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In a coherent data link, narrow-band radio frequency interference (REL) near the
carricr frequency can degrade the link performance by impacting the carrier tracking loop
behavior and producing a partial or complete loss of coherence. If the RET is strong
cnough, this effect can oceur even though the frequency of the interference lies well
bevond the carrier tracking Ioop bandwidth, In 1973, F. Bruno and A, Blanchard
independently performed similar analvses of the response of a phasc-locked loop (PLL ) o
a continnous warve (CW)interferer, and derived conditions under which the loop dropped
carrier lock and tracked the interference instead. This paper compares the contributions
of these two analvsts, and extends Bruno's closed form approximation for the loop phase
crror, This result is applied in a subscquent article to the general problem of coherent
detection of residual and suppressed carricr telemetry in the presence of strong CW

interference,

. Introduction

Because of increasing competition for the available RF
spectrin, the DSN has become concerned about the disruptive
potential of RET on network operations. In an eftort to define
the RFL threat, the DSN is currently developing a sensitive
wide-band REL monitoring capability to detect and identify
sources of REL at the Goldstone complex (Ref, 1). This
surveitlance svstem will characterize the RF environment in
which the DSN functions, but a paratlel activity is needed to
investigate the efTects of difterent classes of RFL on compo-
nemts of o DSN receiver, and ultimately to determine the
resulting degradation in link performance. One recent example
of this is Low's simulation work at DSS 11 1o measure the
increase in telemetry error rate due to CW interference at odd
larmonics of the data subearrier (Rett 2). As a further
contribution to this etTort, this paper reviews and extends
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sonte earlior analyses of the impact o a CW interferer on the
performance of a carrier tracking loop.

One of the first investigations of this problem was the
experimental study conducted in 1966 by Britt and Palmer
Langley Research Center on second-order PLLs (Ref. 3). They
measured the loop phase error as a function of the intertfer-
encesto-carrier power ratio (P /PE) and determined limiting
vialues of P /P tor which carrier Jock was lost, for €W
interference within the loop passband. In 1972, Ziemer, at the
University of Missouri, reported on a perturbation analysis of
weak CW interference in Costag loops (Ret. ). e restricted
the interference levels to be small enough o allow the
degraded carrier tracking loop to renain in its lincar operating
cange. In their independent analytical treatment of PLLU'S, in
1973, Bruno (Ret. 3) of Hazeltine Corporation and Blanchard
(Ref. 6) of Centre Spatial de Toulouse (France) eliminated this



constraint, permitting Py/P to become large enough for the
loop 10 produce a steady-state static phase error well outside
the linear region. Using the same mathematical approach, they
solved for the loop phase error and derived loss of lock
comditions that are principally valid for strong CW interference
beyond the loop passband. Towever, whereas Blanchard left
his solutions in implicit form, Bruno derived explicit approxi-
mations for the degraded loop phase error that are accurate
over @ small part of the lock region, In the rest of this paper,
we will examine the contributions of these two analysts in
some detail, and extend Bruno's closed form approximate
phase error results to the entire lock region.

Il. Analysis

Consider a PLL which is initially locked to a carrier with
amplitude A and frequency w o In the [presence of a CW
interferer at oftset frequency Aw, with a® =P /P .. the PLL
input is

rt) = v 3A [sin w,r+asin(w, + Aw) 1) . m
Negleeting the 20 | term, the loop error signal is
() = VT r)cos [w,t - o(1)]
= A (1 +acos dwr)sin @(2) + asin Awr cos ¢{2))]
(™
Using the operator p = dfdr. the loop phase error is

constrained by

o = - Ko [!—;@] (). )

where F(s) is the loop filter and K., is the gain of the
voltage-controlled oscillator (VCO).

