Aspects of Job Scheduling

K. Phillips
DSN Facility Operations Office

A mathematical model for job scheduling in a specified context is presented.
The model uses both linear programming and combinatorial methods. While
designed with a view toward optimization of scheduling of facility and plant
operations at the Deep Space Communications Complex (DSCC) at Goldstone,
the context is sufficiently general to be widely applicable. The general scheduling
problem including options for scheduling objectives is discussed and fundamental
parameters identified. Mathematical algorithms for partitioning problems ger-
mane to scheduling are presented. A more detailed description of algorithms and
of operational aspects of the model is planned for a later report.

l. Introduction

The efficiency and productivity of a service or produc-
tion facility can be affected by the way in which the jobs
performed by the facility are scheduled. As a part of the
move to increase operational efficiency in the DSN, it was
decided to study the effect of scheduling on the facility
and plant function at the Deep Space Communications
Complex at Goldstone and to partially automate the
scheduling of maintenance. This report is a preliminary
description of some of these efforts.

In general terms the object of mathematical scheduling
is to identify measures of performance on the jobs done
by a facility and to schedule the jobs to maximize the
performance. Measures of performance are stated in such
terms as maximal efficiency, minimal work inventory

JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-34

(backlog), and minimal lateness. The performance is
measured by a function. The mathematical model of the
problem then takes the form of maximizing or minimizing
this performance function subject to the constraints of
the problem. The constraints take many forms, of which
a few are: one man cannot do two jobs at once; some jobs
have higher priorities than others; the jobs are not all
available to be worked on at all times; the jobs have
different skill levels. The constraints in most real prob-
lems define a large and combinatorially complex set. This
is the case for the model presented here. The model pre-
sented minimizes work inventory and flow time and maxi-
mizes gross efficiency. With additional analysis it can also
yield schedules for maximal average efficiency, minimal
maximal tardiness, or minimal average tardiness. Precise
definitions appear in Section III.

129

Most of the results and discussion are presented in a
general context, after an initial brief description of the
immediate problem at Goldstone in Section II. The ideas
have wide applicability. In Section III the general sched-
uling problem is discussed. A model for “flow-time
scheduling” is presented in Section IV. Section V treats
partitioning algorithms important for scheduling. In
Section VI the Goldstone problem is again discussed.

Il. The Maintenance Operation at Goldstone

Facility maintenance is accomplished by seven shops:
clectrical, carpenter, etc. Each of these shops performs
jobs in three categories, as follows:

(1) Preventive maintenance, counsisting of periodic ser-
vicing and checking of cquipment.

(2) Corrective maintenance, consisting of minor repairs
and modifications.

(3) Special jobs, consisting of original construction or
installation, and generally more complex than (2).

The information for scheduling function (1) is known well
in advance, but functions (2) and (3) occur rather ran-
domly and have varying priorities. Function (1), and
possibly some portions of functions (2) and (8), have top
priority in that the tasks must be done during the month
called for by spcecifications. The users generally compete
for services in categories (2) and (3). In this context pos-
sible scheduling objectives are:

(1) Kecp all users as happy as possible by minimizing
either the average or the maximum time the users
must wait for completion of jobs.

(2) Operate the shop efficiently by minimizing job
backlog.

(3) An intelligent balance between (1) and (2).

As explained in Section III, (1) and (2) are not generally
compatible.

In Sections 111 through V we discuss aspects of general
scheduling with only occasional mention of Goldstone.
In Section VI we return to the context described here to
give a more complete discussion of the options at Gold-
stone. An overall description of the proposed automation
of the Deep Space Network Facility Operations appears
in Ref. 7.

130

HI. Scheduling Problems

There is a large literature on scheduling and assign-
ment problems, Refs. 1, 2, 5 and 6 form a sample and
contain between them a large current list of references.
Many difficult mathematical and computational problems
arise in considering optimal scheduling. For this report a
particular setting is chosen—general enough for several
applications—to discuss some of these problems.

