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The performance of the sequential ranging system can be improved by using a
maximum likelihood receiver; however, the complexity grows exponentially with
the number of components N needed to determine the range unambiguously. A new
truncated maximum-likelihood receiver, based on the Viterbi decoder for convolu-
tional codes, is presented and is shown to achieve a maximum-likelihood perform-
ance while having a fixed complexity independent of N. The improvement in
signal-to-noise ratio, compared to the present receiver, is 1.5 dB for Py < 10~

|. Introduction

Ranging systems for deep space applications achieve
the required resolution by transmitting, either simulta-
neously or sequentially, a multi-component signal. Gold-
stein (Ref. 1) described a sequential ranging system, which
transmits N + 1 squarewaves of increasing periods T,
2T, - - -, 2¥T. The highest frequency component yields
the most accurate measurement, but with an added dis-
tance of M * R, where R is proportional to T and M is an
unknown integer. The other N components are used to
estimate M and thus remove the ambiguity.

In the above system, the estimation is done sequentially,
that is, at each step a binary number g is estimated from
the signal component which is present at that step. The
sequence a,, - - * ,dy, considered as a binary representa-
tion of M, yields an estimate of M.
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The performance of the system—that is, the probability
of estimating M correctly—can be improved by using a
maximum-likelihood estimator, which estimates the whole
sequence a,, - * - ,ay simultaneously. However, the com-
plexity of such a system is proportional to 2¥ and is not
practical for large N.

We will present a suboptimum estimation procedure,
which outperforms the sequential receiver and approaches
asymptotically, as the signal-to-noise ratio increases, the
performance of the maximum-likelihood receiver. This
method is based on the Viterbi algorithm for decoding
convolutional codes of short constraint length (v), and has
a complexity of the order of 2*, no matter how large N is.
The improvement in the signal-to-noise ratio required to
achieve a given error probability Py is 1.5 dB throughout
the range of interest (Py < 1072).
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Il. The Sequential Receiver

The time-of-flight (TOF) of the signal at #, can be
represented by

TOF=(M+ €T 1)

where T is the period of the first (highest frequency)
squarewave, M is a positive integer and 0==¢ < 1.

Let {aNaN_l, s
M, that is

,8:} be the binary representation of

-

N
M=73 q200 @)
k=1

where a; is 0 or 1.

To measure the TOF, and therefore the range, it is
enough to measure € and {a,, - - - ,ay}. The present re-
ceiver does this sequentially.

We start by transmitting the T-period squarewave to
obtain an estimate € of €. The receiver correlates the in-
coming signal with the receiver coder squarewave and its
90 deg-shift to obtain a pair of outputs x,, y,, from which
€ is estimated. The correlator is then shifted by €to have
a phase of € — e. We will assume that the integration
time is long enough to obtain € — €= 0. To estimate
a,, - - - ,ay, squarewaves of periods 2*T, k=1, - - - N
are transmitted sequentially. The outputs of the in-phase
and quadrature correlators at the kth step are

)

X = Sk + ng

Y = 1, + my (3)

respectively, where n; and m; are independent white
gaussian noise samples of zero mean and variance o2,

l—ak, 0éak<2
Sk =
ag 3, Zéak<4
27°H Oéak<1
=<2 — a, 1=e,<3
a; — 4, 3=y < 4 4)
and «; depends on a,, * * - ,a;.

It was shown that the probability of error is minimized
by shifting the correlator waveform by 90 deg at the kth
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step whenever @, = 1, where 8}, is the estimate of the
previous step. Thus

k-1
=20+ 3 (g~ )20 (5)
j-1

0
{l\k':
1

The procedure is terminated when @y is obtained. The
resulting

and we estimate
if Xk =

M= 3t M)

and €yield the measured TOF.

Ill. Maximum-Likelihood Estimation

The “estimate-and-shift” sequential method has a strong
error propagation property. Suppose the estimate @, of
a, is in error, e.g., a, = 0 but @, = 1. The correlator wave-
form is shifted by 90 deg at the second step, therefore the
no-noise outputs will be A’ if ¢, =0 and B’ if ¢, =1
instead of A and B, respectively (Fig. 1). Since the receiver
estimates 4, =0 whenever x,=0, the probability of
wrongly estimating @, is %. It can be shown that the
error in estimating a, will adversely affect the estimation

TWO-DIMENSIONAL
CORRELATORS
OUTPUT

Fig. 1. Correlators output at second step: A or B if
. = a; and A" or B’ if 31:,/:01
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of a;,a,, - - - . However, the effect will diminish as k

increases.

This error propagation does not affect the performance
of the system, since one wrong estimation is enough to
cause an error in the measurement of the TOF. How-
ever, since a; affects all (x,, y,) for n==k, an estimate of
a; based on {x,,y.;n=k} is superior to one which is
performed at the kth step, and therefore depends on
(%, yx) only.

