A Relational Data Base Implemented Using MBASIC

R. M. Smith
DSN Facility Operations Office

The implementation of a relational data base in MBASIC is described. Five relational operations are implemented, and their use on two data bases is described.

I. Introduction

The relational model of data is presently state-of-the-art in data base technology. The relational approach offers a simply understood, generalized data model that allows a relatively easy attainment of security, integrity, and privacy controls as well as implementation of the usual query and update transaction capability. The model also allows relatively easy expansion and reorganization. For these reasons, the relational model is an attractive candidate for the DSN Facility Operations data base. This article describes initial efforts at exploring the features of the relational model. Included in the scope of this effort was the construction of a demonstration relational data base and the implementation in MBASIC of several relational data base manipulation operations. The capability to manipulate the data base with the operations was demonstrated.

II. Relational Structure

In the relational model, data are organized into arrays (called relations) with fields (called domains), so that each record entry (called a tuple) is essentially a set of attributes describing one or more characteristics of a real-world entity. For instance, the relation "equipment identification" might be described by the following set of domain names:
Adding domain values would record the identification of equipment:

<table>
<thead>
<tr>
<th>CONTROL NUMBER</th>
<th>MANUFACTURER CODE</th>
<th>MODEL</th>
<th>USAGE CATEGORY</th>
<th>PROPERTY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1A23</td>
<td>HEA</td>
<td>5245L</td>
<td>03</td>
<td>J270(F)12345</td>
</tr>
<tr>
<td>AB3CQ01</td>
<td>TEA</td>
<td>547</td>
<td>07</td>
<td>LA546785</td>
</tr>
<tr>
<td>AA2842</td>
<td>EPI</td>
<td>100</td>
<td>02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Other relations may be constructed to describe other relationships such as equipment location, service history, etc.

III. Relational Operations

There are several specific relational operations (described in Refs. 1–3) that are used to manipulate data in the data model:

1. Join
2. Restriction
3. Division
4. Projection
5. Permutation

The reader may refer to the references for detailed descriptions of the relational operations; the following brief description may suffice for this reading:

1. **Join.** Two relations that have at least one domain in common may be combined in a way that preserves all the information in both relations but does not repeat the duplicate domain values in the resultant tuples. The join is equivalent in action to a union of sets.

2. **Restriction.** Tuples may be selected from a relation by testing each tuple for the presence of a specified attribute.

3. **Division.** Tuples may be selected from a relation by testing each tuple for the presence of a specified constant value. Tuples so selected are listed or stored, minus the domain containing the constant value, as though the selected tuples were remainders in a division process.

4. **Projection.** Specific domains in a relation may be selected (striking out the others) and duplicate tuples removed. The resultant array is a projection of the original relation.

5. **Permutation.** Domain positions in a relation may be interchanged, resulting in a permutation of the relation.

IV. Examples of the Relational Operations

Figures 1, 2 and 3 use flow charts derived from MBASIC programs described in this article (see MBASIC, Vol. 1: Fundamentals, and MBASIC, Vol. 2: Appendices, Jet Propulsion Laboratory, 1973) to illustrate the relational operations: join, restriction, and division. The projection operation is inherent in each of the relational operations when either "PRINT" or "WRITE ON" is used. Permutation is not illustrated separately but occurs in the program ‘REFERENCE’ when the record domains are reordered in the "PRINT" operation.

V. Description of the Data Base

The data base consists of two parts. The first part is purely for demonstration and consists of five MBASIC files containing equipment data to be manipulated and one file that serves as a directory. There is one program that may be used to demonstrate relational operations on the files.

Figure 4 illustrates the domain assignments for each demonstration relation. Figure 5 contains a flow diagram of the demonstration program ‘RELATIONAL’. Figure 6 illustrates the domain assignment for the directory relation.

The program ‘RELATIONAL’ performs a relational operation using relations, domains, and domain values selected by the user. In performing the selected operation, the program uses the relational operators as intermediate steps in manipulating the selected relations and domains.

The second part is a working data base that records a collection of technical articles and the subjects and key words contained in the articles. There are three MBASIC programs written especially for using the data base:

1. ‘REFERENCE’: Locates and prints the author and title of all articles that reference a subject or key word selected by the user.
2. ‘INPUTREF’: Maps into storage new articles and subjects or key words.
3. ‘TERNARY’: Prints a list of subjects and key words without printing duplications.

