polarization vectors ĥs and v̂s, all we need to do is decompose

p into this basis. This step follows with minimal manipulation from previous results

by Ulaby et al. ([4], pp. 930-931) and results in

p =
[
(αhUhh + αvUhv) ĥs + (αhUhv + αvUvv) v̂s

]
, (66)

where

Uhh =χ
[
R‖

(
ĥs · k̂i

)(
ĥi · k̂s

)
+R⊥

(
v̂s · k̂i

)(
v̂i · k̂s

)]
(67)

Uhv =χ
[
R‖

(
ĥs · k̂i

)(
v̂i · k̂s

)
−R⊥

(
v̂s · k̂i

)(
ĥi · k̂s

)]
(68)

Uvh =χ
[
R‖

(
v̂s · k̂i

)(
ĥi · k̂s

)
−R⊥

(
ĥs · k̂i

)(
v̂i · k̂s

)]
(69)

Uvv =χ
[
R‖

(
v̂s · k̂i

)(
v̂i · k̂s

)
+R⊥

(
ĥs · k̂i

)(
ĥi · k̂s

)]
, (70)

and

χ =
2k
(

1− k̂i · k̂s
)

(
k̂i · ĥs

)2

+
(
k̂i · v̂s

)2 . (71)

Note that the definition of the normalized polarization coefficients for the transmitted

wave, αh and αv, is still consistent with Equation (44). Also, R‖ and R⊥ are the

parallel and perpendicular reflection coefficients from Equations (48) and (49),

respectively.

4. Received Electric Field

To calculate the received electric field, we first need to model how the receiving

antenna will amplify or attenuate the incoming electric field. In general, this can be
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achieved by first modeling (or measuring) the radiation pattern of the receiving

antenna in two orthogonal polarizations (typically called co- and cross-polarization)

and then assuming the scattered field is passed through two independent polarizers

with amplitude equal to the square root of the antenna gain.17

Using Jones calculus, we define a polarizer using a two-dimensional matrix of the form

P =

[
p11 p12

p21 p22

]
, (72)

where the first dimension corresponds to ĥs and the second dimension corresponds to

v̂s.
18 Consequently, the total received electric field can be expressed as the weighted

sum of the cross and co-polarizations:

Er =
(√

GcoPco +
√
GcxPcx

)
Es = KE0I

(√
GcoPco +

√
GcxPcx

)
e, (73)

with

e =

[
eh

ev

]
=

[
αhUhh + αvUhv

αhUvh + αvUvv

]
(74)

and Pco and Pcx representing the co and cross-polarizers of the receiving antenna.

Further simplifications are possible if we assume that the receiving antenna has a high

enough cross-polarization rejection level that it can be considered infinite. In that

case, Gcx ≈ 0 and, consequently,

Er = KE0I
√
Gco

[
(pco11eh + pco12ev) ĥs + (pco21eh + pco22ev) v̂s

]
. (75)

5. Facet RCS

Next, we consider how to estimate the RCS σ of a facet based on the received electric

field. In particular, if we assume that the receiving antenna fully attenuates the

cross-polarization, then

σ = 4πR2
2

|Er|2

Gco |E0|2
, (76)

where we have introduced the term Gco so that facet RCS is normalized from the

transmit power and gain,19 as well as the receive antenna gain. Consequently,

σ =4πR2
2

|K|2 |E0|2 |I|2

|E0|2
[
|p11eh + p12ev|2 + |p21eh + p22ev|2

]
=
k2

4π
|I|2

[
|p11eh + p12ev|2 + |p21eh + p22ev|2

]
.

(77)

17Our model assumes the polarizers at the receiving antenna do not introduce any relative phase

between the two polarizations.

18For instance, a right-hand side circular polarizer is modeled as P = 1
2

[
1 −j
j 1

]
.

19Recall here that |E0|2 is proportional to the transmit power and transmit antenna gain.
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A similar equation can be derived if both the cross and co-polarization are considered,

a step obviated here for brevity. Also, all the parameters in this equation are known

except for |I|2. Therefore, we now focus our attention on this term and derive

analytical solutions for its value assuming polygonal facets, a random rough surface,

and low incidence and reflection angles.

6. The Surface Differential

We wish to evaluate the squared norm of the phase integral 20

I =

�
F

ejq·rdS. (78)

By definition,

|I|2 =II∗ =

�
F

ejq·rdS

�
F ′
e−jq·r

′
dS′ =

�
F

�
F ′
ejq(r−r′)dSdS′ (79)

and, therefore, we need to evaluate the surface differential dS to be able to estimate

its value. In general, it is known that for an arbitrary surface z(x, y),

dS =

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+

(
∂z

∂z

)2

dA, (80)

which clearly indicates that the constant relating the surface differential dS with the

area differential dA = dxdy depends on the slopes of the surface over the region of

integration. In our case, however, these slopes are random variables because the

surface itself is treated as a random variable. To circumvent this problem, three

approximations are possible:

� first, from Equations (58) and (59), we get dS1 ≈ q
|qz|dA (see also [4], p. 933);

� second, if we assume that the slopes are small, then
(
∂z
∂x

)2 � 1 and
(
∂z
∂y

)2

� 1

and, therefore, dS2 ≈ dA;

� and third, if we assume that the surface slopes are uncorrelated with the terrain

altitude, then we show in Appendix V that dS3 ≈
√

1 + 4s2

l2 dA, where s and l

are the surface roughness and correlation length as defined in Section II.A.

Observe that dS1 can be problematic when evaluating reflections at grazing angles.

Indeed, under these conditions, qz tends to 0 and therefore the surface differential

tends to infinity, a condition that makes no physical sense because it might cause

facets to reflect more power than the amount of power incident on them. On the other

hand, dS2 tends to underestimate the correction factor relating dA and dS as it

20Some authors indicate the RCS of a surface is proportional to its Fourier transform. Indeed,

Equation (78) can be viewed as a two-dimensional Fourier transform of a mask having ones in the

surface extent and zeros elsewhere.
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assumes that the slopes are very small, a condition not necessarily true in our analysis.

Therefore, for the rest of the discussion, we will assume that

dS =

√
1 + 4s2

l2 dA, (81)

a condition that relates the dS and dA by the average slope of the surface given its

statistical roughness characteristics.

7. Phase Integral

We now proceed with the derivation of |I|2. In particular, we note that

q (r − r′) = qx(x− x′) + qy(y − y′) + qz(z − z′) (82)

where, by construction, z and z′ are random variables as in Equation (1). Therefore,

|I|2 is also a random variable and we seek its expected value:

〈|I|2〉 =〈
�
F

�
F ′
ejq(r−r′)dSdS′〉. (83)

To derive a closed-form solution for 〈|I|2〉, we start by assuming that the surface

differential is constant and equal to Equation (81). Then 21

〈|I|2〉 ≈
�
F

�
F ′
ej[qx(x−x′)+qy(y−y′)]〈ejqz(z−z′)〉dSdS′. (84)

Furthermore, we are working in a facet-local reference frame such that z̄ = z̄′ = 0. As

a result, z = ζ and z′ = ζ ′ are jointly distributed according to a two-dimensional

autocorrelated Gaussian process with zero mean. This process is known to have a

characteristic function equal to

〈ejqz(z−z′)〉 = e−q
2
zs

2(1−ρ), (85)

where s and ρ are defined as in Section II.A and denote the rms height and surface

autocorrelation function. Substituting Equation (85) into Equation (84) yields

〈|I|2〉 = e−q
2
zs

2

�
F

�
F ′
ej[qx(x−x′)+qy(y−y′)]+q2zs

2ρ(x−x′,y−y′))dSdS′. (86)

This result, first provided by Ulaby et al. in [4], p. 934, cannot be solved analytically

for any of the autocorrelation functions provided in Section II.A, so further

approximations are necessary to yield a closed-form solution. For instance, under the

GO model, it is typically assumed that q2
zs

2 � 1 so that the contribution of ρ(ξ) in

the integrand can be neglected for large values of ξ. This follows from the fact that

under the GO approximation, λ→ 0, so

q2
zs

2 =
4π2

λ2
(cos θi + cos θs)

2s2 →∞ (87)

21Note that in this derivation, we have implicitly assumed that the terrain surface and the terrain

slopes are independent from each other. Refer to Appendix V for more details on this approximation.
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for typical angles of incidence and reflection. Also, this allows Ulaby et al. to

approximate ρ(ξ) by the first two terms of its Taylor expansion, which results in a

closed-form solution for 〈|I|2〉 when facets are shaped like squares.

