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A micro-programmed stored logic input/output (1/0) processor has been devel-
oped to evaluate micro-programming as a digital design technique. This 1/0
processor can be used for investigating DSN standard computer/computer inter-
faces as well as for experimentation with external control of the XDS 930 in emula-

tion of multiple computer systems.

I. Introduction

A micro-programmed stored logic I/O processor has
been developed to evaluate micro-programming as a
digital design technique. The processor was specifically
designed as an I/0 processor for an XDS 930 to minimize
loading of the CPU when driving the digital video dis-
play system (Ref. 1). This flexible I/O processor can be
used for investigating DSN standard computer/computer
interfacing, and for experimentation with external con-
trol of the XDS 930 in emulation of the control of satellite
minicomputers in a multiple-computer DSIF tracking
station.

Micro-programming was found to provide an orderly
straightforward design process, simplifying digital system
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debugging, maintenance, and documentation. This article
will discuss micro-programmed stored logic and the mini-
computer-like 1/0 processor (Mini-proc).

Il. Definitions

To clarify the terms to be used, the following definitions
are applicable. “Stored logic” shall imply a digital system
where system states are contained in the address counter
of a sequencing memory (control store) rather than in the
conventional conglomeration of gates and flip-flops.
“Micro-instruction” will refer to a particular system state
transition function stored in this memory. A “micro-
program” is a sequence of micro-instructions. An “instruc-
tion” is a word stored in a computer’s memory for the
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purpose of controlling that computer through its central
processor. A “command” is a word stored in a computer’s
memory for the purpose of controlling an input/output
processor.

Hl. Background

In 1951, M. V. Wilkes (Ref. 2) proposed a computer
controlled by the output of a diode matrix memory. Each
word of this memory controlled the gating structures of
the computer’s functional units (adders, registers, etc.) in
some particular way. Each bit of the word controlled a
unique gate in the structures. This scheme allowed the
independent design of functional units and the straight-
forward sequencing of data transfers.

Using one bit per function in the micro-instruction is
known as “horizontal format.” A simple example is shown
in Fig. 1. A simple micro-program can, for instance, sub-
tract register 2 (R2) from register 1 (R1); then double the
result. Assume a synchronizing clock for each step:

ADDRESS WORD
000 10011001 Subtract R2 from R1. Store
result in R1 and go to NEXT
INSTRUCTION.
001 00111011 Add Rl to itself, store result
in R1 and Step
010 00000000 HALT (NO STEP, NO

FUNCTION)

It is unlikely that gates G1, G2, G3, and G4 will need to
be enabled at once. The only likely possibilities are G1,
G2; G3, G4; G1, G4; and G2, G3. These four conditions
can be encoded into two bits thus reducing the word size
from 8 bits to 6 bits. This is an example of “vertical
format.”

Vertical formating breaks the micro-instruction into
encoded fields, There are two primary disadvantages
relative to horizontal format. First, the system loses flexi-
bility because some logic states are disallowed. Second,
decoding involves extra hardware and design time. How-
ever, the advantages of vertical format are a shorter
micro-instruction, coupled with easier microprogram de-
velopment and documentation, since mnemonics can be
assigned for each field. Usual design involves a combina-
tion of both formats as shown in Fig. 2.
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One can establish a hierarchy of levels where a “nano-
instruction” mechanizes the execution of a micro-instruc-
tion just as a micro-instruction mechanizes a computer
instruction. The wunique vertically formatted micro-
instruction of the Nanodata QM-1, for instance, is essen-
tially an address which selects a nano-instruction in a
nano-memory (Ref. 3). The nano-instruction, which has a
horizontal format, controls gate level functions. Conse-
quently, the QM-1 offers an extremely flexible combina-
tion of both formats.

One must note that, no matter what the format, the
present state of the system is contained in the current
micro-instruction address, and the next state is easily
determined. In a conventional system the current state is
spread over many locations.

The states of the stored logic machine need not be
sequential. Branching on condition and subroutining can
be easily implemented. Repetitious or conditional func-
tions are a simple extension to the stored logic. This offers
additional logic efficiency to the digital system. In the
example of Fig. 1, branching can be accomplished by
leaving the low-order control store address bit unspecified
and allowing that bit to be set by some condition, like
adder carry. The higher order bits would merely step
sequentially.