Equations (2) and (3) cannot be solved analvtically for ¢(r)
for all values of a and dw. lowever, based on their
experimental observations, Bruno and Blanchard both adopted
the steady-state trial solution

o) = N+osin(Qwr +1), )

where the static phase ercor e = 7/2, 7/2]. Note that Eq. (9
implics that the average VCO frequency is w . reflecting the
assumption that the loop remains locked to the carrier with an
RELinduced oscillation a1 the beat frequency dw. Substitut.

ing this trial solution for ¢(7) into Egs. (2) and (), and
equating the de, cos dwr, and sin dwr coettivients on both
sides of the resulting equation, Bruno derived the lock
constraints

b
g8 cos v

sin\ = - —3 . (N}
AN
sin(\-v) = - gf-‘?—s‘ls—c-' . ()
2aJ (v)
08 sin y + 2 (0) cos \ 05 cos v |? .
Jo0) = J,(0) —,.:.le, Tt
")

where ¢ s the phase angle of FfAw). § is the nonmalized
offset frequency

Aw
T S— 0
AR, 1FG30N] ‘

and Y and 8 are implicit tunctions of dw in Eqs. (3) - (7). The
Bessel functions above result from expansions of sin o sin
(Acwr +v)] and cos [osin (Awr + ). This teial solution is
valid if components at 2 dw and higher can be ignored, which
requires that o be on the order of T rad or less so that terms of
the form J"(o) for > 2 are negligible relative to their lower
order counterparts. This does not severely limit the uselulness
of these results since larger values of o correspond to peak
phase errors on the order of #/2 or higher, at which point it
becomes  questionable whether the loop can properly be
characterized as being locked to the carrier. Since o increases
monotonically with a, the implication is that as the interfer-
ence power rises, there is a brief transition region in which the
loop is not locked to the carrier or the CWinterterer. and the
form of the phase error difTers from Eq. (4) for large 0.

Blanchard adopted the same trial solution and again
considered only components at de and dawes but he made
several simplifying assumptions. e neglected J (o) forn > 1,
restricted himself to second order loop filters of the form

1 +7r.s
A = ——— \)
Fts) 1+ 7.5 N
or
141,58
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where 7, > r,.and assumed that dw >> |/1'2 so that

) Ty
IFUAw)l~-1:— ¢1))
t

v = 0,

Then Liq. (7) reduces to

2 - 025 : ‘
« [21,(0) '

Actually, Blanchard’s restrictions are not unreasonable. Most
PLL's are currently implemented with second order filters, and
for a given a, a large Aw is consistent with a small o, which is a
necessary condition for the analysis above to be valid. What
Bruno's results can accommodate that Blanchard's preclude
are situations in which Aw is too small for Eq. (11) to hold.
yet acis low enough to yield an acceptably small value of o.

7,07 r,0n?
pel ]

(12)

Note that Eq. (§) is meaningless when the magnitude of the
right-hand side exceeds 1. Consequently. Bruno and Blanchard
both adopted [ X | =n/2 to be the limiting condition for the
loop to be locked to the carrier. They later confirmed this
result experimentally. So, for a given Aw, the loop remains in
lock for [A 1< /2, which translates into 0 <o, or a<a,.
Equation (5) defines o as a function of §:

0;‘; 4
v 13

Jolo,)  Hbcosy |’

and, using 0 = 0, with | X | = n/2in Eq.(7) yields a_:

T JO(O‘,) : ‘|+ Jtan ¥ 2 J'(Oo) 21
a, J (o) l a, Jol0,) = Jy(0,) ’

(14)

In Appendix A, it is shown that the implicit dependence of a
on § in Eqs. (13) and (14) can be replaced by the simple
explicit relationship

provided

s
.

P)
o 0
Q lein? o, « =2 !

5 |sin v T <<1 (1o)

In particutar, when Aw is much larger than the PLL
bandwidth so that ¥ =0, Eq. (15) is accurate for o: < <9,
which is evervwhere Eqs. (13) and (14) are valid.