A. A Context

Suppose that a service or manufacturing facility has n
jobs to do in a time interval [0, q] and that there are m
processors (women, men, or machines) to do the jobs.
Label the jobs {J;}7,. Assume that the processors all
have the same capability and that a certain fixed number
z; of them work simultaneously on job J; until it is fin-
ished, but that this number can vary with the job.
Associated with the job J; is its processing time p;, the
number of man hours required to complete the job.
The actual time the job J; is being worked on is thus
y: = pi/z;. If his the total number of man hours available
in the interval [0, ¢}, then we assume that

ﬁ: pi < h,
i=1

so that the jobs can in fact be done. It is assumed that
p; and z; are schedule-independent; scheduling does not
affect the time it takes to do a job or the number of
processors needed. Each job J; also comes with a due date
d; and is ready to be worked on at a ready time r; in
(0, g]. Thus p, z, d, r, and y arc vectors or n-tuples; e.g.,
d = (d;)*_,. Other vectors associated with the jobs are
defined below.

B. Utility

Utilization of the facility is measured by the n-tuple

u=(u)r,
where
u; =p;/h (utilization on [;)
Also let

1 n
U= T > pi (total utilization)
(average utilization)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

These factors simply measure what portion of the capa-
bility of the facility is being used. They are schedule-
independent.

C. Schedule-Dependent Variables
Listed below are several schedule-dependent variables
associated with the jobs J;:
starting times: S

completion times: ¢;

flow times: fi=ci—ry
(time J; is in the shop)
late times: L =c¢ —d;

tardy times: t; = max (0, ;)

waiting times: Wi =8 — T

These definitions are illustrated on the time axis in Fig. 1.
For example, suppose that there are three jobs, Iy, I, I,

only one processor (m = 1), and that ¢ = 5. Suppose that
the schedule-independent vectors are

r=1{(0,1,1) ready times (i.e., r, =0, r, = 1,
ry = 1)

p=1(1,1,3) processing times

d=1{(1,5,5) due dates

The vectors z and y are necessarily given by

z=(1,1,1) only one processor

y=p=(1,13) (work times)

If the jobs are done in order J,, Jz, J; with no lag between
the jobs, then

s=1(0,1,2)
c=(L1+1,2+8)=(1,25)
f=c—r=(11,4)
L=c¢c—d=(0,-380)

t =max (0,4) = (0,0,0)
w=s—r=/(0,0,1)

Notice in particular that flow time f; is the time that the
job] is in the shop. It is generally larger than the actual

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

work time y; and in fact will be the same only if the
ready time r; is equal to the completion time of the pre-
ceding job in the schedule. Such is the case for J, and J,
in this schedule, but not for J,. The total flow time for this
schedule is f, +f. -+ f, = 6, while the total processing
time is p, + p, + p; = 5.

D. Efficiency

We define the efficiency vector e = (e;)”_, of the sched-
ule by

Yi Pi
e = ==t 1
fi Zifi ()

Thus e; is the ratio of work time to flow time. The average
efficiency is

l n
= s 2
Ae p” ;el (2)

Another measure of efficiency is gross efficiency, defined

by
(25w

In general, Ae = G (of course).

E. Scheduling Objectives

If the jobs have no priorities (e.g., no bigger profit or
penalty is associated with some jobs than with others)
then objectives available for scheduling are:

(1) Minimize the average of f, £, w, or ¢.
2) Minimize the maximum of £, £, w, or ¢.

4

)
)
3) Maximize the average efficiency Ae.
} Maximize the minimum of e.

)

(
(
(
(5) Maximize gross efficiency G.

In this report we emphasize minimizing average flow
time Af, discussed in Subsection ITI-F, Before beginning,
note that the problem is combinatorially much too large
to solve on a computer by direct computation of all pos-
sible schedules, even for fairly small n. For example if
m =1 and r; = 0 for all i then there are n! schedules;
recall that

10! = 3,628,800
20! = 2,432,900,000,000,000,000
50! = 3 X 1004

131

If the jobs have priorities, weights can be given to the
coordinates of the vectors, and weighted averages and
maximums can then be considered. Weighting factors are
not considered in this report. There are in fact priorities
for the jobs at Goldstone. In the model described in
Section VI, these priorities are handled by categorizing
then optimizing within categories. Weighted vectors will
be developed as another alternative.

F. Flow Time

Minimizing total flow time
n
=(-21)
i=1
or average flow time
1 n
A== X
i1

also achieves each of points (1)—(3) below. The letter A
is used for average, so that for a vector v, Av denotes the
average of the components of v.

(1) Maximizes gross efficiency G.

(2) Minimizes average waiting time Aw and average
lateness Af.

(3) Minimizes average backlog (or work inventory).