The development of integrated circuits and medium/
large-scale integrated (MSI/LSI) circuits encourages the
modularization of digital system design. Modularization
lends itself quite readily to stored logic which offers a
simple way to control data transfers between MSI/LSI
modules. Further, MSI/LSI read-only memories (ROMs)
and random-access memories (RAMs) offer attractive
storage for micro-programs. MSI/LSI circuits make stored
logic an economically feasible choice for digital system
design.

Current use of micro-programming in computers is well
known. Most popular mini-computers as well as the
IBM System/360 are micro-programmed. The 360 uses a
vertically formatted micro-instruction to implement a
fixed computer instruction set which reaches across a
compatible line of computers. As the System/360 is a
business data machine, IBM will not support a user
micro-programmed machine. This restriction is necessary
to insure software compatibility between installations.
Minicomputers can be micro-programmed by the user to
specialize machine capabilities as was done in the DSN
data decoder assembly (Ref. 4). In this application, an
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Interdata 4 mini-computer was microprogrammed to
perform sequential decoding of the Pioneer 10 telemetry
at data rates adequate to support the Pioneer Program.

IV. Rationale for Stored Logic

On the XDS 930, direct memory access is typically
through the data multiplex system (DMS) which operates
through the multiple access to memory (MAM). The DMS
can transfer a block of up to 512 words without central
processing unit (CPU) intervention. The CPU must, how-
ever, update word count and data location betwéen each

block.

The digital video display system (DVDS, Ref. 1) uses
blocks on the order of 30 words. For this block length the
CPU is 50% occupied with the job of updating the data
multiplex system (DMS) control words. To reduce this
load, an I/0 processor was designed for the XDS 930.
This I/O processor, controlled by a command program in
memory, must transfer data at full memory bandwidth
(570,000 words/s) and perform system status tests, both
independent of the CPU.

Initial design proceeded in the usual manner. Several
block diagrams were tried. Each worked but each had its
limitations. Typically a design which was optimal for the
DVDS was not efficient for other I/0. Compromises and
the inability to include all contingent I/0 requirements
lead to the abandonment of cenventional logic in favor
of stored logic.

V. Functional Units

The Mini-proc is made up of independent functional
units (Fig. 3). These units are interconnected by a single
8-bit bus. This two-way path allows the output of any
functional unit to be connected to any combination of
functional unit inputs.

The functional units were designed independently. The
only specifications were: (1) logic level delays from enable
to output of 100 ns maximum, (2) transistor-transistor logic
(TTL) compatible 5-V logic levels, and (3) 8-bit wide data
input and output. The control store word was not defined
until after the basic design was completed.

The manipulator is the data modifier in the Mini-proc.
Referring to Fig. 4, the primary operand enters the
manipulator through a shifter into the arithmetic logic
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unit (ALU). The shifter can shift data one bit right cyclic,
left cyclic or left noncyclic. The shifter’s output supplies
the “A” input of the ALU. The second operand is stored in
the arithmetic logic buffer which is routed to the B input
of the ALU. In the ALU, two Texas Instrument SN74181
(arithmetic logic units) provide 16 logic functions and two
sets of 16 carry dependent arithmetic functions for eight
bit bytes. The ALU can also be used to compare two
numbers. A special A = B signal is available to the status
functional unit. The output carry, saved in a flip-flop for
the status unit, can be routed back into the ALU to facili-
tate multi-byte arithmetic. The output of the ALU is
stored in the accumulator for distribution on the bus.
Sixteen 8-bit words of storage are available in a semi-
conductor scratch pad. The scratch pad address is sup-
plied by the control store.

Direct communication to the Mini-proc from the XDS
930 CPU is by way of the parallel output (POT) channel.
The CPU can start or stop the processor. A channel status
dump is available to the CPU on request. The interface
control decodes the necessary XDS 900 series EOMs and
signals the status functional unit as required. Two EOMs
override control store. The unconditional activate forces
the Mini-proc to reinitialize and start. The stop immediate
halts the processor no matter its current status. The inter-
face control can interrupt the CPU using two interrupt
channels. In case the CPU tries to activate an already
active Mini-proc, one interrupt channel provides a warn-
ing. The second interrupt is under the control of control
store.

