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ABSTRACT. — This report presents initial results apropos a genetic algorithm that

evolves 3D geometries; this early study is a proof of concept, presenting an algorithm

that evolves to a predefined target shape, with the final goal of designing optimized

3D antenna geometries. The algorithm presented in this work builds structures by

combining building blocks of different geometric primitives, where the fitness of a

design is measured by the similarity to the target shape. Multiple techniques for

comparing 3D shapes are explored and compared in the context of a fitness score for

evolutionary algorithms. The designed algorithm was capable of evolving to biconical

and dipole antenna shapes rapidly using a variety of fitness functions. A more

complex log-periodic antenna shape was evolved using a directed fitness function

comparing the component shapes. The development of this algorithm preludes

incorporating more complex fitness functions that build designs to improve sensitivity

to science outcomes. Future improvements to the algorithm and the steps required to

achieve designs with improved sensitivity are discussed in the context of antennas but

could be applied to other applications.

I. Introduction

A. Motivation

Astrophysics science experiments are often limited by the sensitivity of their detector

elements, which have numerous constraints and requirements. Sensitivity in the field

of radio observations can be improve with optimized antenna parameters and reduced
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system noise. This investigation presents an initial step in the aim to use genetic

algorithms (GAs) to optimize antennas, either by improving sensitivity to science

outcomes and/or reducing resource requirements (mass, volume, and cost). This

report presents the initial step by demonstrating a GA that evolves 3D geometries to

an existing target shape. GAs are a computational heuristic that utilize principles of

evolution to efficiently identify solutions to defined problems. The focus of this

investigation is on scientific remote sensing applications, such as receivers for signals of

opportunity like Global Navigation Satellite System (GNSS) antennas, passive

sounding, and low-frequency radio signals including radio emissions from extrasolar

planets [1, 2, 3], cosmic ray electrons and cosmic magnetic fields [4, 5, 6, 7, 8], and the

highly redshifted neutral hydrogen hyperfine line [9, 10, 11, 12].

This report presents the initial step in antenna evolution to science outcomes by

demonstrating a GA that evolves 3D geometries to an existing target shape without

predefined antenna types (i.e., dipole or biconical) using shape comparison fitness

functions. Future iterations will evolve toward complex science goals by incorporating

fitness functions related to science outcomes through integration with antenna and

experiment simulation software. Antennas with a predefined geometry have previously

been designed using evolutionary algorithms with limited parameters. NASA has used

GAs to design unique wire antennas for the ST5 mission [13]. The Genetically

Evolving Neutrino Telescopes (GENETIS) collaboration has developed GAs integrated

with antenna and science simulation software to design biconical and horn antennas

with improved sensitivity to neutrino signals [14, 15, 16]. Both these examples required

strict constraints to predefined antenna types such as wire, biconical, and horn.

The use of GAs to aid in design of various detectors and experiments has become more

prevalent in recent years [17, 18]. McCarthy et al. designed a horn antenna for the

detection of Cosmic Microwave Background radiation using a GA [19]. The

Long-Baseline Neutrino Oscillation (LBNO) experiment and the Deep Underground

Neutrino Experiment (DUNE) optimized the design of neutrino beamlines through a

GA using science simulations to determine the fitness [20, 21]. GAs have also been

used to optimize various aspects of detector design, including layout, sensors,

shielding, and trigger optimization [22, 23, 24, 25, 26].

B. Genetic Algorithms

GAs are a computational technique capable of finding high-quality solutions to

complex problems [27, 28]. They are especially effective in problems with many

parameters of high cardinality, which can be impractical to optimize with traditional

techniques. GAs operate with the principles of biological evolution, with many

potential solutions iteratively evolving toward improved results. The basic procedure

and the nomenclature are described in this section.

GAs begin by generating an initial set (population) of potential solutions

(individuals), defined by genes, which are the parameters that fully describe a
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solution. Each individual is evaluated by a mathematical fitness function and receives

a fitness score, which reflects how well an individual performs according to the

predefined objective. Individuals are chosen as parents through selection methods, and

their genes are combined to produce offspring through genetic operators. As with

biological evolution, individuals with higher fitness scores are more likely to be chosen

as parents, and offspring are created with various methods of combining parent genes,

mutating of parent genes, or introducing new individuals. Over many generations,

evolutionary pressure encourages the continuation of individuals with higher fitness

scores. The evolution terminates after predefined criteria are met, such as reaching a

particular fitness score or number of generations.

