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In this paper a parallel architecture is developed to compute the linear convolution of
two sequences of arbitrary lengths using the Fermat number transform (FNT). In particu-
lar a pipeline structure is designed to compute a 128-point FNT. In this FNT, only addi-
tions and bit rotations are required. A standard barrel shifter circuit is modified so that it

performs the required bit rotation operation.

The overlap-save method is generalized for the FNT to compute a linear convolution
of arbitrary length. A parallel architecture is developed to realize this type of overlap-save
method using one FNT and several inverse FNTs of 128 points. The generalized overlap-
save method alleviates the usual dynamic range limitation in FNTs of long transform
lengths. Its architecture is regular, simple, and expandable, and therefore naturally suit-

able for VLSI implementation.

l. Introduction

Fermat number transforms (FNTs) were developed to com-
pute cyclic convolutions (Refs. 1-3). A cyclic convolution of
two sequences can be obtained by taking the inverse FNT of
the product of the FNTs of these two sequences.

FNTs over certain transform lengths have the advantage
over most number-theoretic transforms in that no multiplica-
tions are required. McClelland (Ref. 4) designed a hardware
system to realize a 64-point 17-bit FNT that used commer-
cially available ECL IC chips. For this purpose he developed a

I This work was supported in part by the JPL Director’s Discretionary
Fund, FY82.
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new binary number representation and the binary arithmetic
operations modulo a Fermat number (Refs. 4, 5). The Fermat
number transform can be applied to digital filtering (Refs. 2, 3),
image processing (Refs. 6, 7), X-ray reconstruction (Ref. 8),
and to the encoding and decoding of certain Reed-Solomon
codes (Refs. 9, 10).

In this paper, a parallel architecture is designed to realize a
digital filter of arbitrary length using the FNT. In Section II, a
pipeline structure is used to compute a 128-point FNT. Only
additions and bit rotations are required in this structure. The
bit rotation operations are implemented by a modification of
a standard barrel shifter circuit (Ref, 11). In Section III, the
overlap-save method is generalized to compute the linear con-
volution of a digital filtering system. Then a parallel archi-
tecture is designed to realize the generalized overlap-save



method using one FNT and several inverse FNTs of 128
points. The circuit design of an FNT butterfly is given in the
Appendix.

Il. A Parallel Structure for Computing a
128-Point FNT

_ Let F, = 22% + 1 be the ¢th Fermat number where ¢ > 0. F,
.is a prime number for 0 < ¢ < 4. Let {x,} be a N-point
sequence of integer numbers, where 0 < x, <F,-1,0<n<
N -1, and N is a power of 2. The Fermat number transform
{X, }of {x,}over F, is defined as follows:

N-1
X,= 3 x,e™ @modF) , k=0,1,...,N-1 (1)

n=0

where 0 < X, < Ft - 1 and a is an NVth root of unity. That is,
N is the least positive integer such that oV = 1 (mod F,). The
corresponding inverse FNT is the following:

N-1

xn E(]—%}—)E Xkank(mOdFt) , ”=0,1,...,N—1
k=0

(2

In order that a cyclic convolution can be computed by the
ENT pair in Egs. (1) and (2), & depends on the F, and «
chosen (Refs., 2, 3). More details of an FNT can be found in
(Refs, 2 and 3).

In this paper F,, a, and N are selected specifically to be
Fg =232 +1,+/2, and 128 respectively. That is, the data of
this FNT are integers between 0 and 232, Hence 33 bits are
required to represent a number. The transform length of this
FNT is 128. In an FNT over F,, the quantity /2 represents
the integer 22°2 (22%1-1) (Refs 2, 3). For ¢ = 5, since 232 =
-1 (mod Fy), /2 =224 - 28 =224 + 240, A conservative value
of the dynamic range (Ref, 12) is /232/(28) = 212, This value
is sufficiently large for a number of applications.

Since the FNT has a mathematical algorithm similar to the
FFT, an FFT-type structure can be applied to perform a fast
FNT. Figure 1 shows a pipeline structure (Ref. 13) for com-
puting a 128-point FNT over F,. The radix-2 decimation-in-
time (DIT) technique is used in this structure. The structure
for performing an inverse FNT is the mirror image of the cir-
cuit shown in Fig. 1 if the radix-2 decimation-in-frequency
(DIF) technique is used.