For given loop parameters and values of S and a Sa it is
difficult to compute ousing Eqs. (7) or (12). While Blanchard
left _his solution in this implicit form. Bruno simplitied the
computation by substituting

R o
Jo0)=Jy(0) = 1 -go and 2, L—Z) =

in Eq. (7). resulting in the perturbation expressions,

-
0 = a

(17)

-
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53 4285 sin ¥ cos \ + cost N +5al
Kl

for small a. llowever, Eq. (17) is still complicated by the
dependence of cos A on o via Eq. (5). To circumvent this,
Bruno restricted his approximation to the region 0 << o, o1
Isin N | << 1. allowing Eq. (17) to trivially simplify to

bl

? N «

o ()

3 )
$¥ 4+ 28siny+1 ‘P-_'-a2

In Appendix B. it will be proved that for 0? << /2 and

any value of [N 1< n/2, 0® can be accurately computed from

the explicit approximation

ot x — (19)
65+ 285siny + 1|

In particular, if o:'; << V3. Eq. (19) is valid over the entire

PLL lock region. Completing the solution for X and » tor small

0. Eqs. (5) and (6) reduce to

sin) a - LY (20)
sin(\N-vp) =- 08 c:su “n

"Rruno derived Fq. (18) as did Blanchard with ¢ 2 0) for smuall o, tor
large o) however, the constraint of Fq. (16) under which Fa. 15 is
valid. is our contribution.



lll. Example

To illustrate these results, consider a loop filter of the form
of Eq. (9), representative of a PLL in a DSN receiver, For
example, suppose

for which the loop noise bandwidth at threshold and at the
specitied operating point are given by

k§
9 >~ =Y
28, , = 3 12 Hz,

B, = 17.611z. (23

Applying Eq. (13) 10 thc givcn loop parameters, we* find
that o, X1 rad for Aw/22 3B, this is the région for which
the analysu above is valid. Also for this range of Aw. the
constraint of Eq. (16) is_ satisfied, indicating that Eq. (13) can
be used to compute a Lo the limiting interlerence-to-carrier
power for which the PLL maintains carrier lock. The loop lock
region is illustrated in Figs. 1 and 2. Using Eqs. (5) and (7) for
Aw/2n near #, . and the simpler appmxim:‘niuns of Egs. (1
and (20) for Aw/2n > B, . profiles of a° and o were also
computed for [A1<n/2 and presented in these figures. As
expected, the farther the interference lies outside the loop
bandwidth, the larger the value of P /P . required 1o pull the
loop out of lock, and the smaller its effect on the loop
behavior as measured by o . Also, oi >> 1 over much of the
lock region for which the analvsis applies. which supports the
strong CW interference restriction in the title of this paper. OF
course, as mentioned earlier, for ottset trequencies within the
loop bandwidth corresponding to o, 31 rad. the loop can be
pulled out of lock for Py~ Pi.. and Eq. (4) simply does not
represent the form of the phase error in this region.

Figure 1 shows that for a given value of Jdw. the loop phase
. . . at . . s
error is not significantly degraded until a° approaches the
P 3 . . P . e . .
limit a2, This behavior is illustrated in more detail in Fig. 3 for

2 Aw/2z = 1000 Hz, using Egs. (19} and (20).
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Fig. 3. Lock parameters of previous loop at 3w/2= = 1000 Hz



Appendix A
Derivation of Lock Constraint Approximation

Cquations (13) and (14) can be combined to yield the Computing the inverse square of the last two polynomials. we

expression find that
2 o7 ¢ 707
a . [ 2 PR 2 N 0 o o
o =7 (0 ) COs Y + sin [..Il——] >+ — 4 —,
. o 4 192
N o0, o, Jy0 )~ I (0 o
cos ¥ o
o
. Sui 73():
(A1) oo )= Jyto 73 = 14—+ 5o (AR

But to order o:. the Bessel functions above may be approxi-

mated by the power series L . . .
Substituting these expressions into Eq. (1) vields the result

2 2
J(o) = 1--24+-5, .
(0, 4 63 ol o 70t o)
. [} . ' « ‘
T > L+ sinty (1 To RN (A
2 4 d——r -
2y __._u" =.|-.(.)L'.+.__.o" cos v
' o, - 8 192
2 4 Theretore the lowest order in o, Eq. (18) is valid provided the
J(0)-J.(0) = 1| 3, 40 AD) constraint of Eq. (16) is satistied. The u:', term is retained in
0'% 20,0 = 8 48 ° (A2 Eq. (16) because it dominates when v = 0.
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Appendix B