The success of a GA is dependent on a variety of additional complexities and

hyperparameters. It is important to keep in mind that GAs are a probability-based

heuristic, which means that complex solutions require a large number of individuals

over many generations for satisfactory results. While increasing the number of

individuals and generations will improve results, this must be balanced against the

accompanying increase in computation time. Additionally, the types of selection

methods and operators used to generate offspring and the ratios of different types can

affect the results. Some selection methods strongly favor higher fitness score

individuals, which can result in the GA being stuck in a local maxima. Other selection

methods and operators promote genetic diversity in parents and offspring, but may

inhibit the speed and ability in finding solutions. Finally, it is crucial that the fitness

function is well-defined. As will be discussed in Section IV, different fitness functions

with similar goals can have significantly different results.

C. 3D Object Generation

Computational design of complex 3D objects with GAs presents unique challenges

that must be considered. Each individual must be fully described by a set of genes

that can be inherited by future individuals. For a single 3D object, this is relatively

trivial. A cuboid, for example, is described by five genes: length, width, height, θ

rotation, and ϕ rotation. However, determining the genes of a combination of shapes is

significantly more complex, especially when the target shape is detailed and variable.

Finding a technique that uses a single set of genes to describe 3D objects and

constructing a fitness evaluation were key components of this investigation. These

challenges are nontrivial and multiple methods were considered. A number of

techniques have been used in literature for generating a variety of 3D objects including

spherical harmonics [29], procedural modeling [30, 31, 32, 33], and voxels [34, 35, 36].

Each method was reviewed in designing this GA. Objects generated with spherical

harmonics often do not have sharp edges or empty space, which is desired in our

designs. Procedural modeling typically involves repeating specific geometries, and we

did not want to limit the designs to those constraints. Voxel algorithms can generate

complex structures out of voxels in a 3D grid that can be enabled or disabled; however,

3



evolving an array of voxels presents a significant computational challenge due to the

very large parameter space resulting from the number of genes required to describe

complex objects at high resolution. In an effort to overcome this computational

burden, Funes and Pollack developed a GA that builds 3D objects using combinations

of cuboids, similar to “LEGO” brick structures [37]. In their algorithm, the genes for

each individual consist of simple dimensional definitions (length, width, height) and

connections (which cuboids the individual is connected to and where they connect).

An individual is represented by a tree of shapes, each with their own genes. The

algorithm presented in this report is based on an expansion of this technique.

This report details the initial results of the GA’s ability to construct structures and

evolve individuals to match various target shapes. Section II describes a detailed

overview of the GA. Section II.A presents the procedure for generating individuals and

discusses the related challenges and solutions. In Section III, we describe the process

of calculating various fitness scores that were tested. The results for evolving the

chosen target shapes are given in Section IV. Finally, Section V discusses the

implications of the results, the next steps in generating antenna designs that evolve

toward specified science outcomes, and potential challenges.

II. Genetic Algorithm

A flowchart of the GA used in this analysis is given in Figure 1. The GA has a number

of different parameters outlined in Appendix I. The algorithm starts by generating an

initial population of designs. Using the Python API, the designs are built in

Blender [38], an open-source 3D modeling software, for fitness score evaluation.

Fitness scores are calculated by comparing each individual to a target geometric

structure. The fitness scores are then used to select parents and create offspring. The

loop continues with the new generation evaluated in Blender as before. This process is

repeated for a fixed number of generations or until the fitness score plateaus, after

which the algorithm is terminated. In this section, details of each step of the GA are

described, starting with a discussion of how an individual is built by genes.

Parent 
Selection

Initial Designs Improved 
Designs

Designs Created 
in Blender

Fitness Function 
Comparison

Offspring 
Creation

Figure 1. Diagram illustrating the basic loop of the GA. Green boxes indicate initialization and

termination. The blue boxes show the steps required to evaluate the fitness function, and the red

boxes give the steps for creating the next generation.
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A. Building an Individual

A single individual is a combination of basic geometric primitives connected like

“LEGO” building blocks to produce a more complex structure, as illustrated in

Figure 2. Our algorithm begins by placing an initial base building block centered at

the origin. After the base shape is placed, new building blocks can be connected to the

base shape. Each new shape added now becomes a canvas for more potential building

blocks to be added. The building blocks can be one of four primitive shapes: cuboids,

cylinders, cones, or spheres.

Figure 2. Example individual consisting of each of the four primitive shapes. A base cuboid at the

origin with an attached cylinder and sphere. The cylinder then has an attached cone.

To describe a complete individual, the dimensions, location, orientation, and

connections of each component shape are needed. These genes of a single building

block are detailed in Table 1. An individual is represented by a tree structure that

contains the genes of all the component shapes.