Unfortunately, these simplifications are not valid in this article because (1) the

proposed terrain model uses triangular facets instead of square facets and, more

importantly, (2) we are particularly interested in the RCS of a facet at grazing angles.

In other words, we are interested in a region of operation where θi and θs tend to 90◦,

which results in q2
zs

2 → 0 for finite λ. Note that under the true GO approximation,

where λ→∞, q2
zs

2 will asymptotically tend to (see Appendix III)

lim
λ→0

θi,θs→90

(qzs)
2 = 16π2s2 (88)

which will always be � 1 except for very small values of the surface roughness. This

correctly captures the intuition that under the GO, there is no coherent reflected

component unless the reflecting surface is (almost) perfectly flat.

Given this discussion, we now provide a new derivation of the facet RCS under the

stationary phase approximation for large but finite λ, i.e., a quasi-GO approximation.

It is inspired by previous results from Ulaby et al. and de Roo in the PO model [4, 3].

To start, we assume that the terrain autocorrelation function ρ is Gaussian (see

Equation (3)). In that case,

eq
2
zs

2ρ =

∞∑
n=0

(
q2
zs

2ρ
)n

n!
= 1 +

∞∑
n=1

(qzs)
2n

n!
ρn. (89)

Substituting Equations (81) and (89) into Equation (86) and inverting the order of

summation and integration yields

〈|I|2〉 =
(

1 +
(

2s
l

)2)
e−(qzs)

2

[
I0 +

∞∑
n=1

(qzs)
2n

n!
In

]
, (90)

with

I0 =

�
F

�
F ′
ej[qx(x−x′)+qy(y−y′)]dAdA′ (91)

In =

�
F

�
F ′
ρnej[qx(x−x′)+qy(y−y′)]dAdA′. (92)

Here, I0 corresponds to the first term of the Taylor expansion of ρ (n = 0) and

captures coherent scattering from all points in the facet. Indeed, by applying

Equation (77), we see that

〈σ〉 ∝ I0 +

∞∑
n=1

(qzs)
2n

n!
In. (93)

Also, we can now directly map these terms to the coherent and non-coherent
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scattering in Equation (7) to obtain

〈|Es,i|〉2 ∝I0 =

∣∣∣∣�
F

ej(qxx+qyy)dxdy

∣∣∣∣2 (94)

Var{Es,i} ∝
∞∑
n=1

(qzs)
2n

n!
In. (95)

Finally, observe that if the facet is perfectly flat, i.e., s = 0, then the non-coherent

term vanishes. This result is consistent with real-life intuition because it is known that

electrically large flat surfaces produce coherent reflections that are well modeled by

the laws of oblique reflection.

8. Non-Coherent Term of the Phase Integral

To evaluate the non-coherent term of the phase integral, we follow the procedure

outlined by Ulaby et al. in [4] and assume that ρ decays fast compared to the

dimensions of the facet (i.e., l� L, where L is the smallest side of the facet). Under

this approximation, the limits of integration in In can be replaced by a square facet of

side 2L without incurring in large errors even if the actual facet is a triangle instead of

a square. Therefore,

In ≈
� L

−L

� L

−L

� L

−L

� L

−L
e−n

(x−x′)2+(y−y′)2

l2
+j[qx(x−x′)+qy(y−y′)]dxdydx′dy′

=

� L

−L

� L

−L

� L−x′

−L−x′

� L−y′

−L−y′
e−n

u2+v2

l2
+j[qxu+qyv]dudvdx′dy′.

(96)

Using Fubini’s theorem, plus the fact that ([4], p. 934)

� L

−L

� L−x′

−L−x′
ejqxuf(u)dudx′ =

� 2L

−2L

(2L− |u|) f(u)ejqxudu, (97)

we get

In ≈
� 2L

−2L

� 2L

−2L

(2L− |u|) (2L− |v|) e−n
u2+v2

l2
+j[qxu+qyv]dudv. (98)

But because e−n
u2+v2

l2 decays to zero much faster than L, the integrand will only

contribute to the integral for small values of |u| and |v|, which allow us to approximate

(2L− |u|) (2L− |v|) ≈ (2L)2 = Afacet. Similarly, the error introduced by letting L

tend to infinity will also be small, so we conclude that

In ≈ Afacet

� ∞
−∞

� ∞
−∞

e−n
u2+v2

l2
+j[qxu+qyv]dudv. (99)

This integral is simply the Fourier transform of a scaled Gaussian function, which can

be shown to be equal to ([4], p. 938)

In ≈ Afacet
πl2

n
e−

l2

4n (q2x+q2y). (100)
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9. Coherent Term of the Phase Integral

Next, we solve I0 analytically with the restriction that the solution must be valid for

any polygonal facet. To do so, we adapt the method proposed in [23], which leverages

Green’s theorem to perform integration over the facet contour rather than its area.

The proof is constructed as follows: First, we note that

I0 =

�
F

�
F ′
ej[qx(x−x′)+qy(y−y′)]dAdA′ =

=

�
F

ej(qxx+qyy)dxdy

�
F ′
e−j(qxx

′+qyy
′)dx′dy′

=

∣∣∣∣�
F

ej(qxx+qyy)dxdy

∣∣∣∣2 .
(101)

Therefore, we can estimate I0 by simply evaluating a phase integral over a polygonal

facet F . To that end, let us recall Green’s theorem for a simple region S:�
S

(
∂Q

∂x
− ∂P

∂y

)
dA =

�
C

Pdx+

�
C

Qdy, (102)

where P (x, y) and Q(x, y) are two arbitrary functions over the region S, C denotes its

contour, and the operator
�
C

indicates that the line integral is computed over a

positively oriented contour.

For the purposes of this article, let S be the polygonal facet of interest F (i.e., a

triangle in the 3D mesh), let P and Q be defined as

∂Q

∂x
=jqxe

j(qxx+qyy) (103)

∂Q

∂y
=jqye

j(qxx+qyy), (104)

and let C be the facet’s contour, expressed as a collection of straight sides such that

the i-th side can be parametrically written as

xi(t) =(1− t)xi + txi+1 mod N = xi + ∆xit (105)

yi(t) =(1− t)yi + tyi+1 mod N = yi + ∆yit. (106)

In this notation, t ∈ [0, 1) is the parametric variable; N is equal to the number of sides

in the polygon; (xi, yi), i ∈ [1, N ] represent the coordinates of the facet as given by the

three-dimensional mesh described in Section II.A.1; and ∆xi = xi+1 mod N − xi and

∆yi = yi+1 mod N − yi represent the discrete differentials in the x and y direction,

which are also dictated by the three-dimensional mesh.