Figure 7 illustrates the domain assignment for the working part of the data base. Figures 8, 9, and 10 are flow charts for the special MBASIC programs.
VI. Details of the Implementation and Functions

There are several "traits" that are desirable in a relational data base, and the following were specifically chosen for inclusion in the described data base:

1. Record order independence. Application programs should generally not be dependent upon stored order of the records.

2. Use of domain names rather than domain positions. The user should not have to know the positions of domains.

3. Deletion and addition of relations. These should not affect application programs.

For this implementation, no effort was made to produce a data sublanguage (Ref. 3); therefore, all transactions are carried on in a full prompting mode, and the user deals with individual programs.

Figures 11 and 12 contain, respectively, the content of the demonstration files and the content of the working files. Figure 13 illustrates a session at a terminal using the demonstration program 'RELATIONAL' to produce the join of two relations over a common domain and the restriction of a relation. Figure 14 illustrates a session at a terminal using the working program 'REFERENCE' to produce a list of articles on a selected subject.

VII. Conclusions

The capability for exclusive use of domain names was fully realized in the program entitled 'RELATIONAL'. Record order independence is observed in all relations but one: 'SUBJECTS'. For practical reasons, it was decided to store 'SUBJECTS' in a particular, sorted order rather than to write a program containing a sort routine. The ability to add and delete relations was fully realized in the demonstration program ('RELATIONAL') and associated directory file ('RREL'). All of the previously listed relational operations take place during the operation of the special MBASIC programs referenced in this article and are annotated on the 'RELATIONAL' flow diagram.

References

Fig. 1. Flow chart for the relational operation "Join"

INPUT A

INPUT FROM 1:
A, B, C

ENDF

N
A = A
?

Y
A, B, C

CLOSE 1, 2

Fig. 2. Flow chart for the relational operation "Restriction"

INPUT B

INPUT FROM 1:
A, B

ENDF

N
B = B
?

Y
A

Fig. 3. Flow chart for the relational operation "Division"
CON = DSN CONTROL NUMBER
FAC = FACILITY
SSMA = SUBSYSTEM AND MAJOR ASSEMBLY
RACK = RACK
LEV = LEVEL
ECO = ENGINEERING CHANGE ORDER
STAT = STATUS
DATE = DATE
TIME = TIME
MFR = MANUFACTURER THREE LETTER CODE
MOD = MODEL
CAT = CATEGORY
PROP = PROPERTY NUMBER

'LOC': EQUIPMENT LOCATION DATA
'FAIL': EQUIPMENT FAILURE HISTORY DATA
'ECO': EQUIPMENT DESIGN DATA
'ID': EQUIPMENT IDENTIFICATION DATA
'SHF': EQUIPMENT SERVICE HISTORY DATA

Fig. 4. Demonstration relations and domains
Fig. 5. Flow diagram for the MBASIC demonstration program 'RELATIONAL'
Fig. 5. (contd)
**Fig. 6. Domain assignment for the directory relation 'RREL'

<table>
<thead>
<tr>
<th>FILENAME</th>
<th>DOMAIN NUMBER</th>
<th>QUANTITY OF DOMAINS</th>
<th>DOMAIN NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBASIC NAME OF A RELATION FILE</td>
<td>THE DOMAIN POSITION IN THE RELATION</td>
<td>TOTAL QUANTITY OF DOMAINS IN THE RELATION</td>
<td>THE NAME ASSIGNED TO THE SPECIFIC DOMAIN</td>
</tr>
</tbody>
</table>

**Fig. 7. Working relations and domains

REF # = A UNIQUE FILE NUMBER ASSIGNED TO AN ARTICLE
SUBJECT = A SUBJECT NAME OR A KEY WORD
TITLE = THE TITLE OF AN ARTICLE
AUTHOR = THE NAME OF THE ARTICLE'S AUTHOR

**Fig. 8. Flow diagram for the MBASIC working program 'REFERENCE'
Fig. 9. Flow diagram for the MBASIC working program 'TERNARY'
Fig. 10. Flow diagram for the MBASIC working program 'INPUTREF'
COPY 'FAIL' TO TERMINAL
14,3555,2215,AA30AA
14,2505,1612,AA30AA
41,2205,1525,AL32BA
11,2015,0032,AA01FG
11,2105,1512,AA32AP
21,0055,0722,AA30AA
44,1505,1220,AR21BA
12,1705,0117,AA32AS
20,0015,1515,AA30AA
14,1225,0711,AB21UG
12,0155,1010,AA50AB
14,3025,1706,AB56AA