For demonstrative purposes, consider the example shape in Figure 2. This individual

is built from a base cuboid, with a sphere attached on the right side, and a cylinder on

the top. Above the cylinder, a cone is connected at an angle. The corresponding

diagram in Figure 3 depicts the tree structure and the genes of each shape.

There are a number of complications to the description above that should be noted.

First, at this initial stage of development, building blocks are only allowed to have one

shape attached to any side. All shape types behave consistently, with a maximum of

one attachment allowed in each region corresponding to its front, back, left, right, top,

and bottom. Additionally, when cylinders and cones are added, they always connect

with their flat top or bottom face.
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Table 1. Primitive shape genes

Gene Values

Shape Type Cuboid, Cylinder, Cone, Sphere

Dimensions Varies by shape type (See Table 2)

Location Cartesian coordinates of shape midpoint

Rotation θ, ϕ

Connected From Shape built from

Connected To Side that shapes are attached to

Table 2. Dimensions for each shape type

Shape Type Dimension Genes

Cuboid Length, Width, Height

Cylinder Radius, Height

Cone Inner Radius, Outer Radius, Height

Sphere Radius

B. Creating Designs in Blender

Since our fitness functions depend on the comparison of individuals to a target

geometry, Blender is used to 3D model individuals from their tree dictionaries in a

two-step process. This integration is required as having a 3D model is critical in

comparing the shape to a target (for most fitness functions). The structures are built

with the following procedure. First, each building block shape is modeled and placed

in 3D space. Second, the overlapping volume between the building blocks is removed

and the shapes are merged together into a single mesh. As a note, for some fitness

functions explored in this report, it is not necessary to remove the overlapping volume.

When required, removing overlap is the largest contributor to computation time in the

loop, with the other elements running in under a second. Appendix III describes

efforts to minimize computation time contributed by Blender and shows examples

quantifying expected computation time.

C. Fitness Function Calculation

Multiple fitness functions were developed and tested during this analysis: Hausdorff

distance, average minimum distance, volume matching, linear combination, and direct

dictionary comparison. These fitness functions are described in detail in Section III.

D. Parent Selection

This analysis used tournament, roulette, and rank selection methods. In tournament

selection, a small subset of the population is chosen, and the individual with the

6



Base Shape
● Shape Type: Cuboid
● Dimensions = {L= 2, W = 2, H = 2}
● Rotation = {θ= 0, Φ= 0}
● Connections = {Side 2, Side 5}

Shape 2
● Shape Type: Sphere
● Dimensions = {R = 1}
● Location= {0, 2, 0}
● Rotation = {θ= 0°, Φ= 0°}
● Connected from = {Base Side 2}
● Connections = {None}

Shape 3
● Shape Type: Cylinder
● Dimensions = {R = 1, H = 2}
● Location= {1, -1, 2}
● Rotation = {θ= 0°, Φ= 0°}
● Connected from = {Base Side 5}
● Connections = {Side 5}

Shape 4
● Shape Type: Cone
● Dimensions = {R1 = 0, R2 = 1, H = 2}
● Location= {-0.579, 0.406, 1.707}
● Rotation = {θ= -35°, Φ= -35°}
● Connected from = {Shape 3 Side 5}
● Connections = {None}

Figure 3. Tree structure of example individual, with the genes of each shape listed. The base shape

would be considered to be at a tree depth of zero, and the cone at a tree depth of 2.

highest fitness score is selected as a parent [39, 40]. In roulette, or

fitness-proportionate selection, the probability of an individual being selected as a

parent is proportional to their fitness score [41]. Rank selection is similar to roulette;

however, instead of the selection probability being proportional to the fitness score, it

is proportional to the rank of the individual.

E. Genetic Operators

Four main genetic operators were used to construct the next generation: mutation,

crossover, reproduction, and injection.

Mutation is an operator that alters one gene of a single parent individual to produce

an offspring. Due to the complexity of combining shapes into individuals, there are

two different types of mutation used in this algorithm: (1) standard mutation, where

individual genes are altered, and (2) regenerative mutation, where a shape is

regenerated or altered.

Standard mutation is when either a single dimension, rotation, or location gene of a

single shape is altered. For these gene mutations, the new gene is found by generating

a value from a Gaussian distribution centered on the original value, where the

standard deviation is a predefined percentage of the total range of values.

While standard mutation makes minor changes to individuals, regenerative mutation

allows for larger changes to occur. There are three types of regenerative mutation:

grow, prune, and replacement. For grow mutation, an empty side of one shape on the
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individual is selected and a new shape is generated that connects to that side.