Assertion (1) is apparent from the definition of gross effi-
ciency. To see (2) observe that

2w =3 fi =2y (4)
i1 i1 i=1

Sh =X+ X~ d) (5)

and that y;, r;, d; are all schedule-independent. Assertion
(3) is not quite so trivial, although it is intuitively clear
that the faster the work moves through the shop the
smaller the outstanding workload. Letting N(¢) denote
the work inventory at time ¢ (the number of jobs ready
to be processed or in processing), the critical formula is

/JWN(t) dt =3 f, (6)

A proof of Eq. (6) is given in Appendix A. The formula
proves assertion (3), for the left side of Eq. (6) is g times
the average backlog.

132

Another way to state Eq. (6) is

n

L
qzl

fi = (7)

The last expression is (arrival rate) - (average flow time).
Equality (7) appears in Ref. 2, but with the unneeded
hypothesis that the original ¢; are ordered.

G. Minimizing Flow Time

The problem of minimizing total flow time Xf in all
but the simplest cases appears to be unsolved in that no
generally effective algorithms exist. A discussion appears
in Ref. 2, where much of the exposition is devoted to the
problem.

The simplest case is that in which all jobs have the
same starting time (r; = 0) and there is one processor
(m =1). Then a schedule is simply a permutation of the
n jobs. Suppose that the jobs are done in the order of the
indices. The flow time of J, is simply its processing time
p1. Job J. is started on the completion of], so its starting
is 83 = p, and its flow time is

f2:C2—1‘2:S2+p2*O:p1+p:

Job J. is started at time p, + p, and so

f.] = P +P.’ + P

The flow time of the job J; (i.e., time required to complete
J; from the time it was first available) is

fi=%p (®)

and total flow time is given by

IS NIED MR RS VIR

i=1 1 =1

For the fixed set of numbers {p; : 1 <i<n) the number
on the right in Eq. (9) is minimal for the permutation in
which the p; are ordered by increasing magnitude (See
Appendix B). Hence the optimal flow time schedule in
this case is that in which the jobs are done according to
increasing processing times. This is called an LPT sched-
ule, for “least processing time” first. In more complicated
scheduling problems, the “LPT principle” can be applied
to portions of the schedule after other requirements have
been met.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

In Section IV a mathematical model for achieving mini-
mal flow time for the problem stated in Subsection III-A
is presented.

H. Tardiness and Flow Time

It seems clear that tardiness is a more important mea-
sure of performance than lateness, as defined above.
There is no advantage as far as due dates are concerned
in having the jobs finished early, that is in having £; < 0.
Unfortunately it is not true that minimum flow time also
gives minimum average tardiness. The equality corre-
sponding to Eq. (5) is

}n:t,- :imax((),c,- —d;) = Zf, + 3 (ri—dy)

i=1 i=1 i€l i€l

(10)

where [is the set of indices defined by I = {i:¢c, —d; >0}.
The set I is dependent on the schedule so there is no
reason to expect that the right side of Eq. (10) is minimal
with

To see explicitly that minimal 3 ¢; and minimal = f; may
require different schedules, consider the simple case
where m =1, n = 2. Assume that the ready times
r, =71, =0. In schedule J,J, the start time vector is
s = {0, p,) and the completion vector is ¢ = (p,, p1 + p2).
It is always assumed that d; > r; + y;, so in this case

t, =max (0,p, —d,) =0
and

t, =max(0,p, +p, —dy) = p1 + p: — d;
the last equality holding if d, < p; + p,. The same analy-
sis applies to the schedule J,J; with the roles of 1 and 2

exchanged. Total flow time and total tardiness are thus
given in the table below.

Schedule s st
I 2p, + p. p1+p2_d2
INA . 2P2+P1 P1+P2—d1

If p; < p, and d, > d, then the first schedule minimizes
total flow time but the second schedule minimizes total
tardiness.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

In the context of this report (the problem of Subsection
I11-A) the major tradeoff is between due date satisfaction
in terms of either average of minimal maximal tardiness
and minimal average flow time.

l. Remarks on Flow Time and Qutstanding Work

In discussing backlog in Subsection III-F, we called
backlog the number of jobs outstanding. Another mea-
sure of remaining workload is processing time remaining,
say P(t) at time ¢. If it is assumed that all processors work
continuously and no new work arrives, then it is clear
that P(t) is independent of schedule and in fact is linearly
decreasing with slope —1. However, if we assume gaps
in the work interval, then the graph of P(f) will be a
decreasing function with intervals of constancy or of
smaller slopes.