Next, we apply Green’s theorem to obtain:�
F

(
jqxe

j(qxx+qyy) − jqyej(qxx+qyy)
)

=

�
C

ej(qxx+qyy)dx+

�
C

ej(qxx+qyy)dy, (107)

which yields�
F

ej(qxx+qyy)dxdy =
1

j (qx − qy)

[�
C

ej(qxx+qyy)dx+

�
C

ej(qxx+qyy)dy

]
. (108)

29



Furthermore, because we have assumed a polygonal facet, its contour is just the sum

of N edges. As a result,

�
C

ej(qxx+qyy)dx =

N∑
i=1

� 1

0

ej(qxxi(t)+qyyi(t))
dxi(t)

dt
dt

=

N∑
i=1

∆xie
j(qxxi+qyyi)

� 1

0

ej(qx∆xit+qy∆yit)dt

=

N∑
i=1

∆xie
j(qxxi+qyyi)ej

δi
2

sin (δi/2)

δi/2

=

N∑
i=1

∆xie
jαisinc (βi) ,

(109)

where sinc (·) denotes to the unnormalized sinc function

sinc (x) =
sinx

x
(110)

and

δi =qx∆xit+ qy∆yit (111)

αi =qx
xi+1 mod N + xi

2
+ qy

yi+1 mod N + yi
2

(112)

βi =qx
xi+1 mod N − xi

2
+ qy

yi+1 mod N − yi
2

. (113)

Note that αi and βi only depend on the vertices of a facet, for which we have

well-defined coordinates thanks to the surface DEM. Therefore, they can be easily

calculated and used to evaluate Equation (109). Also, the exact same procedure can

be used to derive the fact that

�
C

ej(qxx+qyy)dy =

N∑
i=1

∆yie
jαisinc (βi) . (114)

Consequently,

�
F

ej(qxx+qyy)dxdy =
1

j (qx − qy)

N∑
i=1

(∆xi + ∆yi) e
jαisinc (βi) , (115)

which finally leads to 22

I0 =
1

|qx − qy|2

∣∣∣∣∣
N∑
i=1

(∆xi + ∆yi) e
jαisinc (βi)

∣∣∣∣∣
2

. (116)

10. Summary of Results

In this section, we have studied the RCS of a rough horizontally oriented facet under a

quasi-GO model. Starting from the Stratton-Chu equation, we have shown that at

22In Appendix VI, we show that this result is consistent with previously derived equations for square

facets.
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high-frequencies, we can estimate the expected total facet RCS in a given polarization

as the sum of a coherent and a non-coherent component:

〈σ〉 = 〈σcoh〉+ 〈σncoh〉 (117)

with

〈σcoh〉 =
(

1 + 4s2

l2

) k2

4π

e−(qzs)
2

|qx − qy|2
E

∣∣∣∣∣
N∑
i=1

(∆xi + ∆yi) e
jαisinc (βi)

∣∣∣∣∣
2

(118)

〈σncoh〉 =
(

1 + 4s2

l2

)(kl
2

)2

e−(qzs)
2

AfacetE

∞∑
n=1

(qzs)
2n

n!n
e−

l2

4n (q2x+q2y), (119)

and

E =
[
|p11eh + p12ev|2 + |p21eh + p22ev|2

]
. (120)

Note that this RCS, as currently stated, includes the effects of the polarizer in the

receiving antenna. Therefore, it can be used directly in link budget calculations to

estimate the received power from the lunar terrain.

B. RCS of an Arbitrarily Oriented Rough Facet

In the previous section, we derived the RCS of a rough facet assuming that it is

oriented horizontally (i.e., n̂ = ẑ). We now extend this formulation so that facets can

be tilted in arbitrary directions. These results are inspired by previous work from

Ulaby et al. [24] and Kbenchaf [25].

1. Polarization Vectors

To start the discussion, let us first define the polarization vectors of the incident wave

and scattered waves for an arbitrarily oriented facet using the FSA convention.

However, unlike Section IV.A, let us now assume that we are calculating all these

vectors in the antenna-local CRS, which is common to all facets in the terrain DEM.

A total of 12 vectors is required to estimate the RCS of an arbitrarily oriented facet.

The first six define the polarization and direction of propagation of the incident and

scattered EM wave. They are defined as follows:

� k̂i is the incidence unitary vector originating at the transmitter and pointing

towards the barycenter of the facet.

� ĥi is the horizontal polarization vector of the incident wave, defined as

ĥi = ẑ×k̂i

|ẑ×k̂i| .

� v̂i is the vertical polarization vector of the incident wave, defined as v̂i = ĥi× k̂i.

� k̂s is the scattered unitary vector originating at the facet barycenter and

pointing towards the receiver.
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� ĥs is the horizontal polarization vector of the scattered wave, defined as

ĥs = ẑ×k̂s

|ẑ×k̂s| .

� v̂s is the vertical polarization vector of the incident wave, defined as

v̂s = ĥs × k̂s.

Next, we define the polarization vectors with respect to a tilted facet. By definition of

the FSA convention, the vertical polarization lies in the plane of incidence, while the

parallel polarization is perpendicular to it [26]. Therefore,

� âi is the incidence unitary vector originating at the transmitter and pointing

towards the barycenter of the facet. It is equal to k̂i.

� b̂i is the horizontal polarization vector of the incident wave, defined as

ĥi = n̂×âi

|n̂×âi| .

� ĉi is the vertical polarization vector of the incident wave, defined as ĉi = b̂i × âi.

� âs is the scattered unitary vector originating at the facet barycenter and

pointing towards the receiver. It is equal to k̂s.

� b̂s is the horizontal polarization vector of the scattered wave, defined as

b̂s = n̂×k̂s

|n̂×k̂s| .

� ĉs is the vertical polarization vector of the incident wave, defined as ĉs = b̂s× âs.

Note that the only difference between the basis (k̂i, ĥi, v̂i) and the basis (âi, b̂i, ĉi) is

that the former is computed using the vector ẑ, while the latter is calculated with the

facet normal n̂, which is not equal to ẑ because the facet is tilted (the same is also

true for the bases of the scattered wave). This differentiation is necessary because the

perpendicular and parallel Fresnel reflection coefficients, as defined by the theory of

oblique incidence, refer to the polarization vectors b̂i and ĉi instead of ĥi and v̂i.

Finally, 12 additional vectors can be calculated for each individual facet in the DEM,

representing the polarization vectors in a facet-local CRS. For ease of notation, these

are denoted with an apostrophe (i.e., k̂i vs. k̂
′
i) and can be calculated by applying the

rotation matrix (one per facet) that transforms from the antenna-local CRS to the

facet-local CRS.

2. Incident Electric Field

To calculate the scattered field, we start by defining the incident wave on a single

facet. Just as in Section IV.A, we assume this wave to be planar so that

Ei = E0e
−jkk̂i·r

(
αhĥi + αvv̂i

)
, (121)
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with E0, αh, and αv defined as in Section IV.A.1. This incident wave needs to be

decomposed into the vertical and polarization vectors of the tilted facet. This results in

Ei =E0e
−jkk̂i·r

[(
αhĥi · b̂i + αvv̂i · b̂i

)
b̂i +

(
αhĥi · ĉi + αvv̂i · ĉi

)
ĉi

]
=E0e

−jkk̂i·r
(
εbb̂i + εcĉi

)
.

(122)

3. Scattered Electric Field

Let R define the rotation matrix that transforms from the antenna-centered CRS to

the facet-local CRS.23 Then the incident electric field in the facet-local CRS can be

estimated as

E′i = REi = E0e
−jkk̂′i·r

′
(
εbb̂
′
i + εcĉ

′
i

)
. (123)

Furthermore, in this facet-local CRS the facet is, by construction, placed in the

xy plane. Therefore, all the results from Section IV.A are applicable, and the scattered

electric field under the GO and KA approximation becomes

E′s = KE0I
′p′ (124)

where K is defined as in Equation (63) and

p′ =
[
(αhUhh + αvUhv) b̂

′
s + (αhUhv + αvUvv) ĉ

′
s

]
. (125)

Note that the factors Uhh, Uhv, Uvh, and Uvv depend only on the dot product between

two vectors. Therefore, because the dot product is an invariant operation with respect

to rotation, the value of these constants can be computed in the facet-local or

antenna-centered CRS. On the other hand, I ′ denotes the phase integral, which

depends on the individual components of vector q′, as defined in Equation (54).

Consequently, in general, I calculated in the antenna-centered CRS will be different

from I ′ calculated in the facet-local CRS, and the latter must be used to estimate the

scattered field by an arbitrarily oriented facet.