Conversely, with prune mutation, a shape, and all subsequent connected shapes in the

tree, are removed from the individual. Finally, replacement mutation is the process of

exchanging a shape with another. The new shape is generated from scratch.

At the conclusion of any type of mutation, the algorithm determines the location,

rotation, and connections for each shape in the individual and alters those parameters

if needed.

Crossover is a technique used to mix the genes of two parents to produce two

offspring. There are two types of crossover used in this analysis: gene and branch. In

gene crossover, single genes from the same shape on different parents are exchanged,

such as swapping a cylinder diameter gene. Two parents that have at least one shared

shape type are required. Branch crossover exchanges all shapes in one branch of the

tree structure. The algorithm selects a tree depth that exists in both parents, then

selects one branch from each individual to exchange. As with mutation, the algorithm

ensures that the shape is still valid and that constraints are still satisfied.

The reproduction operator chooses a single parent and passes that individual to the

next generation with no changes.

Injection is the creation of a brand new individual in the next generation. Individuals

made by injection are created using the same method as described for generating

individuals in the first generation.

III. Fitness Function Details

This section details the different fitness functions that were explored in this report.

A. Hausdorff Distance

The Hausdorff distance is the largest distance from the individual object to the closest

point in the target object [42]. The Hausdorff distance, H, can be represented by

Equation 1:

H(I, T ) = max [min(dist(Ii,Tj)] , for all i and j (1)

where I is the individual composed of i vertices, T is the target shape composed of j

vertices, and dist is the distance between two points. In effect, the Hausdorff distance

gives a single value of the distance between the least correct point of the individual to

the target. A Hausdorff distance of zero corresponds to identical shapes.

The fitness score, F , is calculated using the Hausdorff distance, normalized so that a

perfect match is equal to 1 and decreases with imperfect matches as the Hausdorff

distance increases:
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FH =
1

1−H
(2)

B. Average Minimum Distance

One new fitness function was devised that takes the average of the minimum distances

from each vertex of the individual to the target. This is effectively the Hausdorff

function, but instead of taking the maximum value, the mean is taken:

Havg(I, T ) = mean [min(dist(Ii,Tj)] , for all i and j (3)

FHavg
=

1

1−Havg
(4)

C. Volume Matching

The volume matching fitness function compares the difference in volume between the

target and an individual. Blender is used to calculate the volume of the target, VT ,

the volume of the individual that lies inside the target shape, Vin, and the volume of

the individual that lies outside of the target shape, Vout.

To build a fitness function, we need a value that goes to zero when the individual

perfectly matches the target, and increases as either the inner volume decreases or the

outer volume increases. This can be achieved with the volume score VS :

VS = |Vin − VT |+ Vout (5)

The fitness score is then given in Equation 6:

FV =
1

1− VS
(6)

D. Linear Combination

The linear combination of other fitness functions was also investigated:

FW = aFH + bFHavg + cFV (7)

where a, b, and c are weights normalized to add up to one. This combination of

parameters allows the GA to take advantage of the different evolutionary pressures

from different fitness functions. In this report, only an equal weight of the Hausdorff

distance and the average minimum distance was used, although other combinations

and weights could be investigated in the future.
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E. Direct Dictionary Comparison

The direct dictionary comparison fitness function sequentially evolves to a known

target by increasing the fitness score of individuals whose genes are similar to that of

the target shape. This fitness function forces the evolution without ambiguity, and it

is only feasible when the outcome is exactly known. We developed this fitness function

as an exploration into the potential of the GA in building more complex shapes, since

the other fitness functions were unable to converge. This function should allow for a

better understanding of the number of generations the algorithm needs to achieve a

desired solution. Moving forward, this fitness function will act as a baseline for more

complex shapes and will be used for continued study of hyperparameter optimization.

The direct dictionary comparison function evaluates each shape of an individual one at

a time against the corresponding target shape, to get a shape sub-score:

Si =


0 if location or type incorrect

1
n

∑n
g

1

1 + 1
M |gT − gI |

if shape or type correct
(8)

where i is the shape number, n is the number of genes in the shape, gT and gI are the

value of the gene for the target and individual respectively, and M is the range of

allowed values for the gene. If the shape is in the incorrect location or it is the wrong

type, the sub-score is zero. If the location and type are correct, each gene, g, is

compared between the target and the individual and the difference is normalized to fall

between 0 and 1. The total contribution from each gene is summed, and the average is

found by dividing by the number of genes, n. The final fitness score is given by:

FD =

∑
Si

N
(9)

Note that N is the number of shapes in the target plus the number of shapes in the

evolved individual that are not present in the target. This was included to reduce the

fitness score of individuals with incorrect numbers of shapes.