To illustrate, suppose that n =5 and m = 1 and that
the gaps are constant. Then the area under the graph of
P is minimal if the longest jobs are done first (see Fig. 2).
Hence under these assumptions minimizing average P(t)
is antithetical to minimizing average N(#). In some cases
minimizing AP might be more realistic; “get the big jobs
out of the way first.” Such an optimization procedure
could be further developed.

IV. Model for Flow Time Scheduling
A. Formulation

The context and notation are as in Subsection III-A;
the goal is to achieve minimum flow time. That is, the
goal is to find starting times for the jobs that make the
corresponding flow time minimal. Clearly there are con-
straints on the starting times. For example, if there are
two processors and ten jobs then an obvious constraint is
that not all ten jobs can be started at ¢ = 0. The con-
straints will yield certain allowable n-tuples s = (s;)7,
as starting times for the jobs J;. In geometric language,
there is a certain allowable subset A of n-dimensional
real space in which the vector s of starting times can lie.
Among all these possible starting times in A the object is
to choose one which makes the total flow time for the jobs
minimal. The set A is a rather unwieldy collection of
corners of an n-dimensional right parallelepiped. It is first
described below for the general case and then its geo-
metric properties are developed by considering simpler
cases.

133

To begin, observe that total flow time can be expressed

Sfi=E sty)= st Dy —)
i=1 i=1 i1 i=1

(11)

Since y; and r; are schedule-independent, the problem
of minimizing total flow time is the same as the problem
of minimizing

| (= %)

The analysis that follows emphasizes s.

The ready-time and finish-time constraints are simple

enough and are expressed by

ry <8, sityi<q (12)

Thus the allowable set A must lie in the set C of
n-dimensional space R* defined by

C={s:rn<s;<q—vy:} (18)

The set C is an n-dimensional right parallelepiped. The
processor constraint that at most m processors can be in
usc at any time is a little trickier. It may be phrased in
terms of subsets of R” defined by n-tuples § = (§;)7, in
which each §; is 0 or 1. Let T denote the set of all such &
and define a subsct of T by

A'-{SeTzi;Biz,->n} (14)

For 8 € A, the set of jobs J; for which §; = 1 cannot occur
simultaneously; i.e., the number of processors required
for this combination of jobs J; excceds the total number
of processors available. The condition that the jobs do
occur simultaneously is that there is some time ¢ at which
all jobs J; for i in the set I(8) = {i{:8; = 1} are being
processed; i.e., £ is in (s;,s; + y;) for each i in I(3). In set
notation, the subset of R" defined by

D) ={seRes 0 sty Eef (05

is thus excluded as possible starting times, for each 8 in A.
Hence the set

| E = UseaE(8) (16)

is excluded. The starting times must therefore be in the
complement E’ in R* of E. The allowable set A is thus

134

given by
A=EnNnC (17

where C is defined by Eq. (13). Hence the flow time prob-
lem may be formulated as follows.

Flow time problem: find the minimum value of S s; for
seA.

The set A is discussed in more detail in Subsections
IV-D and IV-E, after simpler cases have been described
in Subsections IV-B and IV-C.

The set A can also be written

A= 6(1A(8) (18)
where
A®)=E@BYncC (19)

In many cases the intersection defining A can actually be
taken over a smaller set than A : for, if A(§) C A(s) then
A(o) need not be included in the intersection.

B. lilustrative Example

Suppose there are two jobs for scheduling and one pro-
cessor, i.e.,, n = 2, m = 1. Suppose that r; = 0, r, > 0. The
set C is

C={s:6<qg—ps <5< g —pe) (20)

a rectangle. The only 8§ in A is § = (1, 1); i.c., both jobs
cannot be processed at once. The excluded set E = E(3) is

E={s=(s1,8): (55,8 + pu) N (55,8 + ps) F~ ¢}
from which it follows that
E={s:s, +p,<s,ors; +p, <sy) (21)
Hence the allowable set A is given by

A=CN{s:si +p1 <8}DUCN{s:8 +p. <s1})
=[CNAJUICNA,] (22)