-

Assume, as before, that €~ € and let

x = (xl, e . ,xN)
Y= (Y " ,Yx)
a=(a, - - ,ay)

be the correlators output vectors and the TOF binary
vector respectively. By Bayes rule we have

_prxy|a) (a)

(4 (a ' X, Y) - p (X, y> (8)

and the maximum-likelihood estimate is the binary vec-
tor a* which maximizes

(x,y|a) = ———
p x,y|a - (\/’2'7:0)\'/2

Xesp =g 3 llo— 00"+ (= 7]}
©

or equivalently minimizes

N
P(a) = 3 [(xx — s)* + (yx — 10)?] (10)
k=1
where s¢, 7.,k =1, - - -+ | N can be expressed in terms of a
(Egs. 4 and 5).
Note that the @,j=1, - - - ,k — 1 that appear in o

(and hence in s, and ;) are on-the-spot estimates which
determine whether the correlator waveforms are shifted
in the next step. They depend on the x,’s alone and not
on a, and are known to the receiver when / (a) is evaluated.
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Since we have to choose the most likely of 2¥ possibili-
ties, the complexity grows as 2¥, and the method is not
practical for large N.

IV. Truncated Maximum-Likelihood Estimate and
the Viterbi Algorithm

The contribution of a; to (s,, r,) is halved at every
successive step, since its coefficient in «, is proportional
to 2%-" (Eq. 5). In other words, the value of a; affects
the correlator outputs for all n=k; however, this effect
diminishes exponentially as n increases. Thus, there exists
some integer v, which depends on the signal-to-noise ratio,
such that the contribution of a; to (s,, r,) forn >k + v is
negligible. We therefore can approximate Eq. (5) by

k-1
ay — 2(1k +
j=k-v

(@ —®)20mh (1

forall k>v + 1.

Thus each (s, i) depends on a, and the previous v com-
ponents and we have a finite state machine with 2 states,
corresponding to all possible binary vectors (a; 4, " -, ax_v),
and two outputs per state depending on a;. The progress
of this machine, during few successive steps can be de-
picted by its trellis diagram (Fig. 2).

STATE STEP k STEPk + 1 STATE

Q. T a3 = 0 i1 = 0 et T G
000 ©00)
001 ©01)
010 010
011 1
100 (100
101 (1o
110 (110
111 a1y

9 =1 Gy 7!
Fig. 2. Trellis diagram for v — 3 during
steps kand k + 1
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During step k, each state (@x-1, * * * , @) can advance
to one of two states (0, @i, ", Gx-v.q) OF (1, Gisy ", Govyn)
depending whether a; is 0 or 1. The corresponding corre-
lation outputs (s, rx) will depend on the starting state as
well as on ay.

The similarity to convolutional coding with a constraint
length of v is immediate. Many decoding procedures have
been developed for convolutional codes, however, for
short constraint length (v < 10) the Viterbi algorithm
(Ref. 2) is the most efficient, and is actually a maximum-
likelihood estimate .of the truncated estimation problem
(Ref. 3).

The Viterbi algorithm can be briefly described as fol-
lows: With every state we associate a metric (accumu-
lated likelihood function up to this step) and a survivor
(the most likely sequence leading to this state). At step k,
each state S; = (ay, - * , ax-v.1) can be reached from two
states S = (@x-3, " * * , kv, 8), Where & is O or 1. After
the received signal is correlated to yield (x, yx), we com-
pare the two possible ways to reach @k and keep the most
likely of them, by properly updating the metric and the
survivor of Sx. This is done for each one of the 2V states,
and is repeated every step. The final decision is made
after the Nth (last) step, by comparing the 2" metrics
and selecting the survivor of the largest, to yield the most
likely estimate of a.

Thus a ranging receiver based on the Viterbi algorithm
can yield a (truncated) maximum-likelihood performance
with a complexity of 2", which is independent of the
number of components N to be estimated.

V. Error Probabilities

The signal is received in the presence of additive white
gaussian noise of zero mean and spectral density N,. If
the signal power is S and the integration time of each
component is 7, = 7, k = 1,2, - - - , N the probability
that the sequential receiver will correctly estimate the
whole sequence {a,, - * - ,ay}, is given by

(N

where

erfc(y) = exp (—x2/2) dx (12)

el
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If £— €0 the performance is degraded; however, we
can assume that the integration time of the highest fre-
quency component is long enough to obtain €<~ e An
analytic expression for the performance of the maximum-
likelihood receiver or for the Viterbi algorithm cannot be
obtained in closed form. Therefore, the error probabilities
for various signal-to-noise ratios were obtained by com-
puter simulations. The noise was generated by a multi-
plicative congruential generator (Ref. 4), and quantized
in steps of ¢*/32, where o is the noise-to-signal ratio.

The results for the maximum-likelihood estimate of
10 components (N = 10), and a truncation to v =5 are
shown in Fig. 3 together with the performance of the se-
quential receiver. The improvement gained by maximum-
likelihood estimation compared to sequential estimation
is 1.5 dB for the measured range of error probabilities.
This improvement is also achieved by the Viterbi algo-
rithm (with v =5 truncated memory and therefore a
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Fig. 3. Performance of various schemes for N = 10
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smaller complexity), for signal-to-noise ratios which yield
Py <102

V. Conclusions

A truncated maximum likelihood receiver for sequen-
tial ranging has been presented. The performance of the
sequential ranging system can be improved by using

maximum-likelihood techniques; however, the complexity
grows exponentially with the number of components N
needed to determine the range unambiguously. The sug-
gested method, which is based on the Viterbi decoder
for convolutional codes, performs like the maximum-
likelihood receiver while having a finite complexity inde-
pendent of N. The improvement in signal-to-noise ratio,
compared to the present receiver, is 1.5 dB.
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