Next, we rotate the polarization vector p′ back to the antenna-local CRS

Es = KE0I
′RTp′ = KE0I

′
[
(αhUhh + αvUhv) b̂s + (αhUhv + αvUvv) ĉs

]
, (126)

and express the wave’s polarization in terms of ĥs and v̂s instead of b̂s and ĉs. This

yields

Es =KE0I
′
[
(αhUhh + αvUhv) b̂s · ĥs + (αhUhv + αvUvv) ĉs · ĥs

]
ĥs

+KE0I
′
[
(αhUhh + αvUhv) b̂s · v̂s + (αhUhv + αvUvv) ĉs · v̂s

]
v̂s

=KE0I
′
[
γhĥs + γvv̂s

]
.

(127)

Note that this result is equivalent to what was obtained in Section IV.A with the

exception that the multiplicative constants for ĥs and v̂s are corrected due to the

facet tilt (refer to Equation (66)).

23As previously stated, there is one such matrix per facet in the terrain mesh. However, we attach no

facet-related index to any of the variables of this section to ease notation.
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4. Received Electric Field

The derivation of the received electric field in the case of a rough tilted surface is

analogous to what is presented in Section IV.A.4, with the exception that I is replaced

by I ′ and ζ is replaced by

Γ =

[
γh

γv

]
=

[
(αhUhh + αvUhv) b̂s · ĥs + (αhUhv + αvUvv) ĉs · ĥs
(αhUhh + αvUhv) b̂s · v̂s + (αhUhv + αvUvv) ĉs · v̂s

]
. (128)

Therefore, and assuming that the receiver’s antenna perfectly rejects the

cross-polarization, we obtain a received electric field:

Er = KE0I
′
√
Gco

[
(pco11γh + pco12γv) ĥs + (pco21γh + pco22γv) v̂s

]
, (129)

where pcoij are the polarizer coefficients of the receiver’s antenna.

5. Facet RCS

Finally, the expected facet RCS for an arbitrarily oriented rough facet can be

estimated as

〈σ〉 = 〈σcoh〉+ 〈σncoh〉 (130)

with

〈σcoh〉 =
(

1 + 4s2

l2

) k2

4π

e−(q′zs)
2∣∣q′x − q′y∣∣2 Γ

∣∣∣∣∣
N∑
i=1

(∆x′i + ∆y′i) e
jα′isinc (β′i)

∣∣∣∣∣
2

(131)

〈σncoh〉 =
(

1 + 4s2

l2

)(kl
2

)2

e−(q′zs)
2

AfacetΓ

∞∑
n=1

(q′zs)
2n

n!n
e−

l2

4n (q′2x +q′2y ), (132)

and

Γ =
[
|p11γh + p12γv|2 + |p21γh + p22γv|2

]
. (133)

As before, the apostrophe operator indicates that the quantities to be substituted in

these equations are expressed in the facet-local CRS, rather than the antenna-centered

CRS.

V. Results

The model presented in Sections III and IV has been implemented in MATLAB© and

used to simulate reflections from the lunar South Pole from a landed spacecraft.

Table 1 summarizes the main inputs to the tool, including the transmit and receive

antennas, the landing site, the carrier frequency, lunar soil dielectric constant, and the

lunar terrain roughness properties. Note that a total of 92 simulations were carried

out, one per day, in order to properly capture the relative motion of Earth in the sky

as seen from the lunar surface.
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Table 1. Simulation Parameters

Parameter Value Units Comments

Carrier frequency 2.2 GHz S-band

Landing site Mount Malapert - -

Transmit antenna Dipole - Half-wave

Transmit antenna height 10 m Above surface

Transmit polarization RCP - -

Receive antenna DSN 34m - -

Receive polarization RCP - -

Simulation start 1/1/2020 - -

Simulation end 4/1/2020 - -

Lunar terrain DEM resolution 10 m -

Lunar terrain extent 6× 6 km2 -

Lunar dielectric constant 3.7− j0.01 F/m -

Lunar roughness 0.25 m -

Lunar roughness distance 1 m -

A. Reflected Power

Figure 9 plots the Earth elevation subtended by Earth over a three-month period and

as seen from an antenna placed 10 m above the surface.24 Observe that Earth almost

never rises above 12◦ above the horizon approximately and even sets completely for

about one week a month. Note that this plot has been obtained assuming that the

receiver is placed at the center of Earth. In reality, however, there is a second-order

variation in receiver elevation caused by the latitude at which the ground station is

located, but the differences are small enough that they can be neglected for this

analysis.

Figure 9. Earth Elevation at Mount Malapert

24The elevation angle calculation takes into account DEM, as well as the Moon curvature.
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To study the amount of power reflected from the lunar surface, three metrics are

defined from the notation of Section III:

β =
Total LoS power

Total reflected power
∝ |Elos|

2

〈|Es|2〉
(134)

γ =
Coherently reflected power

Total reflected power
∝
〈
∣∣Ecohs

∣∣2〉
〈|Es|2〉

(135)

K =
Coherent power

Non-coherently reflected power
∝
〈
∣∣Elos + Ecohs

∣∣2〉
〈|Encohs |2〉

. (136)

β is a “lump-sum” metric that simply indicates the ratio between the amount of power

from the LoS ray, compared to the amount of power received from reflections. γ, on

the other hand, is a number from 0 to 100% that indicates the amount of reflected

power that has been coherently reflected from the surface. Finally, K is equal to the

Rice Factor as defined in Equation (33) and can be used to estimate statistics of the

received signal. Note that, in these equations, the power of the LoS ray has been

adjusted to account for diffraction loss effects following the discussion from

Section III.D.

Figure 10 shows the simulation results for the three aforementioned metrics. All

timelines are synchronized with the motion of Earth in the lunar sky. Several

conclusions are possible:

� The amount of reflected power is clearly driven by the Earth elevation angle. In

general, three regions can be identified:

– At high elevation angles, reflections from the lunar surface dominate. They

are strong enough to result in β ≈ 5 dB.

– When the Earth elevation angle is < 1◦, the diffraction effects dominate.

They reduce the power of the LoS ray and cause β to tend to 0.

– When Earth is located at ∼ 1◦ of elevation, β increases significantly. This is

due to the fact that the reflection angles from facets located between the

lunar lander and Earth are oriented in such a way that almost no reflections

occur (e.g., they are downward sloping). Note that this is probably an

artifact created by the input DEM, which we assumed to be error free, and

highlights the model sensitivity of the terrain when reflections are estimated

at near-grazing angles. Additional modeling efforts would be required to

eliminate these artifacts, either by taking into account uncertainty in the

DEM analytically in a statistical fashion, or by conducting Monte Carlo

experiments over uncertain terrain realizations and then averaging them.

� When the elevation angle decreases below ∼ 5◦, the multipath fading process is

dominated by coherent reflections (i.e., γ tends to 1). This can also be observed

using the Rice Factor, which quickly grows to over 50 dB.
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Figure 10. Reflected Power over Time

� At high elevation angles, incoherent reflections dominate. Therefore, the channel

is well modeled by a Rician random variable with a Rice Factor of approximately

K ≈ 5 dB.

Observe that these results cannot be generalized. Indeed, changing the carrier

frequency, the radiation pattern of the transmit antenna, or even the landing site, will

significantly alter the estimates for total reflected and diffracted power. Therefore, the

results presented here should be viewed as a best-guess estimate from an engineering

model and should not, in any case, be interpreted as “the truth.”

Finally, all results obtained from the proposed model seem to agree with engineering

intuition except for the increase in β when the Earth elevation is around 1◦. To

understand why this happens, we note that at this elevation angle, neither reflection

nor diffraction dominate. Indeed, the elevation angle is so low that only a handful of

facets right in front of the landed spacecraft will satisfy the conditions of specular

reflection, so the total reflected power decreases and the channel conditions improve.
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B. Channel Delay and Doppler Spread

The results of the simulation engine can also be used to estimate the channel Doppler

and delay profile, and their respective summary metrics, the average delay and

Doppler, and the delay and Doppler spread. These last metrics are interesting from a

communications standpoint because they are inversely related to the channel

coherence bandwidth and channel coherence time, respectively [13].