Simply stated, the requirement that the starting time
vector s = (sy,5;) be in E’ given in Eq. (21) means that
either J, must start after J, is finished, or J, must start
after J, is finished. In Fig. 3, C has boundary indicated by
short cross lines and C N A, and C N A, are indicated by
shading. The graph of X s is a plane inclined at 45 deg to

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

the s, — s, plane and lying above the first quadrant. The
minimum of Is for s€A occurs at one of the nodes (or
extreme points) of the set A, namely the one for which
s, + s, is minimal. If lines of slope —1 are drawn through
the nodes, then the line that lies closest to the origin gives
the node for minimal ¥'s because s, + s, is constant on
these lines. In Fig. 3 these lines are sketched with dots
and labeled.

In the case sketched, minimal s occurs at N, = (0,1,)
with value 3 s = r,. The flow time value is

fO,r) =71, + (p: — r) + (p. — 1) =p:s + P2

hardly unexpected for this simple case.

The set A has two components in this case. Clearly one
need not check all nodes, but only one node in each com-
ponent, the one closest to the origin; N, and N, in Fig. 3.

If r, < p,, then N, does not appear and the choice is
between N, and N.. In this case N, = (0,p,). What is
required for N, to give the minimum? Since

3 s(N,) = p,and ¥ s(N,) = 2r; + p.
the inequality
2r, + p, < py (23)

is required. Descriptively speaking, if Eq. (23) holds, it
pays to wait and do the short job first even if the long job
is available and the short one is not, provided that the
long job is sufficiently long. A case in which this occurs
is:r, =0, r, =5, p, = 17, p. = 2. See Fig. 4.

C. The One Processor Case

If m = 1, then z; = 1 for all i. The set A is all n-tuples
of zeros and ones that contain at least two ones. Suppose
§ contains exactly two ones, say §; = §; = 1 and 8 = 0 if

k=£i k=~j. Then

E(3) = {s: (si,si +pi) N (5,85 + ps) F &}
and

E'(3) = {s:si+ pi <sjors; +p; <si) (24)
The set E’(8) is like E’ in Eq. (21). In fact the projection

of E’(3) in the s; — s; plane is precisely as analyzed in
Subsection IV-B (n = 2). Every set E(¢) for o € A contains

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

some E(8) in which § has exactly two ones. It follows that
the set A can be expressed

A'Cﬂ[n({s:si+pi§s]~}U{s:sj+pj§si,})]

(N

(25)

where the second intersection is to be taken over all pairs
(i,1) with i=£j. The projection of A in each s; — s; plane
has precisely the geometry described in Subsection IV-B.
The set A is thus the union of certain corners of an
n-dimensional right parallelepiped. The restriction on
each pair of coordinates “chops off” a corner at 45 deg.

Another description of A follows. Let @ be the set of
s with exactly two ones. One can think of each set E(8)
for § € Q as the infinite cylinder over the infinite rectangle
in the s; — s; plane defined by

Ri; = {s:s; <s; +pjands; <s; + pi} (26)

The set R;; is inclined 45 deg to the s; and s; axes. The
excluded set

E = U E®)

seQ
is the union of these cylinders and the allowable set A is
the intersection of C with the complement of E.
D. General Case; z; and m Arbitrary

Each set E(8) for 8 € A can be analyzed by considering
pairs of coordinates. For a given § and each pair (i,7) for
which §; = §; = 1, let

Rij = {s:(si,si T yi) N (sj85 + y;) F ¢}
just as described above. Then

E@) =N,Ri; (P={Gf):8 =8 =1} (27
To see that Eq. (27) holds suppose first that s € E(3). Then
clearly (s;, s; + yi) N (s, 8; + y;)=%=¢ for each pair (i,7) € P.
Hence se M pR;; and E(8) C N pR;; holds. To prove the re-
verse inclusion, suppose s€MpR;;. Let s; be the largest
coordinate of s. Then sye€[s;,s; +y;] for all { having
8; = 1 because s € Ry; for all i. Hence

sk € Moz [50,80 + yil

and so s e E(8).

135

Each $eA thus gives rise to an excluded set which is
an intersection of rectangular cylinders above the coordi-
nate planes. The excluded set within the set C is then the
union over 8eA of all these E(8). This is the “heart” of
the parallelepiped C and the allowable set A is pieces of
the corners. The set T of all § can be ordered by “§ < ¢ if
8 =1>0; =17 The intersection defining A can be
taken over the set A, of least elements in A.