Primary data and command transfers between the
XDS 930 memory and the Mini-proc is by way of the
MAM. The interface control synchronizes all data and
address transfers on this channel. The unit also generates
word parity to the XDS 930 and checks parity from the
XDS 930. The address buffer supplies the memory loca-
tion address to the MAM. Sixteen bits of storage are
available although only fifteen are used for the address.
Two Mini-proc cycles are required to transfer address
data in or out by way of the 8-bit bus. The data buffer
assembles 24 bits of data in three Mini-proc cycles for
transfer to the XDS 930 via the MAM. Conversely the
buffer unpacks 24 bits into 8-bit bytes in three cycles for
distribution on the bus.

Communication to the outside world is through the
external control functional unit. Besides providing syn-
chronizing signals for XDS 930 memory access, this unit
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has four special-purpose timing lines available to control
store. These lines can be used for arbitrary control line
simulation.

The Mini-proc’s single bus can be gated to the outside
world for direct 1/0. This facilitates simulating XDS 930
EOM-type instruction. Special status conditions can be
input in this manner. The external control also provides a
test line which is routed to the status functional unit.

The status unit keeps track of various internal and ex-
ternal conditions. Its primary function is the control of
conditional jumps. Any of the following three specific
conditions can be tested: Manipulator A = B, Manipulator
carry, and External test. The status unit can also provide
an interrupt-like jump, that is, a jump to a specific address
if any condition is set. The conditions are tested on a
priority scheme and are reset once handled. The jump
addresses, one for each condition, are defined by an
eight diode dual in-line package (DIP) carrier on the
status board.

The control address buffer selects the active micro-
instruction. This micro-instruction is stored in the control
buffer. The address buffer can be reset to zero or incre-
mented by one. To facilitate micro-program branching,
the control address buffer can also copy jump addresses
from the bus.

In the initial version of the Mini-proc, the control store
is a diode matrix memory with a 100-ns access time. Diode
matrices, though cumbersome, are easily changeable and
therefore amenable to experimentation. The control store
operates in parallel with the functional units. The next
micro-instruction is fetched while the current one is being
processed. A conflict occurs with a jump micro-instruction.
Here the fetched word is not the next one to be processed.
The usual solution is to ignore the fetched word and thus
lose a machine cycle. The Mini-proc, however, handles a
jump by allowing one sequential micro-instruction to be
executed after the jump micro-instruction occurs. The
programmer would then put a jump instruction one step
earlier than necessary or follow the jump with a clear
word (no-operation).

The format of the micro-instruction is a combination
vertical/horizontal format. An explanation of the format
appears in Figs. 5 and 6. Basically the output of any
functional units can be connected to any combination of
inputs under control of the control field.
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Vi. Micro-Programming

The sample micro-program (Fig. 7) is the start up
routine for the Mini-proc. The XDS 930 stores a command
program starting address in location 0234 of its memory.
The Mini-proc is enabled and accesses that location. The
micro-program then jumps to the routine called for by the
command in the starting address location. This micro-
program was written with the aid of a Meta-symbol pro-
cedure deck written for the XDS 930. The assembly
language has fields as shown in Table 1.

The card image corresponds to the input data for the
assembler. The label field is an address locator. The
device field corresponds to the micro-instruction device
field. (AORG sets the absolute origin. END implies an
end to the program.) The control/input field uses the
input mnemonics previously given in Figs. 5 and 6. A
control function is written by giving a name and its cor-
responding value such as (‘'I’, 234). This places the value
234 in the label subfield of the control field. Additional
field definitions are found in Table 2. The assembler pro-
duces a binary tape of the 27 bit micro-instruction words
for later implementation,

Each command of the processor program calls a spe-
cific micro-programmed routine. The initial command list
will consist of the following:

LOAD IMMEDIATE BLOCK COUNT

LOAD  IMMEDIATE  WORD COUNT

LOAD IMMEDIATE  DATA STARTING
ADDRESS

JUMP

DECREMENT, JUMP IF LOC. < 0

INPUT ONE WORD

OUTPUT ONE WORD

TRANSFER DATA (according to word, block count)

VII. Summary

Design of the Mini-proc has demonstrated the value of
stored logic. Micro-programming offers the digital system
designer an orderly method to produce logical controls.
The efficiency of design, along with simplified documen-
tation and debugging, suggests that stored logic is an
attractive and viable alternative to ad hoc design.
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Table 1. Assembly language format

Assembled code Card image
Relative
location Tag Device Control/input Card number Label Device Control/input
XXXXX X XX XXXXXXX (INIT) (RT B) (‘L’, O), BTADB

Table 2. Field definitions

Corresponding

Mnemonic “field’ Remarks/sub-class

MCM B ALU Control

BTSP A Scratch Pad

Sp A Used with SPTB

TIC D HALT - Stop
RIN  — Request Input
BRAC — Request Access
RDCS — Request Dump Channel

Status

ENINT — Fire Interrupt

TAG TAG

ST E STATUS

X C EXTERNAL

L F LITERAL
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INCREMENT

||
ADDRESS @65 G6 Gl
DECODE 2
| recisrer 1 | | recister 2 | —— G2
f———— G4
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5
,| Bim vl 26
12345678
WORD: j : i : : I ADD/SUBTRACT
i CONTROL
INCREMENT
s L EhrsToR 2y G3 !
AREEEEE G G 1 2(34]s]e
1
L -
00 GI, G2
01 G3, G4
01 02 10 GI, G4
11 G2, G3
[ ADDER/SUBTRACTER
L Fig. 2. Simple digital system, vertical format
ADD/SUBTRACT g- 2. Simp g y ’
! 0
Fig. 1. Simple digital system, horizontal format
EXTERNAL ADDRESS AND DATA
wmmmmmmm
N EXTERNAL [ EXTERNAL CONTROL
N CONTROL AND DATA
\
\
§ ADDRESS |
N BUFFER .
N e | SINGLE BUS
ADDRESS § N
\\\\\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\\\\\\{Q | ———— AUXILIARY CONTROL PATHS
N — — & CONTROL STORE CONTROL
XDS MAM _—— - —— — | PATHS
N I ———— FORCED START
o DATA N OSSN OTHER DATA
7 N
Z N
) % w ]
gy £ DATA |
Y 2 BUFFER
m c
ol =
o / Z
ﬁ <
7 | |
%
!
INTERFACE _ | !
CONTROL " - - R "™ appRess
MRS s s g
() g
DISTRIBUTED .
cLock —.{>_CLOCK STATUS .4 é
7
| 2
— — | conmoL
MANIPULATORQ—* o

16 WORD I
SCRATCH

PAD

Fig. 3. Block diagram of Mini-Proc
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2625242322212019181716151413121110987 6543210

TAG | DEVICE CONTROL INPUT | rc
Asp. B INTERF ACE
ADDRESS ALU CONTROL CONTROL
D
C INTER-
EXTERNAL FACE
E F
STATUS LITERAL
TAG FIELD
VALUE MNEMONIC ACTION
o1 LRC LOAD CONTROL MODIFY
10 RC MERGE CONTROL MODIFY
DEVICE, CONTROL
CONTROL
VALUE MNEMONIC FIELD ACTION
ENABLED
— 0000 NOB NO ACTION
BUS SHIFTER A INPUT ACCUMULATOR 0001 RAtB CONTROL ADDRESS TO BUS
0010 ACtB ACCUMULATOR TO BUS
0011 DB:B DATA BUFFER TO BUS
ARITHMETIC 0100 CtDB COMPUTER TO DATA BUFFER
b?\‘%‘c 0101 DBIC DATA BUFFER TO COMPUTER
0110 ADBIB ADDRESS BUFFER TO BUS
011 SPtB A SCRATCH PAD TO BUS
ARITHMETIC CARRY TO STATUS 1000 STHB E STATUS TO BUS
LOGIC B INPUT
BUFFER A8 TO STATUS 1001 EXB EXTERNAL TO BUS
1010 EXTCTL c EXTERNAL CONTROL
1 r 101 RtB F CONTROL STORE LITERAL TO BUS
1100 EXTRST OPTIONAL TIMING RESET
CONTROL 1101 STOP DEACTIVATE MINI=PROC
FROM
CONTROL 1110 EXPY SUPPLY EXTERNAL PARITY
STORE
INPUT
Fig. 4. Manipulator
CONTROL
BIT MNEMONIC FIELD ACTION
ENABLED
8 JP JUMP (BUS TO CONTROL ADDRESS)
7 XJP E JUMP ON CONDITION
6 MCM B MANIPULATOR CONTROL
5 BtALB BUS TO ARITHMETIC LOGIC BUFFER
4 BtDB BUS TO DATA BUFFER
3 BtADB BUS TO ADDRESS BUFFER
2 BtSP A BUS TO SCRATCH PAD
1 BIEX BUS TO EXTERNAL