In general, the average delay and Doppler are defined as follows [13]:

τ̄ =
1

P

∞�

−∞

τp(τ)dτ (137)

f̄ =
1

P

∞�

−∞

fp(f)df, (138)

where τ and f denote the relative delay and Doppler shift with respect to the LoS ray,

P denotes the total reflected power, and p(τ) and p(f) denote the received power

spectral density of the reflections as a function of propagatoin delay and Doppler shift.

Similarly, the delay and Doppler spread are defined as

σ2
τ =

1

P

∞�

−∞

(τ − τ̄)
2
p(τ)dτ (139)

σ2
f =

1

P

∞�

−∞

(
f − f̄

)2
p(f)df (140)

Because our simulation engine calculates reflection effects via a collection of N rays,

these equations can be approximated in the discrete domain as:

τ̄ ≈ 1

P

N∑
i=0

τiPi (141)

f̄ ≈ 1

P

N∑
i=0

fiPi, (142)

where τi, fi, and Pi denote the relative delay, relative Doppler shift, and power of the

i-th reflected ray. Similarly,

σ2
τ ≈

1

P

N∑
i=0

(τi − τ̄)Pi (143)

σ2
f ≈

1

P

N∑
i=0

(fi − f̄)Pi (144)

Note that these equations are approximations not just because they are obtained from

a finite collection of rays. Indeed, because of limitations in the estimation of Pi, they

also fail to properly account for diffraction effects at very low elevation angles and are
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subject to the limitations inherent to the approximations made while deriving a facet

RCS.

Figure 11 plots the result of these calculations for the scenario from Table 1. Observe

that the typical delay spread is less than 1 µs, while the Doppler spread is estimated

at less than 0.01 Hz. Note also that this small Doppler spread is caused here because

the spacecraft on the lunar surface is assumed to be stationary, i.e., higher Doppler

spreads would be experienced in the case of a rover that moves around the lunar

surface depending on the maximum roving speed. Finally, note that the provided plots

have gaps at regularly spaced time intervals. These correspond to periods of time

when Earth is below the horizon, so the calculation of the Doppler and delay spread is

considered invalid.

Figure 11. Delay and Doppler Spread

VI. Conclusions

This paper presents a new simulation model to estimate the characteristics of a

multipath fading channel from a spacecraft on the surface of a planetary body such as

the Moon. The model takes as input a DEM of the surface, along with its dielectric

and roughness properties, and provides a full channel characterization that includes

the total reflected power, the fraction of power coherently and incoherently reflected,

and the Doppler and delay shifts experienced by the reflections.

Internally, the proposed simulation model is built around the theory of scattering from

rough and random dielectric surfaces. It utilizes a quasi-GO approximation of the

reflected far fields to estimate the total power reflected along with the Doppler and

delay characteristics. It also includes a simplified knife-edge diffraction model to

estimate the power loss due to diffraction at very low elevation angles.

While the results presented in Section V are consistent with engineering intuition, a
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complete experimental validation of the model is still pending and will require

comparison with data collected from landed spacecraft like VIPER, or orbiting

spacecraft like the Lunar Reconnaissance Orbiter (LRO) or the EM-1 Cubesats.

Therefore, the results presented in this article must, for now, be considered an

engineering effort to provide credible multipath fading models for mission design and

analysis while measurements from actual flight operations are not available.
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[8] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,” Journal

of graphics tools, vol. 2, no. 1, pp. 21–28, 1997.

[9] “pyproj,” https://pyproj4.github.io/pyproj/stable/, 2021.

[10] “spice,” https://naif.jpl.nasa.gov/naif/toolkit.html, 2021.

40

http://imbrium.mit.edu/
https://pyproj4.github.io/pyproj/stable/
https://naif.jpl.nasa.gov/naif/toolkit.html


[11] G. L. Stuber, Principles of Mobile Communication. Kluwer Academic Publishers, 2001.

[12] Goddard Space Flight Center, “The Doppler Equation in Range and Range Rate

Measurements,” NASA, Tech. Rep. X-507-65-385, October 1965.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660010159.pdf

[13] T. S. Rappaport, Wireless Communications: Principles & Practice. Prentice Hall PTR,

1996.

[14] Y. Z. Umul, “Comparison of diffraction methods for lunar occultations,” Optik, vol. 205,

p. 163756, 2020.

[15] L. E. Vogler, “Point-to-point communication on the moon,” J. Res. Bur. Stand., Sect.

D, vol. 67, pp. 5–21, 1963.

[16] J. F. Lindsey, “Lunar surface transmission loss for the apollo astronaut,” Tech. Rep.,

1968.

[17] H. T. Dougherty and L. J. Maloney, “Application of diffractions by convex surfaces to

irregular terrain situations,” Radio Science Journal of Research, 1964.

[18] S. Rice, “Diffraction of plane radio waves by a parabolic cylinder: Calculation of

shadows behind hills,” Bell System Technical Journal, vol. 33, no. 2, pp. 417–504, 1954.

[19] J. B. Keller, “Geometrical theory of diffraction,” Josa, vol. 52, no. 2, pp. 116–130, 1962.

[20] P. H. Pathak, G. Carluccio, and M. Albani, “The uniform geometrical theory of

diffraction and some of its applications,” IEEE Antennas and Propagation magazine,

vol. 55, no. 4, pp. 41–69, 2013.

[21] J. Crysdale, “Comparison of some experimental terrain diffraction losses with

predictions based on rice’s theory for diffraction by a parabolic cylinder,” IRE

Transactions on Antennas and Propagation, vol. 6, no. 3, pp. 293–295, 1958.

[22] M. Soja, “Electromagnetic models of bistatic radar scattering from rough surfaces with

gaussian correlation function,” 2009.

[23] W. Gordon, “Far-field approximations to the kirchoff-helmholtz representations of

scattered fields,” IEEE Transactions on Antennas and Propagation, vol. 23, no. 4, pp.

590–592, 1975.

[24] F. T. Ulaby, F. Kouyate, A. K. Fung, and A. J. Sieber, “A backscatter model for a

randomly perturbed periodic surface,” IEEE Transactions on Geoscience and Remote

Sensing, no. 4, pp. 518–528, 1982.

[25] A. Kbenchaf, “Sea surface scattering for near-grazing incidence,” in Oceans’ 99.

MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition.

Conference Proceedings (IEEE Cat. No. 99CH37008), vol. 3, IEEE, 1999, pp. 1452–1456.

[26] D. Bell and L. Tadjpour, “Multipath Mitigation on In Situ Communication Links,” The

Interplanetary Network Progress Report, vol. 42-151, Jet Propulsion Laboratory,

Pasadena, CA, pp. 1–21, November 2002.

https://ipnpr.jpl.nasa.gov/progress report/42-151/151F.pdf

[27] P. U. Papoulis, Athanasios, Probability, Rnadom Variables, and Stochastic Processes.

McGraw-Hill, 2002.

[28] C. W. Chen, “Approach for modeling coherent radar ground echoes in planetary landing

simulations,” Journal of Spacecraft and Rockets, vol. 55, no. 1, pp. 85–94, 2018.