E. Summary and Algorithm Qutline

A procedural outline for finding minimal 3 s, and hence
minimal flow time 3, f(s) follows.

(1) Determine a minimal set A, of 8s for which

"

> 8z >m

i=1
The set A over which the intersection is taken can
be replaced by A,. This is a combinatorial partition-
ing problem and will be discussed in more detail in
Section V.

(2) Determine the set C. This is a simple matter; C is
defined by 2n inequalities, hence by 2n numbers.

(3) Identify the nodes of the components of the set A
and determine those which minimize Ss. Use a
modification of the simplex method to determine
feasible nodes and minimum,. While A is not convex
its complement in C is the set E = C N [Usea E(3)],
which is a union of convex sets, However E does
not have all the extreme points of the complement
of A, as a glance at Fig. 2 clearly demonstrates; N,
is an extreme point of A but not of E.

V. Remarks on Partitioning

As indicated in Section IV, partitioning algorithms
are important for scheduling. Given positive integers
{zi:1<i<n} and a number m, the problem is to find
all subsets J of {1,2,---,n} for which

Z:I-:m
J

The problem is equivalent to finding all n-tuples § of
zeros and ones for which

. n
Z SiZi =m
i=1

Bounds for the number of such partitions can be obtained
using combinatorial methods appearing in Refs. 8 and 4.

136

To the author’s knowledge there is no known probabi-
listically optimal algorithm for obtaining all partitions.
The state of the art appears to be contained in the papers
Refs. 5 and 6, where statistical comparisons are made for
various algorithms. In two steps, Subsections V-A and
V-B, we describe the best of Ref. 5.

A. Obtaining All Sums

We use the notation {0, 1}" for the set of n-tuples of
zeros and ones. In this algorithm the sum

S(S) = Z 8,~z,~

is calculated for every 8 € {0, 1} and the § are coded. For
0 < r < n define sets of ordered pairs A, recursively by

A, ={(0,0)}
A=A, U{A, + (z,271)

All sums using z;, - -, z, appear as first coordinates in A,.
Since the correspondence

is I — 1 between {0,1}" and {0,1,2, ---, 21} the second
coordinate of an element of A, contains a unique descrip-
tion of the & used to obtain the first coordinate. The set
A, is thus

A, = {(5(8),8) : 8¢ {0,1}"}
where the second coordinate is “coded” as above.

If only certain sums are wanted, then in the recursive
step from A, to A, all sums that cannot possibly yield
the desired sums are eliminated. This elimination is opti-
mized by ordering the z;. The sum is then decoded to
give § for the desired sums.

B. AnImprovement

For the problem of obtaining all partitions of m for a
given m an improvement in computing time is achieved
by first splitting the z; into two sets, applying Subsection
V-A procedures to each of these, then combining the
resulting sums. The analysis appears in Ref. (5). Com-
binatorial complexities prevent additional improvement
by further splitting.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

VI. Models for Maintenance Scheduling
at Goldstone

Some of the jobs in categories (2) and (3) of Section II
have high priority; essentially they must be done when
they arise. A subset of these can be anticipated; that is,
their ready times r; are known, while the others occur at
random. Using scheduling interval [0,q] equal to a
month, in the notation of Section III the jobs fall into
categories C,, C,, C;, and C, defined by

C, : preventive maintenance; r; = 0,d; = g

C., : high priority; r; known but variable, d; = r; + y;;
“must” be done at t =r;

C, : variable r; and d;; no other priorities

C, : random; unknown prior to scheduling, but must be
done as they arise.

There is an additional problem among the C, jobs in that
the individual jobs are so numerous that they cannot rea-
sonably be handled directly. They are first categorized by
building and site and then consolidated by a partitioning
algorithm like that in Subsection V-A.

A first step in any scheduling routine leaves time for the
expected C, jobs. A weekly modification routine can then

be applied to adjust for the C; jobs that occurred. Given
this context, three options for scheduling are listed below.
Option 1: 1. Schedule the C; jobs.

2. Apply the flow time model described in
Sections IV and V to all remaining jobs.

3. Make weekly modifications.

Option 2: 1. Schedule the C. jobs.