In Fig. 1 z7 denotes a j-step delay element, which can be
realized by a set of j first-in-first-out (FIFO) registers. The

symbolic diagram and operations of a DIT FNT butterfly are
shown in Fig. 2. The design of a DIT FNT butterfly is given in
the Appendix. A similar DIF FNT butterfly was designed in
Ref. 4,

In Fig. 1, SW, is a shuffle-exchange switch controlled by the
control signal §; for 1 <7< 6. The operations of the SW, are
shown in' Fig. 3. The S;s can be implemented simply by a
6-stage up-counter if no buffer registers are used in the FNT
butterflies (Ref, 13). With the buffer registers in the butter-
flies, delay elements are needed at the outputs of the counter,
as shown in Fig. 4, for the purpose of synchronization,

In the next section the overlap-save method (Ref. 13) is
generalized to implement a digital filter of arbitrary length
using one FNT and several inverse FNTs of 128 points over
F,. Then a parallel VLSI architecture is designed to realize this
overlap-save method using the FNT structure designed above,

lli. A Digital Filter Architecture of Arbitrary
Length Using the FNT

In the previous section F, &, and V are chosen to be Fy,
v/2, and 128 respectively. N = 128 is the maximum transform
length over F (Refs. 2, 3), and 212 is the dynamic range. One
could increase the transform length by choosing F, for ¢ > 6.
In so doing, however, at least 26 + 1 = 65 bits are required to
represent a number. Alternatively, one could use a specific «,
where « is not a power of \/2, over Fy or F, to increase the
transform length. In such a case a complete multiplication is
required. In addition, the dynamic range is used up readily. To
remedy this difficulty, the overlap-save method is generalized
to compute the linear convolution of a digital filter of arbi-
trary input data and filter lengths. A parallel architecture is
developed to realize this generalized overlap-save method using
the 128-point FNT structure designed in the previous section.

Let {x,} and {A,,} be®the input and filter sequences of a
digital filter, respectively, where 0 < n <N -land 0 <m <
M - 1. The output sequence {y,} of the filter is the linear con-
volution of {x,}and {A,,}, where 0 <k <N+ M -1 (Ref.13).
It is shown (Ref. 13) that such a linear convolution can be ob-
tained by computing a cyclic convolution. For purposes of
exposition it is assumed that &V = 1024 and M = 256 in the
following argument.

In order to use 128-point FNTs to compute {y, 1, four
128-point subfilters {1}, {42}, {43} and {A},} are formed
by partitioning {4, } as follows:

hm+64(i_1) for 0<m<63
o=
" Ao for 64 <m <127 (3)
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for 1 < i< 4. Next the overlap-save method (Ref. 13) is used
to compute the linear convolution {y%} of {x,} and {4, } by
using the cyclic convolution technique, where 1 <i<4 and
0 < %k < 1087. To accomplish this {x,}is sectioned into 128-
point subsequences with 64 points of {x,} overlapped be-
tween two consecutive subsequences. That is {x,,}is sectioned
into {x},}= {x,,}, 62} = {0k - oo R0 TS Wongogh
where 0 < r < 1023 and 0 < m < 127. Then {pi}, for 1 <
i < 4, is computed by overlapping the cyclic convolution of
{ni,}and {x},} for 1 <j< 15 using 128-point FNTS. Finally
the output sequence {y,}, for 0 <k <1024 + 256 -1 = 1279,
results evidently from {yi} for 1 <i < 4 by the following
equation:

1 2 ,~64 3 ,~128 4 _-192
yk yk+ykz +ykz +ykz

It

phestr®) s bpeste) o @

The relationship between {y,} and ) for 1 <i<4isillus-

trated in Fig. 5. Other cases of the generalized overlap-save

method are constructed in a similar manner.

In Fig. 6 is shown the block diagram of an architecture for
the generalized overlap-save method of a digital filter using one
FNT and four inverse FNTs of 128 points. In this system the
DIT and DIF techniques are used for the FNT and inverse
FNTs, respectively. In the generalized overlap-save method,
one of the two outputs of the inverse FNT butterfly in the last
stage is not needed. Hence, the inverse FNT butterfly in the
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last stage is a degenerative butterfly circuit, and the delay
elements associated with this butterfly circuit are not needed.
The H’s in Fig. 6 are the FNTs of {2, }. The (1/N) factor in
Eq. (2) is incorporated into the Hi’s. These H%’s can be
precomputed and stored in the system. The adders in Fig. 6
perform normal binary additions, not additions modulo F,.

The advantage of the generalized overlap-save method for
implementing a digital filter using FNT transforms are the
following: (1) It requires no multiplications. Only additions
and bit rotations are needed. (2) It alleviates the usual dy-
namic range limitation for long sequence FNTs. (3) It utilizes
the FNT and inverse FNT circuits 100% of the time. (4) The
lengths of the input data and filter sequences can be arbitrary
and different.