41

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660010159.pdf
https://ipnpr.jpl.nasa.gov/progress_report/42-151/151F.pdf


APPENDICES

I. Far-Field Approximation

The exact solution for the radiated electromagnetic field given a set of current sources

is a function of the well-known Green’s dyadic function [4, 22]:

χ =
exp (−jk |r − r′|)

4π |r − r′|
, (145)

where r and r′ denote the position of the receiver and the origin, respectively. The

distance between transmitter and receiver can be expanded to

|r − r′|2 = r2 + r′2 − 2r · r′ = r2
[
1 + r′2

r2 − 2r·r′

r2

]
, (146)

with r = |r| and r′ = |r′|. In the far field, r′ � r and therefore

|r − r′| ≈ r
√

1− r·r′

r2 ≈ r − r · r
′. (147)

The later equality follows from the fact that

√
1− x = 1− x

2
− x2

8
− x3

16
− 5x4

128
+ ... ≈ 1− x

2
(148)

for small x. Therefore, we conclude that in the far-field

χ ≈ exp (−jkr + jkr · r′)
4πr

=
e−jkr

4πr
ejkr·r

′
, (149)

which is the term utilized in the original Stratton-Chu integral.

II. Dielectric Properties of Propagation Media

This appendix provides a succinct summary of the EM parameters that characterize a

material, as well as typical quantities useful in EM theory that are defined from them.

It is provided here as ancillary information, following the discussion from reference [2].

Given any material, we introduce four characteristic parameters:

1. ε denotes the electrical permittivity, in farads per meter (F/m).

2. µ denotes the magnetic permeability in henry per meter (H/m).

3. ρv denotes the volume charge density in coulomb per cubic meter (C/m3).

4. σ denotes the conductivity in siemens per meter (S/m).

In general, the complex permittivity of a material is expressed as

ε = ε′ − j
(
ε′′ +

σ

ω

)
, (150)
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where ω = 2πf is the angular frequency. Similarly, the complex magnetic permeability

is expressed as

µ = µ′ − jµ′′. (151)

It is convenient to express the electric permittivity and permeability of a material

normalized to that of free space (vacuum), resulting in what is known as the relative

permittivity and relative permeability:

ε̃ =
ε

ε0
=
ε′

ε0
− j

(
ε′′

ε0
+

σ

ωε0

)
= ε̃′ − j

(
ε̃′′ +

σ̃

ω

)
(152)

µ̃ =
µ

µ0
=
µ′

µ0
− j µ

′′

µ0
= µ̃′ − jµ̃′′, (153)

where ε0 ≈ 8.854 · 10−12 F/m and µ0 ≈ 1.257 · 10−6 H/m denote the permittivity and

permeability of free space. Note that, in this appendix, the tilde symbol is used to

indicate that a value is relative.

These dielectric properties, together with Maxwell’s equations, form the basis for what

is known as the homogeneous wave equation, which states that for materials with no

charge density (i.e., ρv = 0), EM waves propagate according to the following

differential equations:

∇2E − γ2E =0 (154)

∇2H − γ2H =0, (155)

where E and H are the vectorial representations of the electric and magnetic fields,

expressed in phasor notation. Furthermore, the propagation constant is defined as

γ2 = −ω2µε. (156)

While solving these differential equations, it is common to use several other quantities.

Namely,

� the wavenumber is defined as k2 = −γ2 so that k = ω
√
µε;

� the intrinsic impedance is defined as η = ωµ
k =

√
µ
ε in ohms (Ω);

� the phase velocity is defined as vp = ω
k = 1√

µε ;

� and the index of refraction is defined as n = c
vp

= c
√
µε, where c denotes the

speed of light.

In the vacuum, ε = ε0, µ = µ0, and the phase velocity is by definition equal to the

speed of light c. Therefore,

c =
1

√
ε0µ0

≈ 3 · 108 m/s. (157)

43



Using this fact, together with the definition of the relative permittivity and the

relative permeability, and the fact that ω = 2πf = 2πc
λ , we can rewrite the different

quantities previously introduced as:

k =k0

√
µ̃ε̃ (158)

η =η0

√
µ̃
ε̃ (159)

vp =
c√
µ̃ε̃

(160)

n =n0

√
µ̃ε̃, (161)

where η0 =
√

µ0

ε0
= 377 ≈ 120π Ω, k0 = 2π

λ , and n0 = 1 denote the intrinsic impedance,

wavenumber, and index of refraction of free space, respectively. Further simplifications

are possible depending on the material or medium where the wave propagates. For

instance, a pure dielectric and non-ferromagnetic material,25 also known as lossless

material, will exhibit µ̃ = 1 and ε̃′′ = σ̃ = 0. In contrast, a lossy medium is defined as

having ={ε} 6= 0, which occurs, for instance, in conducting materials (i.e., σ 6= 0).

To study the properties of lossy materials, the propagation constant is generally

decomposed into α, the medium’s attenuation constant, and β, its phase constant:

γ = α+ jβ (162)

with

α =
2π

λ

√
ε̃′

2

(
−1 +

√
1 + ζ2

)
(163)

β =
2π

λ

√
ε̃′

2

(
+1 +

√
1 + ζ2

)
(164)

and

ζ =
ε̃′′ + σ̃

ω

ε̃′
=
ε′′ + σ

ω

ε′
(165)

Some authors call ζ the loss tangent and express it as “tan δ” instead, where δ is the

angle between the imaginary and real part of the dielectric constant.26 Also, we can

now use ζ to express all characteristic material properties as follows:

k =k0

√
ε̃′
√

1− jζ (166)

η =
η0√
ε̃′

1√
1− jζ

(167)

vp =
c√
ε̃′

1√
1− jζ

(168)

n =
√
ε̃′
√

1− jζ. (169)

25All non-ferromagnetic materials exhibit µ̃ = 1. This is the case for most planetary bodies in the solar

system.

26The loss tangent reported in the literature is directly equal to ζ, and the inverse tangent operation

need not be applied.
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Finally, ζ is also used to classify lossy materials. Indeed, if ζ < 10−2, the material is

considered a low-loss dielectric, while materials with 10−2 ≤ ζ ≤ 102 are considered

quasi-conductors and materials with ζ > 102 are classified as good conductors.

Furthermore, the values of α, β, k, η, vp, and n can be approximated by taking

advantage of the following approximations:

� For low-loss materials, ζ � 1 and therefore
√

1± jx ≈ 1± j x2 and
1√

1±jx ≈ 1∓ j δ2 .

� For good conductors, ζ � 1 and therefore
√

1± jx ≈
√

x
2 (1− j) and

1√
1±jx ≈

1∓j√
2δ

.

This results in the characteristic parameters of dielectric non-ferromagnetic materials

provided in Table 2.

Table 2. Dielectric Properties of Materials

Free

Space

Lossless

Medium

Lossy Material

Low-loss Quasi-conductor Good conductor

ζ 0 0 < 10−2 10−2 ≤ ζ ≤ 102 > 102

α 0 0 π
λ
ε̃′′+σ̃/ω

ε̃′
2π
λ

√
ε̃′
2

(
−1 +

√
1 + ζ2

)
π
λ

√
2
(
ε̃′′ + σ̃

ω

)
β 2π

λ
2π
λ

√
ε̃′ 2π

λ

√
ε̃′ 2π

λ

√
ε̃′
2

(
+1 +

√
1 + ζ2

)
π
λ

√
2
(
ε̃′′ + σ̃

ω

)
n 1

√
ε̃′

√
ε̃′
(

1− j ζ2
) √

ε̃′
√

1− jζ
√
ε̃′
√

ζ
2 (1− j)

k 2π
λ

2π
λ n

2π
λ n

2π
λ n

2π
λ n

η η0
η0
n

η0√
ε̃′

(
1 + j ζ2

)
η0
n

η0√
ε̃′

1+j√
2ζ

vp c c
n

c√
ε̃′

(
1 + j ζ2

)
c
n

c√
ε̃′

1+j√
2ζ

III. GO Approximation Conditions at Grazing Angles

In this appendix, we show that under the GO approximation and at grazing angles,

the traditional assumption that (qzs)
2 � 1 is in general valid except for very small

values of surface roughness. To do so, we first evaluate the following limit:

lim
λ→0

θi,θs→90

4π2

λ2
(cos θi + cos θs)

2s2. (170)