2. Apply the flow time model to the C, jobs
and as time allows to the C, jobs for the
first three weeks only.

3. At beginning of fourth week apply the
flowtime model to all jobs remaining as
result of interruption by C, jobs.

Option 3: 1. Schedule the C. jobs.

2. Apply a “Due-Date” algorithm instead of
a “Flow-Time” algorithm to the entire
month.

Computer programs for these options are being written.
The options will be tried experimentally on data available
for scheduling and compared using the ideas presented in
Section III.

References

1. Ashour, S., Sequencing Theory, Springer, 1972.

[

Conway, Maxwell, and Miller, Theory of Scheduling, Addison-Wesley, 1967.

Dilworth, R. P., “A Decomposition Theorem for Partially Ordered Sets,” Ann.
Math. Vol. 2, No. 51, pp. 161-166, 1950.

4. Hall, Marshall, Jr., Combinatorial Theory, Blaisdell, 1967.

5.

Horowitz, Ellis and Sahni, Sartaj, “Computing Partitions With Applications to
the Knapsack Problem,” Jour. of the Assoc. for Computing Machinery, Vol. 21,
No. 2, pp. 277-292, April 1974.

Horowitz, Ellis and Sahni, Sartaj, “Algorithms for Scheduling Independent
Tasks,” Jour. of the Assoc. for Computing Machinery, Vol. 23, No. 1, January
1976.

Maiocco, F. R., and Hume, J. P., “Computerizing Goldstone Facility Mainte-
nance Data for Management Decisions,” in The Deep Space Network Progress
Report 42-32. Jet Propulsion Laboratory, Pasadena, California, April 15, 1976.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

137

Appendix A

Proof of Equation (6)

Lemma. With definitions as in Section III, the equality

/,, N dt = Z fi (A-1)

holds.
Proof. Assume that the jobs are numbered so that
O=nrn<rn - <n<yq

Letr,, = q. Let {c} : 1 <i < n} bearelabeling of {¢;} 7,
which puts them in order; thus 0 <] <ct <+ <l =¢q

The number N(¢) is the number of jobs with r; < ¢ and
¢; > t. The equality N(t) = R(t) — S(#) holds where

R(t) = number of {r; : r; <1t}

S(t) = numberof {¢; : ¢; <t}

The integrals of R and § are given by

i

/,, R(t) dt = }: " R e

i

138

and

/0 Tswde =3 / Y

iz2 SO
i1

= z (i — 1) (¢} — ch)

n-1

=(n—1)g— 3 ¢

[

(recall that r, = 0). Hence

n-1

/GN(t)dt:nqw(n—l)quZcf—ir,-

n n "
~Sa-Sn=5
=1 =1 =1

which proves Eq. (A-1).

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

Appendix B

A Minimal Sum

Lemma. Let {p;},”, be positive numbers. For a permuta-
tion v of {1,---,n}, let

n

S() = 30 (0 — i -+ Dpecs (B-1)
i=1
Then S(v) is minimal for all permutations if
Pran vy < <Py (B-2)

Proof. Clearly S(v) is minimal if and only if

E() = 2 ipvi

i-1

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

is maximal. If p is such that E(y) is maximal but Eq. (B-2)
does not hold then

Pucr > pPuy and i< (B-3)
holds for some i and j. However the inequality

Ppy T iPpi) < iPp T iPr

holds by Eq. (B-3) and shows that E(y) > E(p) if v is ob-
tained from p by interchanging i and j. Thus E(p) cannot
be maximal if Eq. (B-2) does not hold for p.

139

Fig. 1. Illustration of scheduling parameters

SHORTEST PROCESSING
TIME FIRST

LONGEST PROCESSING
TIME FIRST

—+—@
1 3 15 23

GAP = 2
Py = l.pp =2, p3=3,p4:4,p5=5

P(t) = PROCESSING TIME REMAINING

Fig. 2. Outstanding processing time with gaps

140

s27sptpp sp Tt

279" Py

AN
\\
N 5
Ts] =a-py N\
N
0 T 2r2 + p2
NODES OF A: Ny = (0, r9)
Nz =(r2-p1.r2)
Ny = (rp + pp, r2)
Ny =(a - py, q-2py)
Fig. 3. Allowable set of starting times
%2 $2=51 %P
L L
74
/]
A
A
A
4
4 $) 782 % p2

4

n=0,rp=5p =17, PZ:Q

Fig. 4. Allowable starting times (p, >> p.)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