IV. Results and Discussion

The algorithm was tested by evolving to three different target shapes: a biconical

antenna, a dipole antenna, and a log-periodic antenna. For each target shape, multiple

fitness functions were used and the results and convergence were compared. The direct

dictionary comparison function was built for the log-periodic design and was not

tested with the biconical or dipole antenna evolutions. Each generation contained 250

individuals. This section describes the details of the evolutions for each target shape

and includes a discussion on insights into the different fitness functions.
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A. Biconical Antenna Results

Figure 4 shows the results for a biconical target shape, or bicone, described by two

connected cones with openings facing opposite directions. Evolution was tested using

the Hausdorff distance, average minimum distance, volume matching, and linear

combination fitness functions. Figure 4 shows that the Hausdorff distance fitness

function was fastest at producing the desired shape, achieving a satisfactory result in

∼150 generations. The average minimum distance and weighted average functions

both plateaued below a fitness score of 0.6, before rapidly evolving to above 0.9. The

volume matching function failed to evolve to the target.

Figure 5 shows the fitness score for each individual over the first 300 generations using

the Hausdorff distance fitness function. Each point represents one individual with the

color corresponding to the genetic operator used to create that individual.
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Figure 4. Comparison of the maximum fitness score per generation for the four fitness functions tested

in evolving a bicone antenna over 300 generations.
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Figure 5. The fitness score of each individual of the bicone evolution using the Hausdorff distance

fitness function. The ordinate gives the fitness score of that individual. The color of the point

represents the genetic operator used to create that individual.
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Figure 6 demonstrates the evolutionary process by showing the individual with the

highest fitness score from three selected generations: the first generation, a middle

generation, and the generation with the best individual. The best individual from the

initial generation is a random combination of shapes. By the fiftieth generation, the

best individual was comprised of two cones, but further refinement. The algorithm

continued to converge to the highest scoring individual, produced in Generation 200.

(a) Generation 0

Individual 13

(b) Generation 50

Individual 57

(c) Generation 200

Individual 18

Figure 6. Three examples of the best individual of generations 0, 50, and 200 illustrating the evolution

of the bicone antenna using the Hausdorff distance fitness function. The target is given in blue, and

the individual is shown in red.

B. Dipole Antenna Results

Figure 7 shows the results for a dipole target shape consisting of two connected and

concentric cylinders with the same diameter and height. The dipole was tested using

the same fitness functions as the bicone. Figure 7 shows that the fastest convergence

occurred with the linear combination fitness function.
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Figure 7. Comparison of the maximum fitness score per generation for the four fitness functions tested

in evolving a dipole antenna over 150 generations.
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The Hausdorff distance function converged at a similar rate, while the average

minimum distance and volume matching functions failed to converge to the target

shape. Figure 8 shows the fitness score for each individual over each generation using

the weighted average of the Hausdorff distance and average minimum distance fitness

functions. Figure 9 depicts the highest-scoring individuals from three generations

showing the clear evolution using the linear combination fitness function.
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Figure 8. The fitness score of each individual of the dipole evolution using the weighted average of the

Hausdorff distance and ave. min. distance fitness functions. The ordinate gives the fitness score of that

individual, and the color of the point represents the genetic operator used to create that individual.

(a) Generation 0

Individual 108

(b) Generation 10

Individual 148

(c) Generation 454

Individual 51

Figure 9. Three examples of the best individual of generations 0, 10, and 454, of the dipole evolution

using the average minimum distance fitness function. The target is given in blue, and the individual is

shown in red.

C. Log-Periodic Antenna Results

With successful results in generating simpler antenna shapes, the fitness functions

were tested on a more complicated log-periodic design. A log-periodic antenna consists

of a series of dipole antennas connected perpendicularly to a support, with the dipoles
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decreasing in size along the length. A simple log-periodic target shape was constructed

with 4 dipole arms. The target shape consisted of 14 total primitives, compared to the

2 used in the bicone and dipole tests. The results are presented in Figure 10. For this

study, the fitness functions tested previously were inadequate in converging to the

log-periodic shape in the tested number of generations. The Hausdorff distance fitness

function failed to find multiple offshoots from the main shape, while the average

minimum distance and volume matching tended to get stuck in broad approximations

of the shape. The direct dictionary comparison function was consequently built to

drive the evolution toward a more complex target shape.

