Extension of Automatic Flow Charting Capabilities

R. J. Margolin and W. O. Paine
Quality Assurance DSN and Mechanical Hardware Section

A new macro generation facility within the AUTOFLOW II flow charting system was used to process assembly language programs for the MODCOMP II computer. This article describes the nature of this new facility and how it was used, as well as describing other capabilities for automatic flow charting.

In its search for tools to aid in auditing DSN software, the Software Quality Assurance Group has made use of graphic macro facilities within AUTOFLOW II to enable automatic flow charting of assembly language source programs for the MODCOMP II computer used in the Deep Space Network.

This facility in AUTOFLOW II is known as macro definition. It permits the representation of the individual instructions of a target computer (in this case, the MODCOMP II) in terms of flow chart symbols with accompanying text information. A group of macro definition statements is used to express an instruction and each time that instruction occurs:

1. The type and number of flow chart symbols for that instruction are generated.
2. The text associated with each symbol is generated, including literal expressions and indicated parts of the source instructions.
3. In the case of decision, branch, and subroutine symbols, the location of the field which specifies the destination data is given.
4. For decision symbols, the in-line and out-of-line path labels are supplied.

Over 500 lines of macro definition statements were used to form 236 macro definitions of assembler directives and instructions for the MODCOMP assembler with some of the macro assembler features added. Twenty-three of the remaining 213 macro definitions were for

1 AUTOFLOW II is a program product of Applied Data Research, Inc., Princeton, New Jersey. There are many modules in AUTOFLOW II. One module, the chart/assembly module, accepts programs written in IBM 360/370 assembly language and automatically provides flow charts and analytical listings which make the structure of the program clearer. This system has been installed on the IBM 360/75 since early 1973.

2 The MODCOMP II computer is a product of Modular Computer Systems, Fort Lauderdale, Florida.
separate definitions of those instructions (indicated in MODCOMP code by an asterisk as the last character of the operation) where the memory reference was indirect. In addition, a group of specific MODCOMP executive service macros was defined.

A simple and conventional approach to graphic macro definition would have been to select the appropriate boxes and merely repeat the source coding along with the comment. It was our desire to provide a type of documentation suitable even for one not reasonably familiar with MODCOMP coding. In an effort to do this, we have expressed the instructions in a combination of English, logical, and program language-related symbolic notation. This enables a new reader to understand the operations more easily without knowing the many details of addressing modes. A certain lack of flexibility in the macro definition feature may cause pairs of parentheses to appear with null contents. This serves to indicate non-use of indexing where potentially available.

Where an assembler itself offers macro capabilities, it is possible to provide parallel AUTOFLOW macro definitions, depending on the complexity of the assembler macros used. This was done by Quality Assurance in the case of the Communication Buffer and Quad Standard Interface Adaptor (SIA) Test Program, part of which is shown as a sample. Part of the macro definitions, source code, and chart output are illustrated in Figs. 1, 2, and 3. Normally, the parallel AUTOFLOW macro definitions would be prepared to the general standard used for the original assembler macros.

In addition to handling 360/370 assembly language programs, AUTOFLOW II also has additional capabilities. AUTOFLOW has a built-in facility known as chart code. It is unrelated to any programming language, but is a vehicle for indicating the structure of the program at a design level. AUTOFLOW can also handle assembly language programs for a number of other computers and a variety of languages, such as PL/1, COBOL, JCL. Some of these are options which may be delivered with the basic AUTOFLOW II, while others are preprocessors which dovetail with AUTOFLOW or produce output that may be input to AUTOFLOW.

The status of other AUTOFLOW activities is as follows:

1. The current options in extensive use are FORTRAN and XDS Sigma Assembly Language.
2. The installed preprocessors are SDS 920, UNIVAC 1108, and CDC 3100.
3. Other preprocessors (which use the macro definition facility) are for the INTERDATA 4 and INTERDATA 70.
4. Other uses have been examined and it is possible to automatically chart assembly code for the PDP-8, NOVA, MAC-16, and PDP-11.