Derivation of Extended Range Approximation for o2

For ¢® << 8/3, the Bessel function expressions of Eq.
(A-2) simplify to

Jol0) = 20,2 = J(0)- J,(0) = 1 (8-1)

Substituting Eq. (B-1) into Eqs. (§) and (7) vyields the
approximations

035 cos ¢

sin\ = - 3 (8-2)
2
o = e (8-3)
82 4 25 sin ¥ cos \ + cos? \
We want to prove that in the lock region,
IsinA <1, (B-4)

Eq. (B-3) can Dbe. accurately approximated by Eq. (19).
provided 0¥ << /2,

When [ cos ¢ | €4/2, we have

e

02 |6cos;’1|<—°—:-<<|

NG (B-3)

Isin\]| =

so that cos X = 1 and the desired result tollows trivially.

Now consider the region [8§ cos ¢l > /2. To demonstrate
that Eqs. (B-3) and (19) are equivalent, we will prove that the
difference between the two denominators is negligible. That is,
we want to show that :

i}

A= J2Ssin Y+ 1) - (28 sin W cos X +cos? N |

28 sin
I +¢cos\

K ST+siny 4.

(B-6)

sin? ) ll +

To verify Eq. (B-0), it is sutficient to prove that
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sin? A << min [6. * '(S-s-'ﬂ‘!—:-!] (B-7)

tancs | [T+nSsinv]

since \e [-n/2. 2/2]. But for 0* << V2,

/
Lsin N | <<18 cos v |/ V2. (B-8)
and, using Eq. (B-4), this implics that
e : / N
sin® N << |8 cos ¥ l/’\/- . (3-9)
So Eq. (B-7) will follow if we cari show that'
VIS Ssinv+ 1)
g = min — —TTS 21
1<ns? I6cosul[ 1+nSsiny |
(B-10)

From Fig. B-1, it is evident that 3 may be written in the form

V2I(EI+25sinu+ 1)

T ey (0SS sin v <
[Seos UT(1+ Bangy 0 SPsnvss

VIE+Bsinp D)
8 18 cosv (1 +8siny) °

'44]!4

Ssinv <0 (B1D

VIET+2Ssing+1) >
(6" < §sin Y S,
1§ cosy (-1~ 25siny) 3

1t can be shown that there is no loss of generality in restricting
Sand Ytotherange - a/2 <Yy <n/2and § 2> V3eos v, since
other values of these parameters yield a value of g from this
restricted range.

Now, using elementary caleulus, for a given value of ¥ in
this range, g in Eq. (B-11) can be minimized over § within its
range: the results are presented in Table B-1. As shown in the
plot of f(8,,a) v ¥ in Fig. B-2, g has o minimum value of' |
which occurs at ¢ = $4.74° and § = 8. = 245, This com-
pletes our proof.

min



Table B-1. Varlation of minimum value of 8 with ¢

min B) = B(Bmin) '
Range of v 8>3 cos v 8 min
30° <y €90° (V2 sin g cos v)! L
8.65° < v < 30° 2J7T (1 -sinv)fcos v (t=2siny)"!
b] 2, +4 ysinu ¢4
0< v <865 cos’v +4y/Tcos g siny Vot v
2cost v ¢4 2cosysin v
e 2044 oS siny + 4 -
-1 <v <0 cosTy V3 cosy sin g Vieos v
2cos2 ¢ + 27 cos v siny
-30° <y <-11.77° ~(+/ 2 siny cosv)! .
-47.60° < v < -30° 27 A +sinv)os v ~+26ne)”!
2co8 ¢4 cosysiny + 4
-90° € y < -47.60° AALE V3cos v

~2cos? y -4/2 cosysiny

s nxl

8ls,)

ot =1/m =12 0

Fig. B-1, Upperboundon |1 + nx |[for1 s n=s 2
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Fig. B-2, Behaviorof  min () as a function of &
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