To do so, we assume s to be finite, and we assume that incident and reflected polar

angles are the same. In this case, this limit can be rewritten as

4π2s2 lim
t→0

(2 cos
(
π
2 − t

)
)2

t2
. (171)
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Taylor expanding the numerator yields

16π2s2 lim
t→0

t2 +O(t4)

t2
= 16π2s2. (172)

Note that the value 16π2s2 is adimensional. Also, Ulaby et al. argue in [4] that the

GO approximation can only be used if (qzs)
2 > 10. Therefore, rearranging terms, we

get that for the GO to be valid

s >

√
10

4π
≈ 0.25m. (173)

However, if we assume λ to be finite, then (qzs)
2 tends to

(qzs)
2 = 16π2 s

2

λ2
θ2, (174)

so the GO approximation will be valid as long as

s >

√
10

4πψ
λ ≈ λ

4ψ
, (175)

where ψ = 90− θ is the grazing angle. Also, if we do not assume θi and θs to be equal,

then the condition simply becomes

s >

√
10

2π(ψi + ψs)
λ ≈ λ

2(ψi + ψs)
. (176)

Finally, it is common to express the condition of validity of the GO with respect to the

normalized parameter ks. In that case, the GO is valid if

ks >

√
10

ψi + ψs
≈ 3.16

ψi + ψs
(177)

or, equivalently,

ks >
1.58

ψ
(178)

if we assume ψi = ψs.

IV. Conditions of Specular Reflection under the GO Approximation

In this appendix, we prove that under the GO approximation, the normal of the points

that specularly reflect power towards a receiver in any given facet is equal to

n̂GO =
k̂s − k̂i∣∣∣k̂s − k̂i∣∣∣ , (179)

where k̂i and k̂s represent the incident and reflected unit vectors. To that end, we first

state the conditions of specular reflection:

1. The polar angle of incidence θi must be equal to the polar angle of reflection θs.
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2. The normal n̂GO must lie in the plane formed by the incident and reflected rays.

Or, equivalently, the azimuthal angle of incidence and reflection, denoted φi and

φs, respectively, satisfy |φs − φi| = 180◦.

To prove both conditions, we consider, without loss of generality, the geometry of

Figure 12. In this case, the angles θi and θs can be calculated as

k̂i

k̂s
n̂GO

k̂s − k̂i
θi θs

θi

Figure 12. Specular Reflection CRS (length of vectors not to scale)

θi = arccos
(
k̂i · −n̂GO

)
= arccos

(
k̂i·(k̂i−k̂s)
|k̂s−k̂i|

)
= arccos

(
1−k̂i·k̂s

|k̂s−k̂i|

)
, (180)

θs = arccos
(
k̂s ·+n̂GO

)
= arccos

(
k̂s·(k̂s−k̂i)
|k̂s−k̂i|

)
= arccos

(
1−k̂s·k̂i

|k̂s−k̂i|

)
, (181)

which are equal to each other because the dot product is commutative. Similarly, k̂i,

k̂s, and n̂GO will lie in a plane if k̂i is perpendicular to the cross product of k̂s and

n̂GO. In other words,

k̂i ·
(
k̂s × n̂GO

)
= 0. (182)

This condition is easy to prove by first noting that it can be interpreted as the triple

scalar product in its determinant form:

k̂i ·
(
k̂s × n̂GO

)
= det


kix kiy kiz

ksx ksy ksz

ksx − kix ksz − kiy ksz − kiz

 . (183)

Then, we simply expand the determinant and collect terms until they all cancel out, a

step obviated here for brevity.
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V. The Surface Differential

This appendix provides a brief discussion of the choice of surface differential to

evaluate the square of the phase integral in Equation (78). To initiate the discussion,

let us recall that because the surface is random, we seek to evaluate

〈|I|2〉 = 〈
�
F

�
F ′
ejq(r−r′)dSdS′〉. (184)

Following the conventions from [4], let Zx = ∂z
∂x and Zy = ∂z

∂y denote the surface slopes

in the x and y directions respectively, which, by definition, are also random. Then,

thanks to the linearity of the expectation operator, we get

〈|I|2〉 =

�
F

�
F ′
ejqx(x−x′)+jqy(y−y′)〈κ〉dAdA′, (185)

where the random variable κ is defined as

κ = ejqz(z−z′)
√
Z2
x + Z2

y + 1
√
Z2
x′ + Z2

y′ + 1. (186)

Unfortunately, this quantity is difficult to evaluate analytically because it involves six

stochastic Gaussian processes z, z′, Zx, Zy, Zx′ , and Zy′ with zero mean that are

autocorrelated and, in some cases, cross correlated. To circumvent this limitation, we

provide three approximations for 〈κ〉, two in which the slopes are assumed to not be

autocorrelated, and another one where this autocorrelation is taken into account. In

both cases, however, independence between the surface and the slopes is assumed to

simplify the problem.

A. Approximation 1: Bound Assuming Uncorrelated Slopes

If we assume the surface and the slopes to be independent, then

〈κ〉 ≈ 〈ejqz(z−z′)〉〈
√
Z2
x + Z2

y + 1
√
Z2
x′ + Z2

y′ + 1〉. (187)

The first term 〈ejqz(z−z′)〉 results in Equation (85) because it is simply the

characteristic function of two correlated Gaussian variables. To evaluate the second

term, we assume here that the slopes at different points of the surface are not

correlated with each other. In this case,

〈
√
Z2
x + Z2

y + 1
√
Z2
x′ + Z2

y′ + 1〉 = 〈
√
Z2
x + Z2

y + 1〉〈
√
Z2
x′ + Z2

y′ + 1〉. (188)

Furthermore, we know that the function f(x) =
√
x is concave, so we can apply

Jensen’s inequality to obtain

〈
√
Z2
x + Z2

y + 1〉 ≤
√
〈Z2

x + Z2
y + 1〉 =

√
1− 2ρ′′(0), (189)

which results in

〈
√
Z2
x + Z2

y + 1
√
Z2
x′ + Z2

y′ + 1〉 ≤ 1− 2ρ′′(0). (190)

Therefore, and assuming a Gaussian correlation function of the form ρ(ξ) = s2e−ξ
2/l2 ,

we get

〈κ〉 ≈ e−q
2
zs

2(1−ρ)
(

1 +
4s2

l2

)
. (191)
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B. Approximation 2: Exact Value Assuming Uncorrelated Slopes

A more exact but also more cumbersome approximation can be found by studying the

distribution of
√
Z2
x + Z2

y + 1. In particular, we note that(
Zx
sz

)2

+

(
Zy
sz

)2

∼ χ2
2, (192)

where χ2
2 denotes the Chi-square distribution with two degrees of freedom and sz

denotes the standard deviation of the slopes, which can be shown to be equal to [27]

s2
z = −s2ρ′′(0). (193)

Therefore, the random variable Q = 1 + Z2
x + Z2

y has a probability density function of

the form

fQ(q) =
1

2s2
z

e
q−1

2s2z , (194)

and P =
√
Q is distributed as

fP (p) = fQ(q)

∣∣∣∣∂Q∂P
∣∣∣∣ =
|p|
s2
z

e
− p−1

2s2z . (195)

Note that both Q and P have support [1,∞) so that

〈
√
Z2
x + Z2

y + 1〉 =

∞�

1

pfP (p)dp = 1 +

√
π

2

(
1− erf

(
1√
2sz

))
sze

1
2s2z . (196)

Consequently, if the terrain correlation function is Gaussian, then

s2
z = 2

s2

l2
(197)

and

〈κ〉 = e−q
2
zs

2(1−ρ)
[
1 +
√
π

(
1− erf

(
l

2s

))
s

l
e

l2

4s2

]2

. (198)

C. Approximation 3: Bound Assuming Autocorrelated Slopes

We once again assume independence between the surface and its slopes so that

〈κ〉 ≈ 〈ejqz(z−z′)〉〈
√
Z2
x + Z2

y + 1
√
Z2
x′ + Z2

y′ + 1〉. (199)