Bibliography

Fig. 1. Part of macro definition statements for MODCOMP instructions
1397 LDI R2 #4020 PICK UP OX INSTRUCTION HND04110
1398 ORS R2,0 ADD GROUP AND UNIT NUMBERS HND04120
1399 STS R2 M3COND STORE OX INSTR IN CONDITIONING HND04130
1400 RST R2 M3WRIT AND WRITE MODE INSTRUCTIONS HND04140
1401 LDS R2,5 #0100 PICK UP I0 AND FUNCTION CODE HND04150
1402 MLR R2, R2 ZERO I/O STATE HND04160
1403 ORI R2 #0100 SET 1/0 STATE TO 1 WRITING MODE HND04170
1404 STS R2,5 SET TIMER HND04190
1405 BLK R14 #0000 PICK UP CONDITIONING COMMAND HND04200
1406 LDS R2 OUTPUT CONDITIONING COMMAND HND04210
1407 M3COND OCB R2,0 PICK UP TI COMMAND HND04220
1408 LDS R2,0 M3WRIT OUTPUT TI COMMAND HND04230
1409 BRU DOINT DEQUEUE NEXT INTERRUPT HND04240
1410 BLK R14 EUT HND04250
1411 M3TERM BLK R14 BLK R14 CHECK STATUS HND04260
1412 LDI R2 #0100 PICK UP I/O STATE HND04270
1413 LDS R2,5 LTS R2, R2 HND04280
1414 LTS R2,2 M3HLL LTS R2,2 HND04290
1415 CRN R2 CINE R14, R2 M3HLL HND04300
1416 CRN R2 CRN R2 M3HLL HND04310
1417 CRN R2 CRN R2 M3HLL HND04320
1418 M3HLL CRN R2 M3HLL HND04330
1419 M3CKSM TCR R4, R2 M3ST3 HND04340
1420 BRU SIMUL GO PROCESS SIMULTANEOUS I/O HND04350
1421 M3ST3 LDI R2 #FFFB PICK UP LENGTH OF 6 WORDS HND04360
1422 STS R2,1 16 PICK UP LENGTH OF 16 BYTES HND04370
1423 LDI R2 M3BUF STORE IN TABLE HND04380
1424 STS R2,3 2 STORE IN TIB LOCATION HND04390
1425 LDI R2 M3BUF STORE IN TABLE HND04400
1426 STS R2,4 2 STORE IN TIB LOCATION HND04410
1427 LDI R2 #4020 PICK UP OX INSTRUCTION HND04420
1428 ORS R2,0 M3READ STORE OX IN READ INSTRUCTION HND04430
1429 ORR R2 #0010 PICK UP I0 AND FUNCTION CODE HND04440
1430 M3READ ORR R2,0 ZERO I/O STATE HND04450
1431 ORT R2 #0010 SET I/O STATE TO 1 READING MEM HND04460
1432 LTS R2, 5 BLK R14 SET TIMER HND04470
1433 BLK R14 #0000 PICK UP TI COMMAND HND04480
1434 M3READ BLK R14 OUTPUT TI COMMAND HND04490
1435 BRU DOINT DEQUEUE NEXT INTERRUPT HND04500
1436 M3STRD BLK R14 SET INDICATOR FOR MEMORY PRINT HND04510
1437 STS R2,15 M3ST3 STORE BUFFER ADDR IN TABLE HND04520
1438 LDI R2,3 M3READ STORE OX IN READ INSTRUCTION HND04530
1439 M3STRD LDI R2,3 PICK UP I0 AND FUNCTION CODE HND04540
1440 LDI R2,3 M3BUF ZERO I/O STATE HND04550
1441 M3ST3 ORT R2 #0200 SET IGS TO 2 WAITING HND04560
1442 STS R2,5 BLK R14 DELAY HND04570
1443 LTS R2,5 BRU DOINT HND04580
1444 EUT BRU HND04600
1445 M3TIME EUT PICK UP I0 AND FUNCTION CODE HND04610
1446 BRU M3TIME HND04620
1447 LDS R2, 5 HND44630
1448 M3RIE R2,5 CRN R2 FOUR, M3RIE HND04640
1449 M3RIE R2,5 CRN R2 M3RIE HND04650
1450 M3RIE R2,5 CRN R2 M3RIE HND04660
1451 CRN R2 CRN R2 HND04670
1452 CRN R2 CRN R2 HND04680
1453 CRN R2 CRN R2 HND04690

Fig. 2. Part of sample source program
Fig. 3. Part of generated flow chart corresponding to sample in Fig. 2