Figure 11 shows the fitness score for each individual over each generation using the

direct dictionary comparison fitness function. Figure 12 depicts the highest scoring

log-periodic individuals from three generations. The run was continued until the

evolved individual visually matched the target in Generation 21,000.
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Figure 10. Comparison of the maximum fitness score per generation for the five fitness functions tested

in evolving to a log-periodic antenna over 3000 generations.
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Figure 11. The fitness score of each individual of the log-periodic evolution using the direct dictionary

comparison fitness function. The ordinate gives the fitness score of that individual, and the color of the

point represents the genetic operator used to create that individual.
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(a) Generation 0

Individual 27

(b) Generation 100

Individual 216

(c) Generation 21,000

Individual 138

Figure 12. Three examples of the best individual of generations 0, 100, and 21,000, of the log-periodic

evolution using the direct dictionary comparison fitness function. The target is given in blue, and the

individual is shown in red.

D. Discussion of Fitness Functions

The results presented here provide insight into the different fitness functions and the

importance of choosing the right fitness function for a goal. Of particular note, GAs

are stochastic processes so the efficiency and results from one evolution are unlikely to

occur in subsequent runs. This can result in a wide range of convergence times, which

makes comparing fitness functions difficult without performing many evolutions. This

effect and a preliminary investigation are discussed in Appendix II.

The Hausdorff fitness function proved effective; however, we found that for certain

geometric structures, it is not capable of adequately assessing the overall similarity

between some produced structures and a target. The Hausdorff distance finds and

measures the worst single point of the individual; thus, any change to a shape that is

smaller than the worst point will not affect the fitness score, regardless of if it

improves the individual (like adding a small object in the correct location). This is

especially problematic with target shapes that have large individual protrusions. This

can result in large individuals that loosely approximate the target, but do not

converge since virtually any change reduces the fitness score. This issue prevents the

GA from evolving to more complex shapes. The other fitness functions tested were

designed to ameliorate this issue.

The volume matching function failed to converge to the target for any of the tested

shapes, despite the theoretical potential as a fitness function. The volume matching

function quickly found local maxima that loosely approximated the target. For

example, in the dipole evolution (Figure 7), it created two stacked spheres with the

approximate size of the target. While it was possible for the algorithm to generate an

individual that improved on the target, the probability was extremely low, with

virtually all changes resulting in a worse fitness score. The algorithm would have
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needed to change a sphere to a cylinder of nearly the correct size in order to improve

upon its best individuals. It may be valuable to adjust this fitness function by

weighting the importance of the inside and outside volume terms.

Figures 5, 8, and 11 illustrate interesting trends showing the types of individuals that

are produced by the different operators. First, the injection operator consistently

produces individuals with low fitness scores. This is not unexpected as these

individuals are generated and therefore do not use information from previous

generations to produce a solution; however, it provides new, diverse genetic

information that can be used to make better designs. Regenerative mutation typically

produces individuals with fitness scores below 0.3. This is crucial in the early

generations, as it helps ensure that the correct shape types are represented in the

population. Once the evolution approaches the target, it is likely that changing a

shape will drastically hurt the individual’s fitness score. Additionally, the mean fitness

score increases initially before plateauing (at different fitness scores for different target

shapes and fitness functions) as the diversity generated through injection balances out

any improvements found through the other operators.

Individuals produced through mutation tended to have the highest fitness, while

individuals made with crossover tended to exist in a midrange band. The exception to

this is the bicone, where crossover and mutation produced the highest-scoring

individuals. This is likely because, in the current iteration of the algorithm, crossover

recalculates from scratch the connection point of the branches. This means the centers

of two cylinders of the dipole (or log-periodic antenna) have a low probability of being

aligned correctly, resulting in a worse fitness score. However, this was not an issue

with the bicone because the connection point was the narrow ends of the cones, which

left less room for error in placement. In the future, connection points will be retained

with crossover to improve the effectiveness.

V. Conclusions

This report presents progress toward the evolution of 3D geometries for antenna

designs using combinations of smaller component shapes. The algorithm constructed

was effective in building a variety of antenna shapes using shape comparison fitness

scores, and the results of this work illuminate the future efforts required for the design

of antennas optimized for science outcomes.

The algorithm was able to evolve matches to bicone and dipole antenna shapes using

multiple fitness functions. The evolution of a log-periodic antenna was more complex

and required a specific fitness function to achieve a matching result. This work

allowed for a deeper understanding of shape comparison fitness functions and their

pitfalls in the context of genetic algorithms.