COPY 'ID' TO TERMINAL
AA30AA,HER,1405,3,J270(F)
AA32AP,JPL,9454233,7,NONE
AA32AS,TEA,547,6,J270(F)
AB21UG,LEX,1234,7,J270(F)
AA01FG,JPL,10053237,7,NONE
AA50AB,TEA,53,J270(F)
AB56AA,LEX,1453F,3,J270(F)
AA400H,XY2,2122,6,J270(F)
AZ34RT,JPL,9443207,7,J270(F)
AV66YH,HER,5303,2,J270(F)
AX44RF,ABC,1165,7,J270(F)
AD78UJ,TXF,1A55,7,J270(F)

COPY 'ECO' TO TERMINAL
AA32AS,74.001,1
AA500H,75.122,2
AB56AA,74.001,1
AZ34RT,75.001,1
AA50AB,74.001,2
AV66YH,74.001,3
AA01FG,75.122,3
AX44RF,73.010,4
AB21UG,74.246,1
AD78UJ,73.375,3
AA32AP,73.854,2
AB56AA,71.132,3
AB21UG,73.229,4
AB21RE,75.424,2
AB56AA,75.444,1
AA32AS,71.165,1

COPY 'LOC' TO TERMINAL
AA30AA,14,3301,125,2A2
AA32AP,11,3105,221,1A5
AA32AS,12,3702,003,1A1
AB21UG,14,3912,002,1A3
AA01FG,11,3606,010,1A6
AA50AB,12,3102,005,1A6
AB56AA,14,3510,003,1B5
AZ34RT,11,3105,067,1D4

COPY 'SHF' TO TERMINAL
AA32AS,1705
AA30AA,2005
AA32AP,1705
AB21UG,2005
AA01FG,1705
AA50AB,2355

COPY 'RREL' TO TERMINAL
SUBJECTS,1,2,REF#
SUBJECTS,2,2,SUBJECT
ARTICLES,1,3,REF#
ARTICLES,2,3,TITLE
ARTICLES,3,3,AUTHOR
LOC,1,5,CON
LOC,2,5,FAC
LOC,3,5,SSMA
LOC,4,5,RACK
LOC,5,5,LEU
ECO,1,3,CON
ECO,2,3,ECO
ECO,3,3,STAT
FAIL,1,4,FAC
FAIL,2,4,DATE
FAIL,3,4,TIME
FAIL,4,4,CON
SHF,1,2,CON
SHF,2,2,DATE
ID,1,5,CON
ID,2,5,MFR
ID,3,5,MOD
ID,4,5,CAT
ID,5,5,PROP
LAST,0,0,ITEM

Fig. 11. Content of demonstration relations
COPY 'SUBJECTS' TO TERMINAL
004, ADABAS
068, AUDIT
047, AUTOMATED PROGRAMMING
058, AUTOMATED PROGRAMMING
003, COMPOSITION
003, CONSISTENCY
009, CONSISTENCY
071, CONSISTENCY
068, CONSISTENCY
071, DATA DEFINITION LANGUAGE
081, DATA DEFINITION LANGUAGE
075, DATA DEFINITION LANGUAGE
001, DATA DEFINITION LANGUAGE
002, DATA DESCRIPTION
071, DATA VALIDATION
023, DATA VALIDATION
005, DATABASE
058, DATABASE
083, DATABASE
DATABASE
063, RELATIONAL
069, RELATIONAL
052, RELATIONAL
049, RELATIONAL
050, RELATIONAL
071, RELATIONAL
065, RELATIONAL
066, RELATIONAL
023, RELATIONAL
053, RELATIONAL
077, RELATIONAL
072, RELATIONAL IMPLEMENTATIONS
003, RESTRICTION
066, RESTRICTION
077, SECURITY
072, SECURITY
074, SECURITY
003, SECURITY
075, SECURITY
080, SECURITY
004, SYSTEM 2000
080, SYSTEM 2000
005, SYSTEM 2000
069, USER VIEW
>