Furthermore, the surface slope term can be expanded to yield

〈
√

(Z2
x + Z2

y + 1)(Z2
x′ + Z2

y′ + 1)〉 ≤
√
〈1 + Z2

x + Z2
y + Z2

xZ
2
x′ + Z2

yZ
2
y′ + Z2

yZ
2
x′ + Z2

xZ
2
y′〉,

(200)

which, upon assuming that the terrain has isotropic roughness properties in the x and

y directions, simplifies to

〈
√

(Z2
x + Z2

y + 1)(Z2
x′ + Z2

y′ + 1)〉 ≤
√

1 + 2
[
〈Z2

x〉+ 〈Z2
xZ

2
x′〉+ 〈Z2

xZ
2
y′〉
]
. (201)
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Next we evaluate the three expectations in this last expression, which leads to

〈Z2
x〉 =− ρ′′(0) (202)

〈Z2
xZ

2
x′〉 =2ρ′′(ξ)2 + ρ′′(0)2 ≤ 3ρ′′(0)2 (203)

〈Z2
xZ

2
y′〉 =ρ′′(0)2. (204)

The proofs for each term are provided in the subsection following this discussion.

Consequently,

〈κ〉 ≈ e−q
2
zs

2(1−ρ)
√

1 + 2 [−ρ′′(0) + 3ρ′′(0)2 + ρ′′(0)2] (205)

which, when evaluated for a Gaussian correlation function, yields

〈κ〉 ≈ e−q
2
zs

2(1−ρ)

√
1 + 4

s2

l2
+ 32

s4

l4
. (206)

D. Comparison of Approximations

Figure 13 plots approximations (191), (198), and (206) normalized as follows:

〈κ̂〉 =
〈κ〉

e−q
2
zs

2(1−ρ) (207)

It can be observed that for small values of s/l, the three approximations essentially

yield the same result. However, as s/l increases, the effects of cross-correlations

between surface slopes becomes increasingly noticeable.

Figure 13. Comparison of Approximations

E. Moments of the Surface Slopes

In this subsection, we derive basic statistical properties of the surface slopes. To start,

recall here that we have assumed the terrain z(x, y) to be modeled as a

two-dimensional Gaussian process with zero mean and autocorrelation function

ρ(x− x′, y− y′) = ρ(ξ). Because the surface slopes are defined by means of derivatives,
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it is appropriate to recall basic properties for the derivative operator when applied to a

stochastic process, namely [27]:

� The derivative of a Gaussian stochastic process is also a Gaussian stochastic

process.

� 〈Zx〉 = ∂
∂x 〈z(x, y)〉 and 〈Zy〉 = ∂

∂y 〈z(x, y)〉

� Zx is autocorrelated with ρZx
(ξ) = − ∂2

∂ξ2 ρ(ξ) = ρ′′(ξ). The same result applies

to Zy.

� If Zx and Zx′ are jointly Gaussian distributed with zero mean and covariance

ρZx
(ξ), then the covariance of Z2

x and Z2
x′ is equal to 2ρ2

Zx
(ξ). The same result

also applies to Zy and Zy′ .

Using these facts, it is immediate to see that 〈Z2
x〉 = 〈Z2

y〉 = −ρ′′(0) and therefore

〈Z2
xZ

2
x′〉 = Cov

(
Z2
x, Z

2
x′
)

+ 〈Z2
x〉〈Z2

x′〉 = 2ρ′′(ξ)2 + ρ′′(0)2. (208)

Also, to calculate 〈Z2
xZ

2
y′〉, we start by showing that 〈ZxZy′〉 are uncorrelated. In

particular,

〈ZxZy′ 〉 = lim
∆x→0
∆y′→0

〈
z(x+ ∆x, y)− z(x, y)

∆x

z(x′, y′ + ∆y′, x′)− z(x′, y′)
∆y′

〉

= lim
∆x→0
∆y′→0

ρ(x+ ∆x− x′, y − y′ −∆y′) + ρ(x− x′, y − y′)
∆x∆y′

−

lim
∆x→0
∆y′→0

ρ(x+ ∆x− x′, y − y′) + ρ(x− x′, y − y′ −∆y′)

∆x∆y′
.

(209)

Next, we assume that the autocorrelation function is Gaussian and calculate its Taylor

expansion around the origin. This results in

ρ(u, v) ≈ s2

(
1− u2 + v2

l2

)
. (210)

Substituting Equation (210) into Equation (209) and carrying out the necessary

summations results in the numerator of Equation (209) being equal to zero. Therefore,

we have shown that

〈ZxZy′〉 = 0. (211)

Finally, because 〈Zx〉 = 〈Zy′〉 = 0, we have that

〈ZxZy′〉 = Cov(Zx, Zy′) = 0 (212)

and, consequently, Cov(Z2
x, Z

2
y′) = 0. This yields the final result:

〈Z2
xZ

2
y′〉 = 0 + 〈Z2

x〉〈Z2
y′〉 = ρ′′(0)2. (213)
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VI. RCS of Horizontal Square Facet

In this appendix, we specialize the results from Section IV.A.10 to a square facet

because it is most common in the literature — see, for instance, [4, 7, 28]. Figure 14

shows a single square facet of side 2L in isolation with its positively oriented contour.

x̂

ŷ

Side 1

S
id
e
2

Side 3

S
id
e
4

L

−L

−L

−L

Figure 14. Square Facet

The coordinates of its vertices are (L,L), (−L,L), (−L,−L), and (L,−L). Therefore,

upon substituting these values into Equations (112) and (113), we obtain:

α1 =qx
L− L

2
+qy
−L− L

2
=− qyL (214)

α2 =qx
L+ L

2
+qy

L− L
2

= + qxL (215)

α3 =qx
−L+ L

2
+qy

L+ L

2
= + qyL (216)

α4 =qx
−L− L

2
+qy
−L+ L

2
=− qxL (217)

and

β1 =qx
L+ L

2
+qy
−L+ L

2
= + qxL (218)

β2 =qx
L− L

2
+qy

L+ L

2
= + qyL (219)

β3 =qx
−L− L

2
+qy

L− L
2

=− qxL (220)

β4 =qx
−L+ L

2
+qy
−L− L

2
=− qyL. (221)

Furthermore,

∆x1 =−∆x3 =2L (222)

∆x2 = ∆x4 = 0 (223)
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and

∆y1 = ∆y3 = 0 (224)

∆y2 =−∆y4 =2L. (225)

Upon substituting these values into Equation (116) and using the fact that the sinc

function is even, we get

I0 =
(2L)2

|qx − qy|2
∣∣sinc (qxL)

(
e−jqyL − ejqyL

)
+ sinc (qyL)

(
ejqxL − e−jqxL

)∣∣2
=

(2L)2

|qx − qy|2
|2j|2 |−sinc (qxL) sin (qyL) + sinc (qyL) sin (qxL)|2

=
22(2L)2

|qx − qy|2
|−(qyL)sinc (qxL) sinc (qyL) + (qxL)sinc (qyL) sinc (qxL)|2

=
(2L)4

|qx − qy|2
|qx − qy|2 sinc2 (qxL) sinc2 (qyL)

=(2L)4sinc2 (qxL) sinc2 (qyL) .

(226)

Finally, we note that Afacet = (2L)2, which results in

σcoh =

(
1 +

4s2

l2

)
k2

4π
e−(qzs)

2

ZA2
facetsinc2 (qxL) sinc2 (qyL) . (227)

Observe that the obtained solution agrees with previous solutions found using the PO

model. Indeed, in appendix 12D of [4], Ulaby et al. show that the coherent scattering

RCS of a square surface is proportional to

I00 = |a0|2 e−(qzs)
2

A2
facetsinc2 (qxL) sinc2 (qyL) , (228)

where |a0|2 is a constant parameter that differs from our derived value because of

differences between the GO and PO approximations.
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