While significant effort and discussion went into fitness scores for shape comparisons

to prove the efficacy of the algorithm, the future of this work lies in building fitness
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functions tied to science outcomes and improving the algorithm to make the design of

optimized antennas more efficient.

A. Future Work

The main focus of future work will be to incorporate antenna gain patterns to fitness

functions using XFdtd (Remcom) [43]. The ultimate goal will be using the XFdtd

simulation to target specific gain patterns or science simulation outcomes, which will

allow the design of unique antennas that deliver optimized sensitivity with unique

constraints. This will increase computation time and require efficiency improvements

to the algorithm.

There are a number of improvements to the GA that can be made by increasing the

complexity of individuals. First, the algorithm currently only allows one shape to be

attached per side. This constraint was made to simplify early versions of the

algorithm, but it limits design opportunities. Also, new primitive shapes could be

added such as pyramids, triangular prisms, trapezoids, toruses, and helices.

Furthermore, once integration with XFdtd is completed, including a gene for the

material could allow the unique evolution of dielectric antennas or antennas with

metamaterials, such as those discussed in References [44, 45, 46, 47, 48].

GAs require a balance between genetic diversity and elitism when striving for

efficiency toward a solution. This investigation highlighted how the value of different

selection methods and genetic operators varies throughout the run. In the beginning,

techniques (like regenerative mutation) that encourage significant changes are

important in breaking out of highly incorrect solutions; however, at the end of the run,

techniques that focus on optimizing a design through minor adjustments are most

valuable. Creating dynamic selection methods and operators that allow for these

techniques to change based on the stage of the run could increase convergence speed.

There are also optimizations that could help reduce computational requirements. For

instance, computation time could be reduced by not recalculating fitness scores for

individuals that have already been evaluated in a previous generation (such as those

produced through reproduction). As shown in Appendix I, there are over 50

hyperparameters in this algorithm, and conducting tests to optimize these

hyperparameters—potentially with the direct dictionary comparison fitness

function—could reduce computation time by improving the algorithm’s rate of

convergence to solutions. Optimization can be challenging since GAs are probabilistic

in nature and it may be valuable to repeat the same test many times, as shown with

the preliminary study in Appendix II.

More advanced improvements to the algorithm will also be investigated, including

particle swarms and other heuristic methods [49, 50, 51, 52], or neural

networks [53, 54], to improve efficiency. Particle swarms could help reduce the number

of ineffective individuals being generated and help to converge on a solution more
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quickly. A neural network could be used to predict the fitness of individuals similar to

previously tested individuals and reduce the computational time needed to calculate

fitness.

The work presented in this report demonstrates a first step in the optimization of 3D

geometries for detector design. The algorithmic design of structures is a complex

problem, and continued research in this area will allow for future optimization of

designs for science outcomes.
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APPENDICES

I. Genetic Algorithm Parameters

Table 3. Parameters used in Genetic Algorithm

Category Type Parameters

General
Run Num. Individuals, Num. Generations, Fitness Function

Individual Max. Tree Depth, Max. Shapes

Shape

Cuboid Shape allowed, Length, Width, and Height Ranges

Sphere Shape allowed, Radius Range

Cylinder Shape allowed, Radius, and Height Range

Cone Shape allowed, Radius 1, Radius 2, and Height Range

Selection

Methods

Tournament Percent of parents, Group Size

Roulette Percent of parents

Rank Percent of parents

Genetic

Operators

Dim. Mutation Percent of children, St. Dev. %

Rotation Mutation Percent of children, St. Dev. %

Location Mutation Percent of children, St. Dev. %

Grow Mutation Percent of children

Prune Mutation Percent of children

Regen. Mutation Percent of children

Gene Crossover Percent of children

Branch Crossover Percent of children

Reproduction Percent of children

Injection Percent of children

II. Run Variability Analysis

When discussing results from a GA, it is important to recall that they rely on

inherently stochastic processes. As such, repeated uses of the same algorithm with the

same parameters, operator and selection method settings, and fitness function have no

guarantee to arrive at the same solution in the same number of generations. To

quantify the impact of the stochastic nature of the GAs on the efficiency of evolutions,

repeated runs were conducted for the evolution to the target dipole design using both

the average minimum distance and equal weighted combination of average minimum

distance and Hausdorff distance fitness metrics.