Fig. 12. Content of working relations
COPY 'ARTICLES' TO TERMINAL
001: A LANGUAGE FOR A RELATIONAL DATA BASE MGMT SYSTEM, BRACCHI/FEDELI/PAOLINI
002: ANOTHER LOOK AT DATA, MEALY
003: A RELATIONAL MODEL OF DATA FOR LARGE SHARED DATA BANKS, CODD
004: NEW SOFTWARE FOR DATA BASE MGMT: PART 2, EDP IN-DEPTH REPORT
005: THE CURRENT STATUS OF DATA MGMT, EDP ANALYZER
006: THE DATABASE ADMINISTRATOR: PART 2, EDP IN-DEPTH REPORT
007: NETWORKS HIERARCHIES AND RELATIONS IN DBMS SYSTEMS, STONEBAKER/HELD
013: IMPLEMENTING PRODUCTION SYSTEMS WITH RELATIONAL SYSTEMS, JORDAN
023: INTEGRITY CONTROL IN A RELATIONAL DATA DESCRIPTION LANGUAGE, GRAVES
027: A COBOL DATA BASE FACILITY FOR THE RELATIONAL MODEL, WESTGARD
032: DATA BASE ADMINISTRATION, SECREST
045: IMPLEMENTATION OF A STRUCTURED ENGLISH QUERY LANGUAGE, ASTRAHAN/CHAMBERLIN
046: COMPUTING JOINS OF RELATIONS, GOTTLEB
047: OPTIMIZING THE PERFORMANCE OF A RELATIONAL ALGEBRA DATABASE, SMITH/CHANG
048: IMPLEMENTATION OF INTEGRITY CONSTRAINTS AND VIEWS BY QUERY MODIFICATIONS, STONEBAKER
049: PERFORMING INFERENCE OVER RELATIONAL DATABASES, MINKIN
050: INFORMATION RETRIEVAL IN FILES DESCRIBED USING SETS, WELCH/GRAHAN
052: A HIGH LEVEL TRANS. DEFINITION LANG FOR DATA CONVERSION, SHU/HOUSEL/LUM
053: A LOGICAL-LEVEL APPROACH TO DATABASE CONVERSION, SHOSMAN
054: INVESTIGATION INTO THE APPL OF THE RELAT MODEL TO DATA TRANS., NAVATHE/MERTEN
058: A PRELIM SYS FOR THE DESIGN OF DBS DATA STRUCTURES, GERRITSON
062: FINDING CANDIDATE KEYS FOR RELATIONAL DATABASES, FORSYTH/FADOUS
063: ON THE SEMANTICS OF THE RELATIONAL MODEL, SCHMID/RENSON
065: A UNIFIED APPROACH TO FUNCTIONAL DEPENDENCIES AND RELATIONS, BERNSTEIN/SWENSON/TSICHRTZIS
066: RELATIONAL COMPLETENESS OF DATA BASE SLUBLANGUAGES, CODD
067: FURTHER NORMALIZATION OF THE DATABASE RELATIONAL MODEL, CODD
068: CONSISTENCY AUDITING OF DATABASES, FLORENTIN
069: USING A STRUCTURED ENGLISH QUERY LANGUAGE AS A DATA DEFINITION FACILITY, BOYCE/CHAMBERLIN
070: COMPUTER FRAUD AND EMBEZZLEMENT, EDP ANALYZER SEPT 1973
071: AN INTRODUCTION TO DATABASE SYSTEMS, DATE
072: AFIPS CONFERENCE PROCEEDINGS 1975, AFIPS
073: THE ROLE OF THE DATABASE ADMINISTRATOR, LYON
074: SYSTEM IMPLICATIONS OF INFORMATION PRIVACY, PETERSEN/TURNER
075: DATABASE TASK GROUP REPORT 1971, CODASYL
076: THE PROGRAMMER AS NAVIGATOR, BACHMAN
077: HIGH LEVEL INTEGRITY ASSURANCE IN RELATIONAL DATABASE MGMT SYST, STONEBAKER
078: AVOIDING DEADLOCK IN MULTITASKING SYSTEMS, HAVENDER
079: SYSTEM DEADLOCKS, COFFMAN/ELPHIC/SHOSMAN
080: NEW SOFTWARE FOR DATABASE MGMT: PART 1, EDP IN-DEPTH REPORT
081: GENERALIZED DATABASE MGMT SYST DATA STRUCTURES, TAYLOR
082: RELATIONAL DATABASE SYSTEMS: A TUTORIAL, DATE
083: A SURVEY OF GENERALIZED DATABASE MGMT SYST, CODASYL

Fig. 12. (contd)
Fig. 13. A session at a terminal using the MINSIC program 'RELATIONAL'
LOAD 'REFERENCE'
>RUN
ENTER SUBJECT: SECURITY
077 STONEBAKER
 HIGH LEVEL INTEGRITY ASSURANCE IN RELATIONAL DATABASE MANAGEMENT SYSTEMS
072 AFIPS
 AFIPS CONFERENCE PROCEEDINGS 1975
074 PETERSEN/TURN
 SYSTEM IMPLICATIONS OF INFORMATION PRIVACY
003 Codd
 A RELATIONAL MODEL OF DATA FOR LARGE SHARED DATA BANKS
075 CODASYL
 DATABASE TASK GROUP REPORT 1971
080 EDP IN-DEPTH REPORT
 NEC SOFTWARE FOR DATABASE MANAGEMENT PART 1

END

Fig. 14. A session at a terminal using the MBASIC program 'REFERENCE'