IV. Conclusion

A pipeline structure is developed to compute a 128-point
Fermat number transform. In this 128-point FNT, only addi-
tions and bit rotations are required. A barrel shifter circuit is
modified to perform the multiplication of an integer by a
power of 2 modulo a Fermat number. The overlap-save
method is generalized to compute the linear convolution of a
digital filter with arbitrary input data and filter lengths. An
architecture is developed to realize this generalized overlap-
save method by a simple combination of one 128-point FNT
and several inverse FNT structures. This realization alleviates
the dynamic range limitations of the FNT with a long trans-
form length. The architecture is simple and regular, and hence
suitable for VLSI implementation.
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Fig. 2. (a) The symbolic diagram and (b) operations of a DIT FNT butterfly
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Fig. 3. A shuffle-exchange switch. (a) Direct connection.
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Fig. 4. A 6-stage up-counter used to generate the control signals S s in Fig. 1
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Appendix

In this appendix a circuit is designed to implement a DIT
FNT butterfly shown in Fig. 2. A similar DIF FNT butterfly
was designed in Ref. 4. To efficiently perform the FNT, num-
ber representations have been proposed (Refs. 4, 5) for binary
arithmetic operations modulo F,. The diminished-1 represen-
tation proposed by Liebowitz (Ref. 5) is used in the following
design. Let 4 be represented by [ay, a5, .. .a, a5], where
0 < 4 <232 and g, is the ith bit of 4. Table A-1 shows the
correspondence between decimal numbers in a normal binary
representation and their values in the diminished-1 representa-
tion. The most significant bit (MSB) a,, can be viewed as the
zero-detection bit in the diminished-1 representation.

Two basic binary arithmetic operations modulo F, with
o = /2 are addition and multiplication by a power of 2. Other
operations can be expressed in terms of these two operations.
In the following, some details of these operations are described
briefly. More specifics can be found in Ref. 5.

(1) Addition: Let S =4 +B.IfA=0,thenS=B.IfB=0,
then § = A. If neither 4 nor B equals 0, add [ag,

d39 - . -4y ay] and [by; by ... by by]. Then com-
plement the carry and add it to the previous sum, This
yields S.

(2) Multiplication by a power of 2: Let B= 4 » 2. If
A =0, then B =0, If 4 # 0, left rotate [a5, a3 . ..
a, a,] Cbit positions, but complement the value of bit
31 when it is rotated to bit position 0, and set b, = 0.
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(3) Negation: Since 232 = -1 (mod Fy), -4 = A - 232,
Hence if 4 # 0, -4 = a5, &3, T3, . . . @, T, where g;
denotes the complement of a,. If 4 =0, then -4 = 0.

(4) Multiplication by +/2: Since /2 =224 + 240 4 - /2 =
A+ 224+ 4 0240,

(5) Multiplication by a power of v/2: Let B =4 - (\/2)C.
If Cis even, then B = A « (2)C/2, If C is odd, then
B=(4 ++/2) - 2C-Df2,

In Fig. A-1 is shown a block diagram of an FNT butterfly
shown in Fig. 2. In this design, 4, B, D, and E are 33-bit data,
and C is the 7-bit exponent rk in Eq. (1). Two realizations of
an FNT adder can be found in Ref. 4. Figure A-2 shows a pass-
transistor full-adder, which requires less silicon area, The mul-
tiplier in Fig. A-1 is used to multiply a number by a power of
2 modulo Fy. Figure A-3 shows a block diagram of this multi-
plier, The shifter in Fig. A-3 is a modification of a barrel
shifter (Ref. 11) for performing bit rotation operations.

For purposes of illustration, consider the simple FNT over
Fy =2+ 1. In such an FNT butterfly the functional table and
circuit of a modified barrel shifter are shown in Fig. A-4,
where the inputs are [b, by] and [s5 5, 5, 5o], and the out-
puts are [b] bg].




Table A-1. The correspondence among decimal numbers, their values in the normal binary representation, and in the
dimlnished-1 representation

, Normal binary representation Diminished-1 representation
Decimal
number
%39 %31 “30 % 8l % %32 %31 430 e 4y 2
0 0 0 0 Ve 0 0 0 1 0 0
1
2 0 0
2325 0 1 1 . 1 1 0 0 1 1 . 1 0
2324 0 1 1 . 1 1 1 0 1 1 . 1
232 0 0 0 0 0 1 1 1 1
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