For these runs, all settings of the GA were identical to those used in Section IV, with

the data discussed there also included in this supplementary discussion. Each

additional run was conducted for 250 generations. Each repeated run exhibits unique
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behavior, with large variance in the number of generations needed to reach a

satisfactory solution. Some conclusions about representative behaviors may however

be drawn. In the repeated runs using the average minimum distance fitness score

metric, shown in Figure 13, it is seen that the most common outcome is that this

metric will guide the GA to produce a non-optimal solution with a midrange fitness

score, and will less frequently find an optimal solution quite quickly (under

approximately 50 generations). In the repeated runs using the weighted combination

of average minimum distance and Hausdorff distance as the fitness score metric, shown

in Figure 14, the inverse is true. These runs more commonly achieve a near-optimal

solution relatively quickly (under around 75 generations) and less frequently find only

a solution with a midrange fitness score in the same number of generations.
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Figure 13. Results of repeated runs using the average minimum distance fitness score metric for

shape-to-shape evolution to the target dipole design.
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Figure 14. Results of repeated runs using the weighted sum of average minimum distance and

Hausdorff distance fitness score metric for shape-to-shape evolution to the target dipole design.

The runs that rapidly achieved near-optimal solutions were those that identified

primitive shape types that closely matched those of the target dipole design (cylinders
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or cones) in their initial generations. Once individuals made up of such primitives

became common in the population of solutions, all that remained was fine-tuning

toward the target shape design. There is again a degree of randomness to how quickly

these matching primitives appear in the population, but it is clear from the differences

between the two sets of results depicted in Figures 13 and 14 that the fitness score

metric chosen also plays a role in guiding the individuals in early generations to favor

the correct primitives. These results underscore the importance of further study of

optimal and dynamic operator and selection method percentages to encourage efficient

performance of the GA when used with each fitness function.

III. Blender Computation Time

Studies were conducted to understand the computation time incurred by the stages of

the GA that rely on the use of Blender to model individuals. Outside of Blender, the

remaining steps of the GA execute in under one second total, thus modeling

individuals in Blender represents the most significant slowdown in terms of

computation time.

The total time to model an individual in Blender, including the time required to place

individual shapes, remove overlapping volume, and combine their respective meshes

into one object, was recorded for individuals made up of varying numbers of shapes.

This was done over 10 trials for each benchmark number of shapes, with the average

computation times for the Blender steps plotted as a function of number of shapes, as

seen in Figure 15. Note that this analysis was carried out locally on a CPU, which is

expected to represent the fastest case.
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Figure 15. Average computation time of Blender modeling as a function of number of shapes in an

individual when run locally.

The most significant contribution to the computation time is combining shapes into a

single mesh object. A method to decrease the computation time of this process

through multi-threading on multiple CPU cores was investigated. This process

entailed splitting the individual being modelled into sections with an equal number of

24



shapes, using one core per section. Each section was modelled in a separate instance of

Blender prior to being recombined to form the finished model of the individual.

The results of implementing the proposed multi-threading method for a benchmark

case of individuals made up of 1000 shapes are shown in Figure 16. Here, 10 trials

were conducted using this method at each number of cores between 1 and 8, and the

average per individual computation time over all trials was calculated and shown as a

function of number of cores. This multi-threading method lessened computation time

of the Blender modeling steps with increased numbers of cores used, with an

approximate computation time of 14 seconds with one core decreasing to

approximately 9 seconds with 8 cores.
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Figure 16. Average computation time of shape combination in Blender as a function of CPU cores in a

multi-threaded process for individuals with 1000 shapes.

For the use cases described in this report, a parallel computing method achieved

satisfactory computation times without implementing the proposed multi-threading

process. The parallel computing method entailed the submission of 7 batch jobs

running in parallel, each responsible for modeling up to 40 individuals.

A further study was conducted to quantify the computation times of the Blender

modeling of 250 individuals per generation made up of varying numbers of shapes.

This is an expansion of the results shown in Figure 15, exploring total time per

generation (not time for single individuals) and using a cluster instead of a local

machine. The distribution of total time per generation for 100 generations shown in

Figure 17 for benchmarks of individuals made up of 20, 60, and 100 shapes. The

20-shape benchmark represents the upper-limit of computation time of the modeling

stages of the results presented in this report, as this was the maximum number of

shapes that any individual was allowed to have, with the majority having fewer. The

60- and 100-shape benchmarks are intended to provide an expectation on the

modeling speeds in Blender of other potential use cases requiring more complicated

individuals. Blender modeling computation times are seen to increase with number of

shapes used in the individuals of a generation; however, times remain manageable for
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each of the benchmark shape values when noting that the outlier values are due to

wait times when queuing batch jobs.
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Figure 17. Blender computation time per generation, in seconds, for the individual modeling process in

Blender with individuals made up of 20 (a), 60 (b), and 100 (c) shapes. The bin width is 5 seconds for

each histogram.
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