INTERFACE CONTROL

INTERFACE CONTROL FIELD (D) ENABLED IF BIT 0 (RC) IS A ONE.

Fig. 5. Control store micro-instruction format
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BIT

16
15
14
13
12
11
10

S.P.  ADDRESS (A)

EXTERNAL ©)
BIT
20
19
18
17
16
15
14
INTERFACE (D)
BIT
13
12
n
10
9
STATUS ®

- - - o O
—_— O = O

ALU CONTROL (B)

SCRATCH PAD ADDRESS

BIT XJP (BIT 7)

1

ACTION

SHIFT CONTROL

LOGICAL MODE:
ARITHMETIC MODE: 01 INPUT CARRY =0
10 INPUT CARRY =}
1" INPUT CARRY = LAST OPERATION

ACTION CONTROL RESULT CARRY

ACTION

ENABLE EXTERNAL MEMORY ACCESS REQUEST LINE
ENABLE EXTERNAL MEMORY INPUT REQUEST LINE
ENABLE EXTERNAL MEMORY ADDRESS REQUEST LINE
TOGGLE OPTIONAL TIMING LINE A

TOGGLE OPTIONAL TIMING LINE B

TOGGLE OPTIONAL TIMING LINE C

TOGGLE OPTIONAL TIMING LINE D

ACTION

FIRE INTERRUPT

RESET DUMP CHANNEL STATUS REQUEST
REQUEST MEMORY ACCESS

REQUEST MEMORY INPUT

HALT ~-- STOP CLOCK (WAIT)

ACTION

JUMP IF MANIPULATOR A =B IS 1
JUMP IF MANIPULATOR CARRY IS 1
JUMP IF EXTERNAL TEST =1

JUMP TO PRIORITY ADDRESS
STATUS TO BUS
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79 PAGE
R0 #* START MINIPREC RSBM PRAGRAM
noooo ’1 ARRG 0
20000 O 12 0000010 82 INIT RYR (1, '20)aBTADB
00002 O 13 0352010 23 RTYR (1,12234)sBTADB
20004 O 00 0005001 B4 NBR (1TICT,RACHALT)
00006 O 04 0000000 85 CTNR :
00010 © 10 #000200 86 STTR (1ST'23)2XJP
70012 0 03 0057104 &7 NRTR (1BRTSPI,0) 2 ('MEM ,002015)
00014 0 03 0400014 88 NRTR (*RTSP1,1),BTADB
No016 0 07 0004011 89 SPTR (1SPYI0)BTADB, (' TICARAC)
00020 0 02 0N00QD4 90 ACTR ('*BTSP1,0)
n0022 0 07 0477400 91 sprR ('SP s ('MCMY,003015)
00024 0 02 0401008 92 ACTR (VRTSP1, 1), (' TIC,HALT)
00026 0 D4 0000000 93 CTIDR
00030 2 10 A000200 94 STTR X P, ('S8T, 3)
20032 0 13 7432004 98 RYR (1BTSP1,18) (L 1a8)
000234 0 03 0000400 26 DETR JP
00000000 97 END INTTY

Fig. 7. Sample micro-program
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